首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lim J  Johnson MB 《Chemical senses》2012,37(6):515-522
Referral of retronasal odors to the mouth is a fundamental phenomenon of flavor perception. A previous study from this laboratory provided evidence that, contrary to prior speculation, taste rather than touch was the primary factor in retronasal odor referral. The present study further investigated this question by studying the role of congruency between taste and odor on retronasal odor referral under conditions that mimicked natural food consumption. Subjects performed odor localization tasks after sampling gelatin stimuli that contained various congruent and incongruent tastes-odor combinations. The results showed that when a congruent taste was added, referral to the oral cavity and tongue were significantly enhanced. In addition, the data also indicate that the degree of congruency between taste and odor may modulate the degree of odor referral to the mouth. These findings suggest that odor referral is maximized when congruent flavor dimensions are combined to trigger perceptual "flavor objects" that represent known or potential foods. The results are discussed in terms of the factors that play a role in the retronasal odor referral as well as the potential neural mechanisms that may underlie it.  相似文献   

2.
Psychophysical studies of interactions between retronasal olfaction and taste have focused most often on the enhancement of tastes by odors, which has been attributed primarily to a response bias (i.e., halo dumping). Based upon preliminary evidence that retronasal odors could also be enhanced by taste, the present study measured both forms of enhancement using appropriate response categories. In the first experiment, subjects rated taste ("sweet," "sour," "salty," and "bitter") and odor ("other") intensity for aqueous samples of 3 tastants (sucrose, NaCl, and citric acid) and 3 odorants (vanillin, citral, and furaneol), both alone and in taste-odor mixtures. The results showed that sucrose, but not the other taste stimuli, significantly increased the perceived intensity of all 3 odors. Enhancement of tastes by odors was inconsistent and generally weaker than enhancement of odors by sucrose. A second experiment used a flavored beverage and a custard dessert to test whether the findings from the first experiment would hold for the perception of actual foods. Adding sucrose significantly enhanced the intensity of "cherry" and "vanilla" flavors, whereas adding vanillin did not significantly enhance the intensity of sweetness. It is proposed that enhancement of retronasal odors by a sweet stimulus results from an adaptive sensory mechanism that serves to increase the salience of the flavor of nutritive foods.  相似文献   

3.
The effect of color on orthonasal and retronasal odor intensities was investigated. When odorants were smelled orthonasally (i.e., through the nostrils), color enhanced odor intensity ratings, consistent with previous reports. However, when odorants were smelled retronasally (i.e., the odorous solution was put in the mouth), color reduced odor intensity ratings. These different effects of color on odor intensity (i.e., enhancement orthonasally and suppression retronasally) appear to be the result of route of olfactory stimulation rather than of any procedural artifact. This supports previous reports that retronasal and orthonasal odors are perceived differently.  相似文献   

4.
Lim J  Green BG 《Chemical senses》2008,33(2):137-143
Taste is always accompanied by tactile stimulation, but little is known about how touch interacts with taste. One exception is evidence that taste can be "referred" to nearby tactile stimulation. It was recently found (Lim J, and Green BG. 2007. The psychophysical relationship between bitter taste and burning sensation: evidence of qualitative similarity. Chem Senses. 32:31-39) that spatial discrimination of taste was poorer for bitterness than for other tastes when the perceived intensities were matched. We hypothesized that this difference may have been caused by greater referral of bitterness by touch. The present study tested this hypothesis by comparing localization of quinine sulfate and sucrose under conditions that minimized and maximized the opportunity for referral. In both conditions, stimulation was produced by 5 cotton swabs spaced 1 cm apart and arranged in an arc to enable simultaneous contact with the front edge of the tongue. Only one swab contained the taste stimulus, whereas the rest were saturated with deionized water. In both conditions, the swabs were stroked up-and-down against the tongue 5 times. Subjects were asked to identify which swab contained the taste stimulus 1) 5 s after the fifth stroke (touch-removed condition) and 2) immediately at the end of the fifth stroke, with the swabs still in contact with the tongue (touch-maintained condition). Ratings of taste intensity were obtained to assess the possible effect of perceived intensity on spatial localization. Taste localization was surprisingly accurate, especially for sucrose, with errors of localization in the range of 1 cm or less. For both stimuli, localization tended to be poorer when the tactile stimulus was present while subjects made their judgments, but the difference between conditions was significant only for the lower concentration of quinine. The results are discussed in terms of both the surprisingly good spatial acuity of taste and the possibility of having a close perceptual relationship between touch and bitter taste.  相似文献   

5.
Odors often produce different sensations when presented in front of the nose or intraorally, when eaten. It is a long-standing question whether these differences in sensations are due, for example, to the additional mechanical sensations elicited by the food in the mouth or additional odor release during mastication. To study this phenomenon in detail, a stimulation technique has been developed that allows controlled ortho- or retronasal presentation of odorous stimuli. Results from psychophysical, electrophysiological, and imaging studies suggest that there are clear differences in the perception of ortho- and retronasal stimuli. This 'duality of the sense of smell' is also observed in a clinical context where some patients exhibit good retronasal olfactory function with little or no orthonasal function left, and vice versa. The differences between ortho- and retronasal perception of odors are thought to be, at least partly, due to absorption of odors to the olfactory epithelium, which appears to differ in relation to the direction of the airflow across the olfactory epithelium.  相似文献   

6.
Small DM  Gerber JC  Mak YE  Hummel T 《Neuron》2005,47(4):593-605
Odors perceived through the mouth (retronasally) as flavor are referred to the oral cavity, whereas odors perceived through the nose (orthonasally) are referred to the external world. We delivered vaporized odorants via the orthonasal and retronasal routes and measured brain response with fMRI. Comparison of retronasal versus orthonasal delivery produced preferential activity in the mouth area at the base of the central sulcus, possibly reflecting olfactory referral to the mouth, associated with retronasal olfaction. Routes of delivery produced differential activation in the insula/operculum, thalamus, hippocampus, amygdala, and caudolateral orbitofrontal cortex in orthonasal > retronasal and in the perigenual cingulate and medial orbitofrontal cortex in retronasal > orthonasal in response to chocolate, but not lavender, butanol, or farnesol, so that an interaction of route and odorant may be inferred. These findings demonstrate differential neural recruitment depending upon the route of odorant administration and suggest that its effect is influenced by whether an odorant represents a food.  相似文献   

7.
Recent studies have shown that people can localize a punctate gustatory stimulus on the lingual epithelium in the absence of discriminative tactile cues. The present studies examined the human ability to localize taste sensations on the tongue and to use this information to remove selectively a target stimulus (a flavored, 1 cm(3) gelatin cube) from the mouth when presented with non-target distractors that vary in number and taste. Findings indicate that humans are capable of localizing and removing either an aversive or an appetitive gustatory target from a field of tactile distractors via taste sensations alone, although this ability diminishes as the number of distractors increases (implicating serial searches, rather than parallel). In addition, humans can localize and selectively remove a target taste in the presence of distractors of another distinct taste quality. Under these conditions performance is either unaffected or reduced, which indicates that contrast with the distinct taste of the distractors does not enhance performance. Humans also are capable of removing a nearly tasteless cube from a field of flavored distractors, but this is clearly a more difficult task, suggesting that 'tactile capture' of taste occurs for the tasteless target cube and interferes with the localization of taste. Finally, perceived suprathreshold stimulus intensity did not seem to be related to the ability to localize and remove a target stimulus via taste sensations and failed to account for variations in performance across individuals.  相似文献   

8.
We assessed the influence of different odors on detection of a sweet tastant, and the ability of imagined odors to elicit the same effects as perceived odors on taste perception. The tastant used was sucrose, and the two odorants were strawberry and ham. In the first experiment, participants either smelled or imagined one of two odors during taste detection tasks (between-subject design), whereas in the second one, subjects completed both the odor imagery and perception conditions with taste detection tasks (within-subject design). The effect was odorant-specific: detection of sucrose was significantly better when subjects smelled strawberry than when they smelled ham. Furthermore, imagined odors influenced taste perception in the same way as did perceived odors. We concluded that the odor-specific effect on taste perception is an authentic perceptual phenomenon. Our results also support the notion that odor-induced changes in taste perception are mediated centrally. Finally, our findings are in agreement with reports supporting the existence of odor imagery.  相似文献   

9.
A series of experiments investigated the nature of metallic taste reports and whether they can be attributed to the development of a retronasal smell. Two studies showed that the metallic sensation reports following oral stimulation with solutions of FeSO4 were reduced to baseline when the nose was occluded. No such reduction was seen for CuSO4 or ZnSO4, which were more bitter and astringent, respectively, and less metallic. A discrimination test based on weak but equi-intense levels of FeSO4 and CuSO4 showed that FeSO4 could be discriminated from water with the nose open but not when occluded, but that discrimination of CuSO4 from water was not impaired by nasal occlusion. A discrimination test demonstrated that the headspace over solutions of FeSO4 was not different from water, although some subjects could discriminate FeSO4 solutions from water in the mouth when the nose was occluded, perhaps by tactile or astringent cues. These results confirm that metallic taste reports following oral stimulation with FeSO4 are likely due to development of a retronasal smell, possibly following a lipid oxidation reaction in the mouth. However, metallic taste reports may arise from different mechanisms with copper and zinc salts.  相似文献   

10.
Green BG  George P 《Chemical senses》2004,29(7):617-628
Individual differences in taste perception have been explained in part by variations in peripheral innervation associated with the genetic ability to taste the bitter substances PTC and PROP. In the present study we report evidence of another source of individual differences that is independent of taste stimulus, taste quality, or gustatory nerve. Individuals who perceived taste from thermal stimulation alone (thermal taste) gave significantly higher taste ratings to chemical stimuli--often by a factor of >2:1--than did individuals who perceived no taste from thermal stimulation. This was true for all taste stimuli tested (sucrose, saccharin, sodium chloride, citric acid, quinine sulfate, MSG and PROP), for all three gustatory areas of the mouth (anterior tongue, posterior tongue and soft palate) and for whole-mouth stimulation. Moreover, the same individuals reported stronger sensations from the olfactory stimulus vanillin, particularly when it was sensed retronasally. The generality of the thermal-taster advantage and its extension to an olfactory stimulus suggests that it arises from individual differences in CNS processes that are involved in perception of both taste and flavor.  相似文献   

11.
We conducted laboratory experiments using a wind tunnel to determine the effects of prior experience on the learning and retention of learned responses in the larval parasitoid Microplitis croceipes (Cresson) (Hymenoptera: Braconidae). Although most females that had either antennated host frass or oviposited in a host in the presence of vanilla odor, made oriented flight to the odor from downwind in the wind tunnel at 30 min after experience, only those that had oviposited in a host with the odor responded to the odor at 24 h after experience. Females that had oviposited in the non‐natural host beet armyworm (BAW) larva with or without the odor did not respond to the odor at 30 min after experience. These results indicate that an oviposition in the host in the presence of odors strongly affects associative learning and the persistence of learned response to the odors. When females were allowed to antennate host frass in the presence of vanilla and to subsequently oviposit in a host within an interval of 5 min or less, their learned response to vanilla also persisted for 24 h. Similarly, when females were conditioned to link vanilla with host frass and then allowed to make an ovipositor contact with host hemolymph, their learned response persisted for 24 h. However, antennal contact with hemolymph after such conditioning of vanilla with host frass did not improve the persistence of learned response to the odor. These results indicate that ovipositor contact with host hemolymph during oviposition is partially responsible for an increased retention of learned response. Females responded to vanilla 48% of the time at 30 min after antennating host frass without the odor, but their response to the odor significantly decreased after oviposition in a BAW larva subsequent to the antennation of host frass. This result indicates that oviposition in a BAW larva decreases subsequent response to general odors. Based on the results, we discuss the foraging behavior of M. croceipes dependent on learning and subsequent experiences.  相似文献   

12.
The neuroscience of flavor perception is hence becoming increasingly important to understand food flavor perception that guides food selection, ingestion and appreciation. We recently provided evidence that rats can use the retronasal mode of olfaction, an essential element of human flavor perception. We showed that in rats, like humans, odors can acquire a taste. We and others also defined how the input of the olfactory bulb (OB) -not functionally imageable in humans- codes retronasal smell in anesthetized rat. The powerful awake transgenic mouse, however, would be a valuable additional model in the study of flavor neuroscience. We used a go/no-go behavioral task to test the mouse''s ability to detect and discriminate the retronasal odor amyl acetate. In this paradigm a tasteless aqueous odor solution was licked by water-restricted head-fixed mice from a lick spout. Orthonasal contamination was avoided. The retronasal odor was successfully discriminated by mice against pure distilled water in a concentration-dependent manner. Bulbectomy removed the mice''s ability to discriminate the retronasal odor but not tastants. The OB showed robust optical calcium responses to retronasal odorants in these awake mice. These results suggest that mice, like rats, are capable of smelling retronasally. This direct neuro-behavioral evidence establishes the mouse as a useful additional animal model for flavor research.  相似文献   

13.
Nymphs of Homalodisca vitripennis are strict xylophages and frequently switch host-plants to obtain a balanced level of nutrients at appropriate tension levels. Associative learning of odors and other semiochemicals may enhance the nymphs’ ability to recognize and locate potential host-plants. We examined whether nymphs could learn to associate a novel olfactory stimulus (vanilla) with a host-plant. Nymphs fed on cowpea plants treated systemically with vanilla extract or on untreated plants. Subsequently, their responses to a pale green target were measured in the presence or absence of vanilla odor. Nymphs were not innately attracted to pale green, and exposure to vanilla odor did not decrease a stereotypical scanning behavior. However, when presented with vanilla odor, significantly more conditioned nymphs selected the target than did control nymphs.  相似文献   

14.
Psychological studies have assessed the intensity of simple sensory mixtures, both in taste and olfaction. In taste mixtures, suppression or partial masking among the components is often observed. An analogous result is often found in odor mixtures, counteraction of one component in the presence of a second odor. These effects, particularly taste suppression, are also observed in food systems. Interactions between sensory modalities are far more complex, ranging from inhibition of taste and odor sensations by trigeminal irritation, to relative independence of tastes from odor stimulation and independence of odors from tastes.  相似文献   

15.
Perceptual interactions in a model of wine woody-fruity binary mixtures were previously reported in a psychophysical study performed through orthonasal stimulation only. However, recent studies suggested that the perception of food-like and nonfood-like odors may depend on the route of stimulation. The aim of the present study was two-fold: first to examine the neural correlates of perceptual interactions using electroencephalogram (EEG)-derived event-related potentials (ERPs) and second to test the influence of the stimulation route on quality perception. Therefore, we designed an experiment with 30 subjects to study perceptual interactions in woody-fruity mixtures and compared ortho- vs. retronasal stimulation sites on perceived odor quality and ERPs. The results revealed synergy or masking of the fruity component, depending on the woody component level. Synergy was supported by larger N1 amplitude of the ERP. Furthermore, mixtures including a medium level of the woody odor elicited a strong increase of P2 amplitude only retronasally. This study evidenced for the first time electrophysiological correlates of both perceptual synergy and masking on the early component of the ERPs and confirmed that retro- vs. orthonasal stimulation route induces different neural processes that are reflected in the late component of the ERP.  相似文献   

16.
During food intake flavor perception results from simultaneous stimulation of the gustatory, olfactory and trigeminal systems. Olfactory stimulation occurs mainly through the retronasal pathway and the resulting perception is often interpreted as a taste perception, thus leading to the well-known sensory confusion between taste and olfaction. The present experiment was designed to study, with functional magnetic resonance imaging (fMRI), the cortical representation of olfactory perception in humans in response to retronasal stimulation by odorants delivered in aqueous solution. Psychophysical evaluation confirmed that the stimuli acted as pure olfactory stimuli through the retronasal pathway and did not present any taste component. Results showed activation in all brain regions previously described with neuroimaging techniques using olfactory stimulation with an odorized air flow. Piriform and orbitofrontal cortex were found activated as well as the hippocampal region, the amygdala, the insular lobe, the cingulate gyrus and the cerebellum. These results demonstrate the feasibility of efficiently stimulating the olfactory system in an fMRI scanner through the retronasal pathway with liquids delivered to the oral cavity. The presentation of olfactory stimuli in liquids to the mouth is a realistic model for the study of food-related flavor perception. This stimulation protocol furthermore allows presenting taste and olfactory stimuli separately or combined, thus allowing for direct comparisons between single modality representation, taste or olfaction, and representation of multi-modality mixtures.  相似文献   

17.
We report two experiments designed to investigate the nature of any cross-modal interactions between olfactory and tactile information processing. In Experiment 1, we assessed the influence of olfactory cues on the tactile perception of fabric softness using computer-controlled stimulus presentation. The results showed that participants rated fabric swatches as feeling significantly softer when presented with a lemon odor than when presented with an animal-like odor, demonstrating that olfactory cues can modulate tactile perception. In Experiment 2, we assessed whether this modulatory effect varied as a function of the particular odors being used and/or of the spatial coincidence between the olfactory and tactile stimuli. The results replicated those reported in Experiment 1 thus further supporting the claim that people's rating of tactile stimuli can be modulated by the presence of an odor. Taken together, the results of the two experiments reported here support the existence of a cross-modal interaction between olfaction and touch.  相似文献   

18.
Laboratory experiments were conducted to determine the role of learning in olfactory host searching by the ichneumonid pupal parasitoid, Pimpla luctuosa Smith. Females learned to associate novel odors such as vanilla and strawberry with hosts when they oviposited in at least several hosts with the odors. Repeated experiences of hosts with an odor increased the response of the experienced odor, and females that had experienced host odor seven times responded to the experienced odors 90% of the time. Although the response by females to a learned odor gradually decreased with increasing host-deprivation time, 60% of the females that had experienced host odor 7 days earlier still responded to the experienced odor. Females also learned two separate odors associated with hosts at a time and responded to both odors without a preference for one odor over the other. When trained two separate odors with hosts, females learned the second odor more quickly than the first odor. After females experienced several stings in simulated hosts with the previously learned odor, they ceased to respond to the learned odor, suggesting that repeated unrewarding experiences cause females to cease to respond to the learned odors.  相似文献   

19.
Olfaction involves a dual sensory process for perceiving odors orthonasally (through the nostrils) and retronasally (through the mouth). This investigation entailed developing a measure of sensitivity to an odor delivered in an orally sampled food (orange flavoring in a sucrose-sweetened gelatin) and examining sensitivity in the elderly. In experiment 1, olfactory flavor sensitivity was 49 times lower in elderly (n = 21) than in young (n = 28) subjects. In experiment 2, with 73 elderly women, higher olfactory flavor sensitivity correlated significantly with higher orthonasal perception (Connecticut Chemosensory Clinical Research Center test). Some women, however, exhibited low olfactory flavor sensitivity despite high orthonasal perception; none had high olfactory flavor sensitivity and low orthonasal perception. Those who wore complete or palatal covering dentures had lower olfactory flavor sensitivity than those who were dentate or wore dentures that did not cover the palate. Through multiple regression analysis, orthonasal perception and denture status were found to be independent contributors to predicting olfactory flavor sensitivity. In summary, elderly subjects showed depressed olfactory flavor sensitivity (i.e. retronasal sensitivity) that related to poor orthonasal olfactory perception and denture characteristic. Thus, while good orthonasal olfaction may be necessary for good olfactory flavor sensitivity, it is not sufficient. Other factors, some associated with oral conditions, may impede release and retronasal transport of odors from the mouth to the olfactory receptors.  相似文献   

20.
Taste-smell interactions are tastant and odorant dependent   总被引:5,自引:4,他引:1  
Four experiments were conducted to assess the nature of taste–smellinteractions. In the first experiment, the ability of strawberryodor to modify the sweetness of sucrose was investigated. Thiswas accomplished by having subjects rate the sweetness of whipped-creamstimuli with and without strawberry odor over time. The stimuliwere swallowed to augment retronasal stimulation of the olfactorysystem. It was found that strawberry odor tended to enhancethe maximal sweetness and total rating time of the stimuli.In the second experiment, it was found that peanut butter odordid not enhance sweetness, thus demonstrating that an odor'sability to enhance sweetness is odor-dependent, In the thirdexperiment, it was demonstrated that strawberry odor did notenhance the saltiness of sodium chloride indicating that anodor's ability to enhance taste is tastant-dependent. In thefourth experiment, it was shown that 85% of the strawberry odorant'sability to enhance sweetness was eliminated by pinching thenostrils. This suggests that the influence of the strawberryodorant on sweetness was olfactory rather than gustatory. Itwas concluded that an odor's influence on taste is both odorantand tastant dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号