首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel angucycline metabolite, 2,3-dehydro-UWM6, was identified in a jadH mutant of Streptomyces venezuelae ISP5230. Both UWM6 and 2,3-dehydro-UWM6 could be converted to jadomycin A or B by a ketosynthase alpha (jadA) mutant of S. venezuelae. These angucycline intermediates were also converted to jadomycin A by transformant of the heterologous host Streptomyces lividans expressing the jadFGH oxygenases in vivo and by its cell-free extracts in vitro; thus the three gene products JadFGH are implicated in catalysis of the post-polyketide synthase biosynthetic reactions converting UWM6 to jadomycin aglycone. Genetic and biochemical analyses indicate that JadH possesses dehydrase activity, not previously associated with polyketide-modifying oxygenase. Since the formation of aromatic polyketides often requires multiple dehydration steps, bifunctionality of oxygenases modifying aromatic polyketides may be a general phenomenon.  相似文献   

2.
Angucyclines are aromatic polyketides produced in Streptomycetes via complex enzymatic biosynthetic pathways. PgaE and CabE from S. sp PGA64 and S. sp. H021 are two related homo-dimeric FAD and NADPH dependent aromatic hydroxylases involved in the early steps of the angucycline core modification. Here we report the three-dimensional structures of these two enzymes determined by X-ray crystallography using multiple anomalous diffraction and molecular replacement, respectively, to resolutions of 1.8 A and 2.7 A. The enzyme subunits are built up of three domains, a FAD binding domain, a domain involved in substrate binding and a C-terminal thioredoxin-like domain of unknown function. The structure analysis identifies PgaE and CabE as members of the para-hydroxybenzoate hydroxylase (pHBH) fold family of aromatic hydroxylases. In contrast to phenol hydroxylase and 3-hydroxybenzoate hydroxylase that utilize the C-terminal domain for dimer formation, this domain is not part of the subunit-subunit interface in PgaE and CabE. Instead, dimer assembly occurs through interactions of their FAD binding domains. FAD is bound non-covalently in the "in"-conformation. The active sites in the two enzymes differ significantly from those of other aromatic hydroxylases. The volumes of the active site are significantly larger, as expected in view of the voluminous tetracyclic angucycline substrates. The structures further suggest that substrate binding and catalysis may involve dynamic rearrangements of the middle domain relative to the other two domains. Site-directed mutagenesis studies of putative catalytic groups in the active site of PgaE argue against enzyme-catalyzed substrate deprotonation as a step in catalysis. This is in contrast to pHBH, where deprotonation/protonation of the substrate has been suggested as an essential part of the enzymatic mechanism.  相似文献   

3.
UDP-N-acetyl-L-fucosamine is a precursor to l-fucosamine in the lipopolysaccharide of Pseudomonas aeruginosa serotype O11 and the capsule of Staphylococcus aureus type 5. We have demonstrated previously the involvement of three enzymes, WbjB, WbjC, and WbjD, in the biosynthesis of UDP-2-acetamido-2,6-dideoxy-L-galactose or UDP-N-acetyl-L-fucosamine (UDP-l-FucNAc). An intermediate compound from the coupled-reaction of WbjB-WbjC with the initial substrate UDP-2-acetamido-2-deoxy-alpha-D-glucose or UDP-N-acetyl-D-glucosamine (UDP-GlcNAc) was purified, and the structure was determined by NMR spectroscopy to be UDP-2-acetamido-2,6-dideoxy-L-talose (UDP-L-PneNAc). WbjD could then convert this intermediate into a new product with the same mass, consistent with a C-2 epimerization reaction. Those results led us to propose a pathway for the biosynthesis of UDP-L-FucNAc; however, the exact enzymatic activity of each of these proteins has not been defined. Here, we describe a fast protein liquid chromatography (FPLC)-based anion-exchange procedure, which allowed the separation and purification of the products of C-2 epimerization due to WbjD. Also, the application of a cryogenically cooled probe in NMR spectrometry offers the greatest sensitivity for determining the structures of minute quantities of materials, allowing the identification of the final product of the pathway. Our results showed that WbjB is bifunctional, catalyzing firstly C-4, C-6 dehydration and secondly C-5 epimerization in the reaction with the substrate UDP-D-GlcNAc, producing two intermediates. WbjC is also bifunctional, catalyzing C-3 epimerization of the second intermediate followed by reduction at C-4. The FPLC-based procedure provided good resolution of the final product of WbjD reaction from its epimer/substrate UDP-l-PneNAc, and the use of the cryogenically cooled probe in NMR revealed unequivocally that the final product is UDP-L-FucNAc.  相似文献   

4.
A photoreactive, potent, competitive inhibitor of the human lysosomal neuraminidase in cultured skin fibroblasts has been prepared. The starting material, 2,3 dehydro-N-acetyl neuraminic acid methyl ester, was selectively tosylated at the C-9 position with tosyl chloride and subsequently peracetylated with acetic anhydride. The tosyl group was displaced with potassium thio acetate in dimethylformamide at 60 degrees C for 80 min. 4-fluoro-3-nitrophenylazide was incorporated by reaction with the thio acetate product and equimolar sodium methoxide in methanol followed by reacetylation. Base hydrolysis gave the final product, 9-S-(4-azido-2-nitrophenyl)-5-acetamido-2,6 anhydro-2,3,5,9-tetradeoxy-9-thio-D-glycero-D-galacto-non-2-enonic acid (W5). The yields at each step were 50-70%. Competitive inhibition kinetics were observed when W5 was tested with the fibroblast neuraminidase using 4-methylumbelliferyl-N-acetyl-neuraminic acid as substrate giving an apparent Ki of about 10 microM. These results suggest that the terminal hydroxyl group at C-9 may not be important in the recognition and binding of the substrate by the enzyme. Also, the compounds prepared here may be useful as photoaffinity probes or ligands for affinity chromatography for purification.  相似文献   

5.
非典型角蒽环聚酮化合物是一类经过氧化重排反应形成的具有独特骨架结构的芳香聚酮类化合物。近年来的研究表明,尽管此类化合物具有多种多样的骨架结构,它们都是由共同的生物合成中间体Dehydrorabelomycin生成的。一个独特的加氧酶家族(称为非典型角蒽环氧化开环酶)催化了Dehydrorabelomycin的氧化碳-碳键断裂与重排反应。尽管这些酶属于同一个蛋白质家族,催化相同的底物发生氧化开环反应,但是通过不同的重排方式形成了对应于各自生物合成终产物的骨架结构,对这类化合物最终结构的形成起到了关键作用。对这一家族的加氧酶进行深入的催化功能与反应机理研究,不仅有助于对已知芳香聚酮的结构改造与新颖骨架结构芳香聚酮的发现,也有助于加深对于蛋白质序列进化与功能演化的认识。  相似文献   

6.
Eukaryotic cells use signal-transduction network to respond in specific ways to external signals from their environment. Several signal-transduction pathway are composed of multi-step chemical reactions. We here theoretically study what determines the number of kinase phosphorylation steps composing of the intracellular signal-transduction cascade. We examine a simple mathematical model for the association and phosphorylation process of kinases in the signal-transduction cascade. We focus on the speed of signal transduction as the criterion for determining the optimal response. The present model first reveals that the initial expression level of kinase in each step of the cascade must be the same in the optimal response under the constraint of the constant total kinase concentration. The second conclusion is that the optimal step number of kinase cascade is primarily determined by the ratio of the target concentration of the final phosphorylated kinase in the cascade to that of input signal molecule, C/S. A multi-step cascade is optimum if the amplification of the final product concentration C relative to the input signal S is sufficiently large; whereas, a single-step reaction is optimum if C/S is small. This suggests that multi-step phosphorylation would have evolved to accelerate the speed of transduction of weak signals.  相似文献   

7.
Fatty acids containing a prochiral tritium label have often been used in the study of enzymatic reactions which involve an obligatory step of hydrogen abstraction. In the lipoxygenase reaction, the primary isotope effect associated with this approach is detected as an isotopic enrichment of the substrate. Herein we characterize a previously unrecognized secondary isotope effect which changes the specific activity of both the substrate and product. The 12-lipoxygenase of human platelets removes the 10-LS hydrogen of arachidonic acid in the formation of 12-hydroperoxyeicosatetraenoic acid. We studied the specific activity changes associated with conversion of the enantiomerically labeled [10-DR-3H]arachidonic acid to 12-[10-3H]hydroxyeicosatetraenoic acid in aspirin-treated platelets. [3-14C]Arachidonic acid served as internal standard. The most pronounced change in 3H/14C ratio in the early stages of reaction was a 15-20% deficiency of tritium in the product. Later, the remaining arachidonate showed a marked increase in 3H/14C ratio. The changes in specific activity closely matched those predicted for a secondary isotope effect. Comparison of these data with the theoretical equations for a secondary isotope effect indicated the 10-DR-3H substrate reacted at about 84% of the rate of unlabeled molecules. Interestingly, this secondary isotope effect is similar in magnitude to the secondary isotope effect in autoxidation reactions, a finding compatible with a basic similarity in reaction mechanisms in enzymatic and non-enzymatic oxygenation of lipids.  相似文献   

8.
B G Saver  J R Knowles 《Biochemistry》1982,21(22):5398-5403
When ribulose 1,5-bisphosphate is allowed to react with carbon dioxide in tritiated water in the carboxylation reaction catalyzed by ribulose-1,5-bisphosphate carboxylase from Rhodospirillum rubrum, the ribulose 1,5-bisphosphate reisolated after partial reaction is found to be labeled. The specific radioactivity of the remaining substrate pool rises during the course of the reaction. Experiments in deuterium oxide show that the isotopic label resides on carbon 3. Earlier failures to detect this exchange process probably derive from the use of enzyme that was, in the absence of carbon dioxide, inactive. The present results provide direct evidence for the intermediacy of the enediol between C-2 and C-3 of ribulose 1,5-bisphosphate and show that the enolization step is at least partially rate limiting in the overall carboxylase reaction. The specific radioactivity of the product 3-phospho-D-glycerate remains constant throughout the course of the reaction at about one-sixth that of the solvent. This strengthens the argument against the involvement of "sticky" protons in the reaction.  相似文献   

9.
Enzymatic and nonenzymatic dehydration reactions of L-arogenate   总被引:3,自引:0,他引:3  
L-Arogenate, an immediate precursor of either L-tyrosine, L-phenylalanine, or both in many microorganisms and plants, may undergo two types of dehydration reactions that yield products of increased stability. Under acidic conditions, a facile aromatization attended by loss of the C-4 hydroxyl and the C-1 carboxyl moieties results in quantitative conversion to L-phenylalanine. When aromatization was largely prevented by maintaining pH in the range of 7.5-12, a second dehydration reaction occurred in which the alanyl side chain and the carboxyl group at C-1 formed a lactam ring to yield spiro-arogenate. The latter reaction occurs at 100 degrees C, roughly 50% conversion being obtained in 2 h. The product formed from L-arogenate was authentic spiro-arogenate, as demonstrated by high-performance liquid chromatography and thin-layer chromatography identification procedures. Further confirmation was obtained by 1H nuclear magnetic resonance, ultraviolet spectroscopy, and mass spectrometry. Thus far, the conversion of L-arogenate to spiro-arogenate is not known to be enzyme catalyzed. The other dehydratase reaction, however, is catalyzed in nature by an enzyme denoted arogenate dehydratase. An improved assay is described for this in which [3H]dansyl derivatives of L-arogenate (substrate) and L-phenylalanine (product) are separated by using bidimensional thin-layer chromatography. The radioactive reaction product is then quantitated. This assay was used to study partially purified arogenate dehydratase from Pseudomonas diminuta, an organism that depends upon the arogenate pathway for L-phenylalanine biosynthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Kinetic deuterium isotope effects for the noncompetitive, intermolecular monoamine oxidase B-catalyzed oxidation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to the corresponding 1-methyl-4-phenyl-2,3-dihydropyridinium species MPDP+ were found to be 3.55 on Vmax and 8.01 on Vmax/Km with MPTP-6,6-d2 as the deuterated substrate. Similar values were obtained with MPTP-2,2,6-d4 and MPTP-CD3-2,2,6,6-d4. The deuterium isotope effect for the electrochemical oxidation of 1 mM MPTP-2,2,6,6-d4 was only 1.35. These results indicate that the monoamine oxidase B-catalyzed oxidation of this substrate may not proceed via a reaction pathway involving alpha-carbon deprotonation of an aminium radical intermediate. Isotope effect measurements also established that the rate of inactivation of monoamine oxidase B by MPTP is unaffected by replacement of the C-6 methylene protons with deuterons, but is retarded by replacement of the C-2 methylene protons (DKi = 1.9). The mechanism-based inactivation of monoamine oxidase B by MPTP, therefore, is likely to mediated by a species derived from the enzyme-generated 2,3-dihydropyridinium oxidation product.  相似文献   

11.
Experiments were carried out to determine whether the hydrolytic step or the product release step is the rate-limiting step for non-activated phospholipase A2 hydrolysis (Dennis, E.A. (1983) in The Enzymes, 3rd Edn., Vol 16 (Boyer, P., ed.), pp. 307-353, Academic Press, New York) of mixed micelles of phosphatidylethanolamine and Triton X-100 in the absence of activator phospholipids and of monomeric short chain phosphatidylcholine in the absence of an interface (Lombardo, D. et al. (1986) J. Biol. Chem. 261, 11663-11666). Phospholipase A2-catalyzed exchange of H2(18)O into 1-alkyl-2-[1(13)C]lauroyl-sn-glycero-3-phosphorylethanolamine and into 1-hexanoyl-2-[1-13C]hexanoyl-sn-glycero-3-phosphorylcholine were examined. Incorporation of 18O was detected by the effect of 18O on 13C chemical shifts in 13C-NMR. Both the substrate and products of the reactions were examined for 18O incorporation. 18O was incorporated into the fatty acid product, but no incorporation of 18O into the substrate was found. These results suggest that the hydrolytic step is not followed by a higher energy transition state and that it, or a step before it, is rate-limiting. Coupled with kinetic experiments, this strongly suggests that the hydrolytic step is the rate-limiting step. Thus, the role of micellar and membrane interfaces in phospholipase A2 reactions does not appear to be by aiding product removal from the enzyme active site.  相似文献   

12.
A reinvestigation of the reactions leading to arsonolipids (2,3-diacyloxypropylarsonic acids) has been carried out in order to understand why the yields of their preparation were only moderate, although they are better than those reported for 2,3-diacyloxypropylphosphonic acid (phosphotidic acid). Thus, the reaction of glycidol and of 3-chloro-1,2-propanediol with alkaline sodium arsenite, "Na3AsO3", gives the desired product, 2,3-dihydroxypropylarsonic acid, and approximately 10% of an arsenic-containing glycerol dimer which is removed during the preparation of these arsonolipids. The step which is mainly responsible for the diminished yields is due to the reaction of the -As(SPh)2 or -AsO3H- precursor with the activated acid chlorides or carboxylic acid anhydrides to give an intermediate which cyclizes with the primary hydroxy group of the 2,3-dihydroxypropyl moiety. This cyclization does not allow the primary hydroxy group to be acylated. Such cyclization could not be avoided with RCOCl/py, (RCO)2O/DMAP, or RCOOH/DCC/DMAP acylating systems.  相似文献   

13.
JadH是羟化脱水双功能酶,参与杰多霉素生物合成中的聚酮后修饰反应,将2,3-dehydro-UWM6催化为dehydrorabelomycin。为了分析杰多霉素生物合成途径中后修饰氧化酶JadH结合、催化底物的关键氨基酸,构建了JadH与底物复合物的三维结构模型。利用该模型并结合JadH同源蛋白氨基酸序列比对分析,推测出JadH活性中心中可能参与底物结合或催化的关键氨基酸(R50、G51、L52、G53、F100、R221、I223、P295和G298)。通过定点突变及体外酶学实验对这些位点的突变体的催化活性进行评价,结果显示这些突变株活性均显著低于野生型,表明这9个氨基酸是JadH参与底物结合或催化的关键氨基酸。  相似文献   

14.
We have employed a new pseudosubstrate, beta-(2-furyl)propionyl coenzyme A (FPCoA), to study the functional properties of two enzymes, fatty acyl-CoA dehydrogenase from porcine liver and fatty acyl-CoA oxidase from Candida tropicalis, involved in the oxidation of fatty acids. Previous studies from our laboratory have shown that the dehydrogenase exhibits oxidase activity at the rate of dissociation of the product charge-transfer complex. This raises the question of the difference in functionality between these two flavoproteins. To investigate these differences, we have compared the pH dependence of product formation, the isotope effects using tetradeuterio-FPCoA, and the spectral properties and chemical reactivity of the product charge-transfer complexes formed with the two enzymes. The pH dependencies of the reaction of FPCoA with electron-transfer flavoprotein (ETF) for the dehydrogenase and of the reaction of FPCoA with O2 for the oxidase are quite similar. Both reactions proceed more rapidly at basic pH values while substrate binds more tightly at acidic pH values. These data for both enzymes are consistent with a mechanism in which enzyme is involved in protonation of the carbonyl group of substrate followed by base-catalyzed removal of the C-2 proton from substrate. The C-2 anion of substrate may then serve as the active species in reduction of enzyme-bound flavin. The deuterium isotope effects for both enzyme systems are primary across the entire pH range, assuring that the chemically important step of substrate oxidation is rate limiting in these steady-state kinetic experiments. The two enzymes differ in the chemical reactivity of their product charge-transfer complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
C E Barry  P G Nayar  T P Begley 《Biochemistry》1989,28(15):6323-6333
Phenoxazinone synthase is a copper-containing oxidase that catalyzes the coupling of 2-aminophenols to form the 2-aminophenoxazinone chromophore. This reaction constitutes the final step in the biosynthesis of the potent antineoplastic agent actinomycin. The mechanism of this complex 6-electron oxidation was determined by using a variety of substituted 2-aminophenols, designed to block the reaction at intermediate stages. Thus, with 3,5-di-tert-butyl-2-aminophenol as substrate, the reaction was blocked at the o-quinone imine 17; with 5-tert-butyl-2-aminophenol (19) as substrate, the reaction was blocked at the p-quinone imine 20; and with 5-methyl-2-aminophenol (21) as substrate, the reaction was blocked at the dihydro-2-aminophenoxazinone 22. These findings suggested a mechanism in which 2-aminophenoxazinone formation proceeded via a quinone imine intermediate 4 that was trapped by a second molecule of 2-aminophenol. Oxidation of the adduct 5 to the p-quinone imine 6 was followed by a second conjugate addition and a final 2-electron oxidation to give the product, 2-aminophenoxazinone. The role of the enzyme in the catalysis of each of these steps was examined. It was found that the second conjugate addition generated a racemic center at C4a, suggesting that this reaction did not occur at the active site. A deuterium isotope effect on the cleavage of the C4-H bond of 2-aminophenol suggested that partial dissociation of an intermediate from the enzyme occurred after the first conjugate addition. It is proposed that 2-aminophenoxazinone synthesis proceeds via a sequence of three consecutive 2-electron aminophenol oxidations and that the aminophenol moiety is regenerated during the reaction sequence by facile tautomerization reactions. Thus, what initially appears to be an impressively complex mechanism may, in fact, be ingeniously simple.  相似文献   

16.
Xanthine oxidase-catalyzed hydroxylation reactions of the anticancer drug 6-mercaptopurine (6-MP) and its analog 2-mercaptopurine (2-MP) as well as 6-thioxanthine (6-TX) and 2-thioxanthine (2-TX) have been studied using UV-spectroscopy, high pressure liquid chromatography, photodiode array, and liquid chromatography-based mass spectral analysis. It is shown that 6-MP and 2-MP are oxidatively hydroxylated through different pathways. Enzymatic hydroxylation of 6-MP forms 6-thiouric acid in two steps involving 6-TX as the intermediate, whereas 2-MP is converted to 8-hydroxy-2-mercaptopurine as the expected end product in one step. Surprisingly, in contrast to the other thiopurines, enzymatic hydroxylation of 2-MP showed a unique hyperchromic effect at 264 nm as the reaction proceeded. However, when 2-TX is used as the substrate, it is hydroxylated to 2-thiouric acid. The enzymatic hydroxylation of 2-MP is considerably faster than that of 6-MP, while 6-TX and 2-TX show similar rates under identical reaction conditions. The reason why 2-MP is a better substrate than 6-MP and how the chemical nature and position of the functional groups present on the thiopurine substrates influence xanthine oxidase activity are discussed.  相似文献   

17.
The 5,6-di-O-tosylated derivative of l-ascorbic acid was synthesized by selective protection and deprotection of 2,3- and 5,6-dihydroxy functional groups involving 5,6-ditosylation in the final step, while the novel 6-acetoxy, 6-hydroxy, and 6-chloro derivatives of 4,5-didehydro-l-ascorbic acid were obtained by reaction of ditosylated compound with nucleophilic reagents. The analysis of 3JH-4-H-5 homonuclear coupling constants shows that all l-ascorbic acid derivatives except for epoxy and 4,5-didehydro compounds exist in high population as gauche conformers across C-4-C-5 bonds, while 3JC-3-H-5 heteronuclear coupling constants in 4,5-didehydro derivatives indicate cis geometry along C-4-C-5 double bond. The X-ray crystal structure analysis of 2,3-di-O-benzyl-5,6-epoxy- and 5,6-isopropylidene-l-ascorbic acid shows that the oxygen atoms attached at positions 2 and 3 of the lactone ring are disposed in a synperiplanar fashion. Besides that, the dioxolane ring adopts half-chair conformation. The molecules of epoxy derivative are joined into infinite chains by one weak hydrogen bond of C-H...O type. Two O-H...O, and C-H...O hydrogen bonds link the molecules of 5,6-di-O-isopropylidene compound into two-dimensional network. 6-Chloro derivative of 2,3-di-O-benzyl-l-ascorbic acid showed the best cytostatic effects against all tested malignant tumor cells (IC50: approximately 18 microM).  相似文献   

18.
1. The reactions of the pentose phosphate cycle were investigated by the intraportal infusion of specifically labelled [(14)C]glucose or [(14)C]ribose into the liver of the anaesthetized rabbit. The sugars were confined in the liver by haemostasis and metabolism was allowed to proceed for periods up to 5min. Metabolism was assessed by measuring the rate of change of the specific radioactivity of CO(2), the carbon atoms of glucose 6-phosphate, fructose 6-phosphate and tissue glucose. 2. The quotient oxidation of [1-(14)C]glucose/oxidation of [6-(14)C]glucose as measured by the incorporation into respiratory CO(2) was greater than 1.0 during most of the time-course and increased to a maximum of 3.1 but was found to decrease markedly upon application of a glucose load. 3. The estimate of the pentose phosphate cycle from C-1/C-2 ratios generally increased during the time-course, whereas the estimate of the pentose phosphate cycle from C-3/C-2 ratios varied depending on whether the ratios were measured in glucose or hexose 6-phosphates. 4. The distribution of (14)C in hexose 6-phosphate after the metabolism of [1-(14)C]ribose showed that 65-95% of the label was in C-1 and was concluded to have been the result of a rapidly acting transketolase exchange reaction. 5. Transaldolase exchange reactions catalysed extensive transfer of (14)C from [2-(14)C]glucose into C-5 of the hexose 6-phosphates during the entire time-course. The high concentration of label in C-4, C-5 and C-6 of the hexose 6-phosphates was not seen in tissue glucose in spite of an unchanging rate of glucose production during the time-course. 6. It is concluded that the reaction sequences catalysed by the pentose phosphate pathway enzymes do not constitute a formal metabolic cycle in intact liver, neither do they allow the definition of a fixed stoicheiometry for the dissimilation of glucose.  相似文献   

19.
BACKGROUND: The crystal structure of precorrin-8x methyl mutase (CobH), an enzyme of the aerobic pathway to vitamin B12, provides evidence that the mechanism for methyl migration can plausibly be regarded as an allowed [1,5]-sigmatropic shift of a methyl group from C-11 to C-12 at the C ring of precorrin-8x to afford hydrogenobyrinic acid. RESULTS: The dimeric structure of CobH creates a set of shared active sites that readily discriminate between different tautomers of precorrin-8x and select a discrete tautomer for sigmatropic rearrangement. The active site contains a strictly conserved histidine residue close to the site of methyl migration in ring C of the substrate. CONCLUSION: Analysis of the structure with bound product suggests that the [1,5]-sigmatropic shift proceeds by protonation of the ring C nitrogen, leading to subsequent methyl migration.  相似文献   

20.
Zhu J  Patel R  Pei D 《Biochemistry》2004,43(31):10166-10172
S-ribosylhomocysteinase (LuxS) catalyzes the cleavage of the thioether bond in S-ribosylhomocysteine (SRH) to produce homocysteine and 4,5-dihydroxy-2,3-pentanedione (DPD), the precursor of type II bacterial quorum sensing molecule. The proposed mechanism involves a series of proton-transfer reactions, which are catalyzed by an Fe2+ ion and two general acids/bases in the LuxS active site, resulting in the migration of the ribose carbonyl group from its C1 to C3 position. Subsequent beta-elimination at C4 and C5 positions completes the catalytic cycle. In this work, the regiochemistry and stereochemical course of the proton transfer reactions were determined by carrying out the reactions using various specifically deuterium-labeled SRH as substrate and analyzing the reaction products by 1H NMR spectroscopy and mass spectrometry. Our data indicate a suprafacial transfer of the ribose C2 proton to its C1 position and the C3 proton to the C2 position during catalysis, whereas the ribose C4 proton is completely washed into solvent. The primary deuterium kinetic isotope effect suggests that the conversion of 2-keto intermediate to 3-keto intermediate is partially rate limiting. However, mutation of Glu-57, the putative second general acid/base in catalysis, to an aspartic acid renders the final beta-elimination step rate limiting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号