首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Establishment of a 2-D human urinary proteomic map in IgA nephropathy   总被引:7,自引:0,他引:7  
Park MR  Wang EH  Jin DC  Cha JH  Lee KH  Yang CW  Kang CS  Choi YJ 《Proteomics》2006,6(3):1066-1076
Immunoglobulin A nephropathy (IgAN) is the most common form of immune complex-mediated glomerulonephritis worldwide. Although chronic renal failure develops in considerable numbers of IgAN patients, the exact etiology has not yet been clearly elucidated. To establish the urinary protein map of IgAN, we performed a urinary proteomic analysis. Thirteen patients with IgAN and 12 normal controls were recruited. Morning midstream spot urine samples were used with Centriprep ultrafiltration for concentration and desalting. 2-DE was performed and compared between IgAN and normal control, and urinary proteins were identified by MALDI-TOF MS. A large number of protein spots were identified in IgAN and normal control samples, with means of 311 spots and 174 spots, respectively. Approximately 216 protein spots were detected as differentially expressed in IgAN. Among these, 82 spots were over-expressed, and 134 spots were under-expressed compared to normal controls. A total of 84 differentially expressed spots, representing 59 different proteins, were finally identified in IgAN. We have established a urinary proteomic map of IgAN and this result helps in the identification. Further study is needed to determine the potential pathogenic role of these proteins.  相似文献   

2.
Identification of a urinary metabolite biomarker with diagnostic or prognostic significance for early immunoglobulin A nephropathy (IgAN) is needed. We performed nuclear magnetic resonance-based metabolomic profiling and identified 26 metabolites in urine samples. We collected urine samples from 201, 77, 47, 36 and 136 patients with IgAN, patients with membranous nephropathy, patients with minimal change disease, patients with lupus nephritis and healthy controls, respectively. We determined whether a metabolite level is associated with the prognosis of IgAN through Cox regression and continuous net reclassification improvement (cNRI). Finally, in vitro experiments with human kidney tubular epithelial cells (hTECs) were performed for experimental validation. As the results, the urinary glycine level was higher in the IgAN group than the control groups. A higher urinary glycine level was associated with lower risk of eGFR 30% decline in IgAN patients. The addition of glycine to a predictive model including clinicopathologic information significantly improved the predictive power for the prognosis of IgAN [cNRI 0.72 (0.28-0.82)]. In hTECs, the addition of glycine ameliorated inflammatory signals induced by tumour necrosis factor-α. Our study demonstrates that urinary glycine may have diagnostic and prognostic value for IgAN and indicates that urinary glycine is a protective biomarker for IgAN.  相似文献   

3.
Urinary microvesicles constitute a rich source of membrane‐bound and intracellular proteins that may provide important clues of pathophysiological mechanisms in renal disease. In the current study, we analyzed and compared the proteome of urinary microvesicles from patients with idiopathic membranous nephropathy (iMN), idiopathic focal segmental glomerulosclerosis (iFSGS), and normal controls using an approach that combined both proteomics and pathology analysis. Lysosome membrane protein‐2 (LIMP‐2) was increased greater than twofold in urinary microvesicles obtained from patients with iMN compared to microvesicles of patients with iFSGS and normal controls. Immunofluorescence analysis of renal biopsies confirmed our proteomics findings that LIMP‐2 was upregulated in glomeruli from patients with iMN but not in glomeruli of diseased patients (iFSGS, minimal change nephropathy, IgA nephropathy, membranoproliferative glomerulonephritis) and normal controls. Confocal laser microscopy showed co‐localization of LIMP‐2 with IgG along the glomerular basement membrane. Serum antibodies against LIMP‐2 could not be detected. In conclusion, our data show the value of urinary microvesicles in biomarker discovery and provide evidence for de novo expression of LIMP‐2 in glomeruli of patients with iMN.  相似文献   

4.
This study was aimed at the search of urinary biomarkers which might help to predict the clinical response of IgA nephropathy (IgAN) patients to angiotensin converting enzyme inhibitors (ACEi). First, we studied the urinary proteome of 18 IgAN patients (toward 20 healthy controls) who had been chronically treated with ACEi by using 2-D PAGE coupled to nano-HPLC-ESI-MS/MS analysis. We identified 3 proteins, kininogen (p = 0.02), inter-alpha-trypsin-inhibitor heavy chain 4 (35 kDa fragment) (p = 0.02) and transthyretin (p<0.0001), whose urinary excretion was different in IgAN patients' responders when compared to those who had not responded to ACEi. A reduction of daily proteinuria >50% and a stable renal function over time were used to classify patients as responders. Then, we adopted immunoblotting to confirm the predictive power of one of the above proteins, kininogen, in 20 patients with biopsy-proven IgAN, before starting any therapy. Thus, we confirmed that very low levels of kininogen urine excretion were indeed predictive of an inadequate or absent clinical response to ACEi therapy of IgAN patients, after 6-month follow-up. Concluding, the analysis of urine proteome of IgAN patients generated a set of proteins which distinguished subjects responsive to ACEi from those unresponsive to the inhibition of renin-angiotensin system (RAS).  相似文献   

5.
IgA nephropathy (IgAN), the most common primary glomerulonephritis, is characterized by deposition of IgA in the glomerular mesangium. The diagnosis of IgAN still requires a kidney biopsy that cannot easily be repeated in the same patient during follow‐up. Therefore, identification of noninvasive urinary biomarkers would be very useful for monitoring patients with IgAN. We first used bidimensional electrophoresis (2DE) coupled to MALDI‐TOF‐TOF and Western blot to identify some urinary biomarkers associated with IgAN. Urine of IgAN patients showed an increase of albumin fragments, α‐1‐antitrypsin and α‐1‐β‐glycoprotein, along with a decrease of a single spot that was identified as the laminin G‐like 3 (LG3) fragment of endorepellin. The urinary proteomes of 43 IgAN patients were compared to those of 30 healthy individuals by ELISA. Quantification of LG3 confirmed a significant decrease in the urine of IgAN patients compared to healthy controls, except in ten patients in whom LG3 was increased. These ten patients had a more severe disease with lower glomerular filtration rate values. We found a significant inverse correlation between LG3 levels and glomerular filtration rate in the 43 patients with IgAN, which was not observed in 65 patients with other glomerular diseases including membranous nephropathy (23), lupus nephropathy (13), focal segmental glomerulosclerosis (15), diabetic nephropathy (14), and six patients with nonglomerular diseases. Therefore, we suggest that the LG3 fragment of endorepellin could be associated with IgAN severity and might be related to pathogenesis of IgAN.  相似文献   

6.
Wang Z  Hill S  Luther JM  Hachey DL  Schey KL 《Proteomics》2012,12(2):329-338
Exosomes are membrane vesicles that are secreted by cells upon fusion of multivesicular bodies with the plasma membrane. Exosomal proteomics has emerged as a powerful approach to understand the molecular composition of exosomes and has potential to accelerate biomarker discovery. Different proteomic analysis methods have been previously employed to establish several exosome protein databases. In this study, TFE solution-phase digestion was compared with in-gel digestion and found to yield similar results. Proteomic analysis of urinary exosomes was performed by multidimensional protein identification technology (MudPIT) after TFE digestion. Nearly, 3280 proteins were identified from nine human urine samples with 31% overlap among nine samples. Gene ontology (GO) analysis, coupled with detection of all of the members of ESCRT machinery complex, supports the multivesicular origin of these particles. These results significantly expand the existing database of urinary exosome proteins. Our results also indicate that more than 1000 proteins can be detected from exosomes prepared from as little as 25 mL of urine. This study provides the largest set of proteins present in human urinary exosome proteomes, provides a valuable reference for future studies, and provides methods that can be applied to exosomal proteomic analysis from other tissue sources.  相似文献   

7.
Membranous nephropathy is one of the most common causes of primary glomerular diseases worldwide. The present study adopted a gel-based proteomics approach to better understand the pathophysiology and define biomarker candidates of human membranous nephropathy using an animal model of passive Heymann nephritis (PHN). Clinical characteristics of Sprague-Dawley rats injected with rabbit anti-Fx1A antiserum mimicked those of human membranous nephropathy. Serial urine samples were collected at Days 0, 10, 20, 30, 40, and 50 after the injection with anti-Fx1A (number of rats = 6; total number of gels = 36). Urinary proteome profiles were examined using 2D-PAGE and SYPRO Ruby staining. Quantitative intensity analysis and ANOVA with Tukey post-hoc multiple comparisons revealed 37 differentially expressed proteins among 6 different time-points. These altered proteins were successfully identified by MALDI-TOF MS and classified into 6 categories: (i) proteins with decreased urinary excretion during PHN; (ii) proteins with increased urinary excretion during PHN; (iii) proteins with increased urinary excretion during PHN, but which finally returned to basal levels; (iv) proteins with increased urinary excretion during PHN, but which finally declined below basal levels; (v) proteins with undetectable levels in the urine during PHN; and (vi) proteins that were detectable in the urine only during PHN. Most of these altered proteins have functional significance in signaling pathways, glomerular trafficking, and controlling the glomerular permeability. The ones in categories (v) and (vi) may serve as biomarkers for detecting or monitoring membranous nephropathy. After normalization of the data with 24-h urine creatinine excretion, changes in 34 of initially 37 differentially expressed proteins remained statistically significant. These data underscore the significant impact of urinary proteomics in unraveling disease pathophysiology and biomarker discovery.  相似文献   

8.
Vascular proteomics is providing two main types of data: proteins that actively participate in vascular pathophysiological processes and novel protein candidates that can potentially serve as useful clinical biomarkers. Although both types of proteins can be identified by similar proteomic strategies and methods, it is important to clearly distinguish biomarkers from mediators of disease. A particular protein, or group of proteins, may participate in a pathogenic process but not serve as an effective biomarker. Alternatively, a useful biomarker may not mediate pathogenic pathways associated with disease (i.e., C-reactive protein). To date, there are no clear successful examples in which discovery proteomics has led to a novel useful clinical biomarker in cardiovascular diseases. Nevertheless, new sources of biomarkers are being explored (i.e., secretomes, circulating cells, exosomes and microparticles), an increasing number of novel proteins involved in atherogenesis are constantly described, and new technologies and analytical strategies (i.e., quantitative proteomics) are being developed to access low abundant proteins. Therefore, this presages a new era of discovery and a further step in the practical application to diagnosis, prognosis and early action by medical treatment of cardiovascular diseases.  相似文献   

9.
梁爽  凡奎  张燕  谢杨眉 《生物信息学》2020,18(3):163-168
为了寻找诊断、鉴别IgA肾病(IgAN)和膜性肾病(MN)的血液特异性标记物,利用公共数据库中的IgAN和MN患者的外周血单核细胞(PBMCs)的转录组表达谱数据集识别特异性生物标记物,为诊断和鉴别提供简便、可靠的依据补充。从公共基因表达数据库(GEO)下载IgAN患者组(n=15)和MN患者组(n=8)芯片数据集,筛选前250个差异表达基因(DEGs)。通过分析筛选关键基因和途径,进行基因本体(GO)富集分析、京都基因与基因组百科全书(KEGG)通路分析和蛋白质与蛋白质相互作用关系(PPI)分析等进一步了解DEGs。通过分析共发现75个显著DEGs,其中73个上调基因,2个下调基因。GO富集分析的生物学过程(BP)主要包括蛋白质转运、内溶酶体到溶酶体转运、趋化因子介导的信号通路作用等。显著富集差异表达基因KEGG通路分析包括Endocytosis和Hepatitis B的相关信号通路。PPI筛选出EPS15、STAT4、CCL2、SUN2、SEC24C、SEC31A、GOLGB1、F2R,RAB12和PTK2B等关键基因。成功筛选出核心差异表达基因,为IgAN和MN的诊断和鉴别提供简便、可靠的依据补充,甚至提供治疗的新靶点。  相似文献   

10.
Diabetic nephropathy (DN) is a serious complication of diabetes caused by changes in the structure and function of the kidneys. It is important to detect diagnostic biomarkers of DN at an early stage, in which the drug can slow the loss of kidney function and prevent disease progression. In recent years, a variety of biological markers related to DN have been discovered, which is of great significance for predicting the occurrence and development of diseases. Due to the simplicity of non-invasive collection, urine is an ideal biological sample for the discovery of new biomarkers of kidney disease. We reviewed some new urinary biomarkers related to early DN patients, including urinary proteins, peptides, and exosomes biomarkers. We also highlight the proteins associated with tubular damage, glomerular damage, inflammation and oxidative stress marker. Despite the promise of these new urinary biomarkers, we next proposed a review of the most recent publications reporting on larger cohorts, focusing on those that aim at qualification or validation. This review provides important data to better understand biomarkers related to the pathophysiology of DN, and these markers have been increasingly studied for disease progression to provide effective human treatment.  相似文献   

11.
The choice of treatment for primary nephrotic syndrome depends on the pathologic type of the disorder. Renal biopsy is necessary for a definitive diagnosis, but it is burdensome for the patients, and can be avoided if tests could be performed using urine or plasma. In this study, we analyzed 100 urinary proteins, 141 plasma proteins, and 57 urine/plasma ratios in cases of diabetic nephropathy (DN; n = 11), minimal change nephrotic syndrome (MCNS; n = 14), and membranous nephropathy (MN; n = 23). We found that the combination of urinary retinol-binding protein 4 and SH3 domain-binding glutamic acid-rich-like protein 3 could distinguish between MCNS and DN, with an area under the curve (AUC) of 0.9740. On the other hand, a selectivity index (SI) based on serotransferrin and immunoglobulin G, which is often used in clinical practice, distinguished them with an AUC of 0.9091. Similarly, the combination of urinary afamin and complement C3 urine/plasma ratio could distinguish between MN and DN with an AUC of 0.9842, while SI distinguished them with an AUC of 0.8538. Evidently, the candidates identified in this study were superior to the SI method. Thus, the aim was to test these biomarkers for accurate diagnosis and to greatly reduce the burden on patients.  相似文献   

12.
Shao C  Li M  Li X  Wei L  Zhu L  Yang F  Jia L  Mu Y  Wang J  Guo Z  Zhang D  Yin J  Wang Z  Sun W  Zhang Z  Gao Y 《Molecular & cellular proteomics : MCP》2011,10(11):M111.010975
Urine is an important source of biomarkers. A single proteomics assay can identify hundreds of differentially expressed proteins between disease and control samples; however, the ability to select biomarker candidates with the most promise for further validation study remains difficult. A bioinformatics tool that allows accurate and convenient comparison of all of the existing related studies can markedly aid the development of this area. In this study, we constructed the Urinary Protein Biomarker (UPB) database to collect existing studies of urinary protein biomarkers from published literature. To ensure the quality of data collection, all literature was manually curated. The website (http://122.70.220.102/biomarker) allows users to browse the database by disease categories and search by protein IDs in bulk. Researchers can easily determine whether a biomarker candidate has already been identified by another group for the same disease or for other diseases, which allows for the confidence and disease specificity of their biomarker candidate to be evaluated. Additionally, the pathophysiological processes of the diseases can be studied using our database with the hypothesis that diseases that share biomarkers may have the same pathophysiological processes. Because of the natural relationship between urinary proteins and the urinary system, this database may be especially suitable for studying the pathogenesis of urological diseases. Currently, the database contains 553 and 275 records compiled from 174 and 31 publications of human and animal studies, respectively. We found that biomarkers identified by different proteomic methods had a poor overlap with each other. The differences between sample preparation and separation methods, mass spectrometers, and data analysis algorithms may be influencing factors. Biomarkers identified from animal models also overlapped poorly with those from human samples, but the overlap rate was not lower than that of human proteomics studies. Therefore, it is not clear how well the animal models mimic human diseases.  相似文献   

13.
This study was performed to determine whether immunoreactivity of intrarenal hemeoxygenase-1 and angiotensinogen are increased in IgA nephropathy (IgAN) patients. Hemeoxygenase-1 and angiotensinogen immunoreactivity were determined by immunohistochemistry robot system in renal specimens from 39 patients with IgAN. Normal portions of surgically resected kidney served as controls. IgAN patients showed moderate proteinuria (1.1+/-0.2 g/day); however, the control group did not show any proteinuria. Immunoreactivity of intrarenal hemeoxygenase-1 and angiotensinogen in IgAN were significantly increased compared to normal kidneys (2.42+/-0.42 vs 1.00+/-0.26 for hemeoxygenase-1 and 4.05+/-0.40 vs 1.00+/-0.21 for angiotensinogen, arbitrary unit). Even though these IgAN patients did not show massive renal damage, hemeoxygenase-1 and angiotensinogen immunoreactivity were increased in these patients at this time point. These data suggest that activated intrarenal reactive oxygen species-angiotensinogen axis plays some roles in development of IgAN at the early stage and will provide supportive foundation of effectiveness of the renin-angiotensin system blockade in IgAN.  相似文献   

14.
Glycoproteins containing the mannose 6-phosphate (Man-6-P) modification represent a class of proteins of considerable biomedical importance. They include over sixty different soluble lysosomal hydrolases and accessory proteins, deficiencies of which result in over forty different known human genetic diseases. In addition, there are patients with lysosomal storage diseases of unknown etiology and lysosomal proteins have been implicated in pathophysiological processes associated with Alzheimer disease, arthritis, and cancer. The aim of this study was to explore urine as a source for the proteomic investigation of lysosomal storage disorders as well as for biomarker studies on the role of Man-6-P containing proteins in other human diseases. To this end, urinary proteins were affinity purified on immobilized Man-6-P receptors, digested with trypsin, and analyzed using nanospray LC/MS/MS. This resulted in identification of 67 proteins, including 48 known lysosomal proteins and 9 proteins that may be lysosomal. The identification of a large proportion of the known set of soluble lysosomal proteins with relatively few contaminants suggests that urine represents a promising substrate for the development of comparative proteomic methods for the investigation of lysosomal disorders and other diseases involving Man-6-P glycoproteins.  相似文献   

15.
Exosomes and other microvesicles are emerging as rich reservoirs of tumor-specific proteins and biomarkers for cancer detection and progression. For prostate cancer, exosomes secreted by the prostate can be isolated from prostatic secretions, seminal fluid, tissue, urine or blood for further proteomic analysis. Structurally, prostate-derived exosomes are distinct in size, membrane composition and specific prostate protein content, potentially providing a novel and easily isolatable source of biomarkers from clinical biofluids. The key to these isolation strategies will be the targeting of specific prostatic proteins expressed in these exosomes, thus requiring detailed proteomic characterizations. A summary of ongoing efforts to characterize the proteome of these unique prostate cancer-associated exosomes and their potential applications for use in biomarker assays is presented.  相似文献   

16.
Although dysfunctional protein homeostasis (proteostasis) is a key factor in many age‐related diseases, the untargeted identification of structurally modified proteins remains challenging. Peptide location fingerprinting is a proteomic analysis technique capable of identifying structural modification‐associated differences in mass spectrometry (MS) data sets of complex biological samples. A new webtool (Manchester Peptide Location Fingerprinter), applied to photoaged and intrinsically aged skin proteomes, can relatively quantify peptides and map statistically significant differences to regions within protein structures. New photoageing biomarker candidates were identified in multiple pathways including extracellular matrix organisation (collagens and proteoglycans), protein synthesis and folding (ribosomal proteins and TRiC complex subunits), cornification (keratins) and hemidesmosome assembly (plectin and integrin α6β4). Crucially, peptide location fingerprinting uniquely identified 120 protein biomarker candidates in the dermis and 71 in the epidermis which were modified as a consequence of photoageing but did not differ significantly in relative abundance (measured by MS1 ion intensity). By applying peptide location fingerprinting to published MS data sets, (identifying biomarker candidates including collagen V and versican in ageing tendon) we demonstrate the potential of the MPLF webtool for biomarker discovery.  相似文献   

17.
MicroRNAs (miRNAs), a class of small non-protein-encoding RNAs, regulate gene expression via suppression of target mRNAs. MiRNAs are present in body fluids in a remarkable stable form as packaged in microvesicles of endocytic origin, named exosomes. In the present study, we have assessed miRNA expression in urinary exosomes from type 1 diabetic patients with and without incipient diabetic nephropathy. Results showed that miR-130a and miR-145 were enriched, while miR-155 and miR-424 reduced in urinary exosomes from patients with microalbuminuria. Similarly, in an animal model of early experimental diabetic nephropathy, urinary exosomal miR-145 levels were increased and this was paralleled by miR-145 overexpression within the glomeruli. Exposure of cultured mesangial cells to high glucose increased miR-145 content in both mesangial cells and mesangial cells-derived exosomes, providing a potential mechanism for diabetes-induced miR-145 overexpression. In conclusion, urinary exosomal miRNA content is altered in type 1 diabetic patients with incipient diabetic nephropathy and miR-145 may represent a novel candidate biomarker/player in the complication.  相似文献   

18.

Background

Podocyte injury is an early feature of diabetic nephropathy (DN). Recently, urinary exosomal Wilm''s tumor-1 protein (WT1), shed by renal epithelial cells, has been proposed as a novel biomarker for podocyte injury. However, its usefulness as biomarker for early diabetic nephropathy has not been verified yet. We investigated urinary exosomal WT1 in type-1 diabetic patients to confirm its role as a non-invasive biomarker for predicting early renal function decline.

Methods

The expression of WT1 protein in urinary exosomes from spot urine samples of type-1 diabetes mellitus patients (n = 48) and healthy controls (n = 25) were analyzed. Patients were divided based on their urinary albumin excretion, ACR (mg/g creatinine) into non- proteinuria group (ACR<30 mg/g, n = 30) and proteinuria group (ACR>30 mg/g, n = 18). Regression analysis was used to assess the association between urinary exosomal levels of WT1 with parameters for renal function. Receiver Operating Characteristic (ROC) curve analysis was used to determine the diagnostic performance of exosomal WT-1.

Results

WT1 protein was detected in 33 out of 48 diabetic patients and in only 1 healthy control. The levels of urinary exosomal WT1 protein is significantly higher (p = 0.001) in patients with proteinuria than in those without proteinuria. In addition, all the patients with proteinuria but only half of the patients without proteinuria were positive for exosomal WT1. We found that the level of exosomal WT1 were associated with a significant increase in urine protein-to-creatinine ratio, albumin-to-creatinine ratio, and serum creatinine as well as a decline in eGFR. Furthermore, patients exhibiting WT1-positive urinary exosomes had decreased renal function compared to WT1-negative patients. ROC analysis shows that WT-1 effectively predict GFR<60 ml. min-1/1.73 m2.

Conclusion

The predominant presence of WT1 protein in urinary exosomes of diabetic patients and increase in its expression level with decline in renal function suggest that it could be useful as early non-invasive marker for diabetic nephropathy.  相似文献   

19.
Renal involvement is a frequent consequence of plasma cell dyscrasias. The most common entities are light chain amyloidosis, monoclonal immunoglobulin deposition disease and myeloma cast nephropathy. Despite a common origin, each condition has its own unique histologic and pathophysiologic characteristic which requires a renal biopsy to distinguish. Recent studies have shown urinary exosomes containing kidney-derived membrane and cytosolic proteins that can be used to probe the proteomics of the entire urinary system from the glomerulus to the bladder. In this study, we analyzed urine exosomes to determine the differences between exosomes from patients with light chain amyloidosis, multiple myeloma, monoclonal gammopathy of undetermined significance, and non-paraproteinemia related kidney disease controls. In patients with light chain amyloidosis, multiple myeloma and monoclonal gammopathy of undetermined significance, immunoreactive proteins corresponding to monomeric light chains were found in exosomes by western blot. In all of the amyloidosis samples with active disease, high molecular weight immunoreactive species corresponding to a decamer were found which were not found in exosomes from the other diseases or in amyloidosis exosomes from patients in remission. Few or no light chains monomeric bands were found in non-paraproteinemia related kidney disease controls. Our results showed that urinary exosomes may have tremendous potential in furthering our understanding of the pathophysiology and diagnosis of plasma cell dyscrasia related kidney diseases.  相似文献   

20.
Urinary proteome profiling using microfluidic technology on a chip   总被引:1,自引:0,他引:1  
Clinical diagnostics and biomarker discovery are the major focuses of current clinical proteomics. In the present study, we applied microfluidic technology on a chip for proteome profiling of human urine from 31 normal healthy individuals (15 males and 16 females), 6 patients with diabetic nephropathy (DN), and 4 patients with IgA nephropathy (IgAN). Using only 4 microL of untreated urine, automated separation of proteins/peptides was achieved, and 1-7 (3.8 +/- 0.3) spectra/bands of urinary proteins/peptides were observed in the normal urine, whereas 8-16 (11.3 +/- 1.2) and 9-14 (10.8 +/- 1.2) spectra were observed in urine samples of DN and IgAN, respectively. Coefficient of variations of amplitudes of lower marker (1.2 kDa), system spectra (6-8 kDa), and upper marker (260.0 kDa) were 22.84, 24.92, and 32.65%, respectively. ANOVA with Tukey post-hoc multiple comparisons revealed 9 spectra of which amplitudes significantly differed between normal and DN urine (DN/normal amplitude ratios ranged from 2.9 to 3102.7). Moreover, the results also showed that 3 spectra (with molecular masses of 12-15, 27-28, and 34-35 kDa) were significantly different between DN and IgAN urine (DN/IgAN amplitude ratios ranged from 3.9 to 7.4). In addition to the spectral amplitudes, frequencies of some spectra could differentiate the normal from the diseased urine but could not distinguish between DN and IgAN. There was no significant difference, regarding the spectral amplitude or frequency, observed between males and females. These data indicate that the microfluidic chip technology is applicable for urinary proteome profiling with potential uses in clinical diagnostics and biomarker discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号