首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Although small-colony variants (SCVs) of Staphylococcus aureus have been recognized for many years, this phenotype has only recently been related to persistent and recurrent infections. Clinical S. aureus SCVs are frequently auxotrophic for menadione or hemin, two compounds involved in the biosynthesis of the electron transport chain elements menaquinone and cytochromes, respectively. While this observation as well as other biochemical characteristics of SCVs suggests a link between electron-transport-defective strains and persistent infections, the strains examined thus far have been genetically undefined SCVs. Therefore, we generated a stable mutant in electron transport by interrupting one of the hemin biosynthetic genes, hemB, in S. aureus by inserting an ermB cassette into hemB. We isolated a hemB mutant, due to homologous recombination, by growth at a nonpermissive temperature and selection for erythromycin resistance. This mutant showed typical characteristics of clinical SCVs, such as slow growth, decreased pigment formation, low coagulase activity, reduced hemolytic activity, and resistance to aminoglycosides. Additionally, the mutant was able to persist within cultured endothelial cells due to decreased alpha-toxin production. Northern and Western blot analyses showed that expression of alpha-toxin and that of protein A were markedly reduced, at both the mRNA and the protein level. The SCV phenotype of the hemB mutant was reversed by growth with hemin or by complementation with intact hemB. Hence, a defect in the electron transport system allows S. aureus SCVs to resist aminoglycosides and persist intracellularly.  相似文献   

3.
Standard biochemical tests have revealed that hemin and menadione auxotrophic Staphylococcus aureus small-colony variants (SCVs) exhibit multiple phenotypic changes. To provide a more complete analysis of the SCV phenotype, two genetically defined mutants with a stable SCV phenotype were comprehensively tested. These mutants, generated via mutations in menD or hemB that yielded menadione and hemin auxotrophs, were subjected to phenotype microarray (PM) analysis of over 1,500 phenotypes (including utilization of different carbon, nitrogen, phosphate, and sulfur sources; growth stimulation or inhibition by amino acids and other nutrients, osmolytes, and metabolic inhibitors; and susceptibility to antibiotics). Compared to parent strain COL, the hemB mutant was defective in utilization of a variety of carbon sources, including Krebs cycle intermediates and compounds that ultimately generate ATP via electron transport. The phenotype of the menD mutant was similar to that of the hemB mutant, but the defects in carbon metabolism were more pronounced than those seen with the hemB mutant. In both mutant strains, hexose phosphates and other carbohydrates that provide ATP in the absence of electron transport stimulated growth. Other phenotypes of SCV mutants, such as hypersensitivity to sodium selenite, sodium tellurite, and sodium nitrite, were also uncovered by the PM analysis. Key results of the PM analysis were confirmed in independent growth studies and by using Etest strips for susceptibility testing. PM technology is a new and efficient technology for assessing cellular phenotypes in S. aureus.  相似文献   

4.
The colonization of respiratory tract by Staphylococcus aureus is a frequent feature of cystic fibrosis (CF), especially in pediatric patients. The formation of small colony variants (SCVs), which produce reduced amounts of alpha-toxin, is one of the proposed ways of staphylococcal accommodation in an intracellular niche. The aim of the present study was to compare some properties of S. aureus SCVs and their parent strains. A site-directed S. aureus hemB mutant and parent strain 8325-4 were included in the study (control pair). Normal and SCV strain pairs from CF patients as well as control strains were tested for the susceptibility to defensins, killing activity of professional phagocytes and adhesion to A549 cell line. Because S. aureus are exposed to many cationic proteins in the host, we challenged a clinical isolate with minimal subinhibitory concentration (subMIC) of protamine and found that hemin and menadione auxotrophic SCVs emerged. SCVs were more resistant than normal strains to protamine but not to dermaseptin. The susceptibility to the bactericidal activity of magainin was the same for normal and SCV strains. The protamine resistance of normal as well as SCVs was strongly enhanced by high salt concentration. The adhesion of some SCVs to A549 cells was higher than adhesion of parental strains. However, the number of adherent bacteria (SCVs) was diminished in the presence of hemin for hemin auxotrophs. The uptake of SCVs by granulocytes was lower than ingestion of normal strains, but SCVs were killed with equal or greater potency. SCVs are adapted to intracellular survival and persistence in the host under certain circumstances. The ability to form a variant subpopulation affords S. aureus additional survival options.  相似文献   

5.
Staphylococcus aureus small-colony variants (SCVs) have been implicated in chronic and persistent infections. Bovine mastitis induced by S. aureus is an example of an infection difficult to eradicate by conventional antimicrobial therapies. In this study, the ability to colonize mouse mammary glands and persist under antibiotic treatment was assessed for S. aureus Newbould and an isogenic hemB mutant, which exhibited the classical SCV phenotype. The hemB mutant showed a markedly reduced capacity to colonize tissues. However, although the hemB mutant was as susceptible as S. aureus Newbould to cephapirin in vitro, it was over a 100 times more persistent than the parental strain in the mammary glands when 1 or 2 mg kg(-1) doses were administrated. These results suggest that, although the hemB mutant has a reduced ability to colonize mammary glands, the SCV phenotype may account for the persistence of S. aureus under antibiotic pressure in vivo.  相似文献   

6.
7.
Heme is a key molecule for Staphylococcus aureus and is involved in many aspects of oxidative metabolism. Crucially, heme is required for the activity of cytochromes of the electron transport chain. Staphylococcus aureus is able to obtain heme either through biosynthesis or through acquisition from the host. Clinically persistent 'small colony variant' (SCV) forms of S.?aureus are frequently deficient for heme biosynthesis, and disruption of the hemB gene produces stable heme-auxotrophic strains that reproduce many SCV phenotypes. We sought to address the role of heme transport in SCVs by deleting components of the two described heme import systems, the iron-regulated surface determinant (Isd) and heme transport system (Hts) in wild-type S.?aureus and hemB mutant backgrounds. Analysis of the growth of S.?aureus hemB strains either singly or doubly deficient in isdE and htsA in the presence and absence of heme or hemoglobin revealed that S.?aureus is able to obtain exogenous heme in the absence of these transporter components. These data suggest the presence of additional, as yet unidentified transporter components that enable S.?aureus to internalize exogenous heme and contradict the proposed model that IsdE can transfer heme to the HtsBC permease.  相似文献   

8.
Coagulase-negative staphylococci (CoNS) form a thick, multilayered biofilm on foreign bodies and are a major cause of nosocomial implant-associated infections. Although foreign body infection models are well-established, limited in vivo data are available for CoNS with small-colony-variant (SCV) phenotype described as causative agents in implant-associated infections. Therefore, we investigated the impact of the Staphylococcus epidermidis phenotype on colonization of implanted PVC catheters and abscess formation in three different mouse strains. Following introduction of a catheter subcutaneously in each flank of 8- to 12-week-old inbred C57BL/6JCrl (B6J), outbred Crl:CD1(ICR) (CD-1), and inbred BALB/cAnNCrl (BALB/c) male mice, doses of S. epidermidis O-47 wild type, its hemB mutant with stable SCV phenotype, or its complemented mutant at concentrations of 10(6) to 10(9) colony forming units (CFUs) were gently spread onto each catheter. On day 7, mice were sacrificed and the size of the abscesses as well as bacterial colonization was determined. A total of 11,500 CFUs of the complemented mutant adhered to the catheter in BALB/c followed by 9,960 CFUs and 9,900 CFUs from S. epidermidis wild type in BALB/c and CD-1, respectively. SCV colonization was highest in CD-1 with 9,500 CFUs, whereas SCVs were not detected in B6J. The minimum dose that led to colonization or abscess formation in all mouse strains was 10(7) or 10(8) CFUs of the normal phenotype, respectively. A minimum dose of 10(8) or 10(9) CFU of the hemB mutant with stable SCV phenotype led to colonization only or abscess formation, respectively. The largest abscesses were detected in BALB/c inoculated with wild type bacteria or SCV (64 mm(2) vs. 28 mm(2)). Our results indicate that colonization and abscess formation by different phenotypes of S. epidermidis in a foreign body infection model is most effective in inbred BALB/c followed by outbred CD-1 and inbred B6J mice.  相似文献   

9.
While coagulase-negative staphylococci (CoNS), with their ability to form a thick, multilayered biofilm on foreign bodies, have been identified as the major cause of implant-associated infections, no data are available about biofilm formation by staphylococcal small-colony variants (SCVs). In the past years, a number of device-associated infections due to staphylococcal SCVs were described, among them, several pacemaker infections due to SCVs of CoNS auxotrophic to hemin. To test the characteristics of SCVs of CoNS, in particular, to study the ability of SCVs to form a biofilm on foreign bodies, we generated a stable mutant in electron transport by interrupting one of the hemin biosynthetic genes, hemB, in Staphylococcus epidermidis. In fact, this mutant displayed a stable SCV phenotype with tiny colonies showing strong adhesion to the agar surface. When the incubation time was extended to 48 h or a higher inoculum concentration was used, the mutant produced biofilm amounts on polystyrene similar to those produced by the parent strain. When grown under planktonic conditions, the mutant formed markedly larger cell clusters than the parental strain which were completely disintegrated by the specific beta-1,6-hexosaminidase dispersin B but were resistant to trypsin treatment. In a dot blot assay, the mutant expressed larger amounts of polysaccharide intercellular adhesin (PIA) than the parent strain. In conclusion, interrupting a hemin biosynthetic gene in S. epidermidis resulted in an SCV phenotype. Markedly larger cell clusters and the ability of the hemB mutant to form a biofilm are related to the augmented expression of PIA.  相似文献   

10.
11.
Both the high-resolution two-dimensional protein gel electrophoresis technique and full-genome DNA microarrays were used for identification of Staphylococcus aureus genes whose expression was changed by a mutation in menD. Because the electron transport chain is interrupted, the mutant should be unable to use oxygen and nitrate as terminal electron acceptors. Consistent with this, a mutation in menD was found to cause a gene expression pattern typically detected under anaerobic conditions in wild-type cells: proteins involved in glycolytic as well as in fermentation pathways were upregulated, whereas tricarboxylic acid (TCA) cycle enzymes were significantly downregulated. Moreover, the expression of genes encoding enzymes for nitrate respiration and the arginine deiminase pathway was strongly increased in the mutant strain. These results indicate that the menD mutant, just as the site-directed S. aureus hemB mutant, generates ATP from glucose or fructose mainly by substrate phosphorylation and might be defective in utilizing a variety of carbon sources, including TCA cycle intermediates and compounds that generate ATP only via electron transport phosphorylation. Of particular interest is that there are also differences in the gene expression patterns between hemB and menD mutants. While some anaerobically active enzymes were present in equal amounts in both strains (Ldh1, SACOL2535), other classically anaerobic enzymes seem to be present in higher amounts either in the hemB mutant (e.g., PflB, Ald1, IlvA1) or in the menD mutant (arc operon). Only genes involved in nitrate respiration and the ald1 operon seem to be additionally regulated by a depletion of oxygen in the hemB and/or menD mutant.  相似文献   

12.
Small-colony variants (SCVs) of Staphylococcus aureus exhibit characteristics of bacteria that can penetrate mammalian cells and remain intracellular and innocuous for indefinite periods. These properties make SCVs a convenient tool that can be used to identify new antibacterial agents having activity against intracellular, quiescent bacteria. Agents active against SCVs could be useful in the treatment of chronic staphylococcal infections such as bovine mastitis. An hemB deletion mutant of S. aureus Newbould, a bovine mastitis isolate, having a stable, genetically defined SCV phenotype, was used in a screening program to identify compounds active against intracellular, gram-positive bacteria. Out of more than 260,000 compounds screened, nine compounds having the desired properties were identified. The range of MICs against gram-positive bacteria was < or = 0.12-32 microg ml-1. One of the compounds (no. 8) showed excellent activity against gram-positive (MICs < or = 0.12 microg ml-1) and gram-negative (MICs < or = 0.12-4 microg ml-1) bacteria. Each of the nine compounds demonstrated efficacy in a neutropenic mouse thigh infection model. Two compounds, including compound no. 8, reduced numbers of bacteria in a mouse mastitis model of infection. Application of a stepwise screening process has identified lead compounds that may be useful for treating persistent, intracellular infections.  相似文献   

13.
The pathogen Staphylococcus aureus undergoes phenotype switching in vivo from its normal colony phenotype (NCP) to a slow-growing, antibiotic-resistant small-colony-variant (SCV) phenotype that is associated with persistence in host cells and tissues. However, it is not clear whether phenotype switching is the result of a constitutive process that is selected for under certain conditions or is triggered by particular environmental stimuli. Examination of cultures of diverse S. aureus strains in the absence of selective pressure consistently revealed a small gentamicin-resistant SCV subpopulation that emerged during exponential-phase NCP growth and increased in number until NCP stationary phase. Treatment of replicating bacteria with the antibiotic gentamicin, which inhibited NCP but not SCV replication, resulted in an initial decrease in SCV numbers, demonstrating that SCVs arise as a consequence of NCP replication. However, SCV population expansion in the presence of gentamicin was reestablished by selection of phenotype-stable SCVs and subsequent SCV replication. In the absence of selective pressure, however, phenotype switching was bidirectional and occurred at a high frequency during NCP replication, resulting in SCV turnover. In summary, these data demonstrate that S. aureus phenotype switching occurs via a constitutive mechanism that generates a dynamic, antibiotic-resistant subpopulation of bacteria that can revert to the parental phenotype. The emergence of SCVs can therefore be considered a normal part of the S. aureus life cycle and provides an insurance policy against exposure to antibiotics that would otherwise eliminate the entire population.  相似文献   

14.
FusE mutants are fusidic acid-resistant small colony variants (SCVs) of Staphylococcus aureus that can be selected with aminoglycosides. All FusE SCVs have mutations in rplF, encoding ribosomal protein L6. However, individual FusE mutants including some with the same mutation in rplF display auxotrophy for either hemin or menadione, suggesting that additional mutations are involved. Here we show that FusE SCVs can be divided into three genetic sub-groups and that some carry an additional mutation, in one of the genes required for hemin biosynthesis, or in one of the genes required for menadione biosynthesis. Reversion analysis and genome sequencing support the hypothesis that these combinations of mutations in the rplF, hem, and/or men genes can account for the SCV and auxotrophic phenotypes of FusE mutants.  相似文献   

15.
16.
In epithelial cells, the intracellular pathogen Salmonella typhimurium resides and replicates within a unique cytoplasmic organelle, the Salmonella -containing vacuole (SCV). In vitro studies have shown that the SCV is a dynamic organelle that selectively acquires lysosomal glycoproteins (lgps) without fusing directly with lyosomes. Here, we have investigated early events in SCV biogenesis using immunofluorescence microscopy and epitope-specific flow cytometry. We show that proteins specific to the early endocytic pathway, EEA1 and transferrin receptor (TR), are present on early SCVs. The association of these proteins with SCVs is transient, and both proteins are undetectable at later time points when lgp and vATPase are acquired. Analysis of the fraction of SCVs containing both TR and lamp-1 showed that TR is lost from SCVs as the lgp is acquired, and that these processes occur progressively and not as the result of a single fusion/fission event. These experiments reveal a novel mechanism of SCV biogenesis, involving previously undetected initial interactions with the early endocytic pathway followed by the sequential delivery of lgp. The pathway does not involve interactions with the late endosome/prelysosome and is distinct from traditional phagocytic and endocytic pathways. Our study indicates that intracellular S. typhimurium occupies a unique niche, branching away from the traditional endocytic pathway between the early and late endosomal compartments.  相似文献   

17.
The mechanisms underlying the persistence of the Staphylococcus aureus small-colony variant (SCV) are not fully elucidated. In this study, clinical thymidine-dependent SCVs displayed altered expression of citB, clpC, and arcA genes, reduced acetate catabolization, and enhanced survival. These results implicate the importance of changes in tricarboxylic acid cycle and acetic acid metabolism in SCV survival and persistence.  相似文献   

18.
Salmonella invades epithelial cells and survives within a membrane‐bound compartment, the Salmonella‐containing vacuole (SCV). We isolated and determined the host protein composition of the SCV at 30 min and 3 h of infection to identify and characterize novel regulators of intracellular bacterial localization and growth. Quantitation of the SCV protein content revealed 392 host proteins specifically enriched at SCVs, out of which 173 associated exclusively with early SCVs, 124 with maturing SCV and 95 proteins during both time‐points. Vacuole interactions with endoplasmic reticulum‐derived coat protein complex II vesicles modulate early steps of SCV maturation, promoting SCV rupture and bacterial hyper‐replication within the host cytosol. On the other hand, SCV interactions with VAMP7‐positive lysosome‐like vesicles promote Salmonella‐induced filament formation and bacterial growth within the late SCV. Our results reveal that the dynamic communication between the SCV and distinct host organelles affects both intracellular Salmonella localization and growth at successive steps of host cell invasion.  相似文献   

19.
The GacS/GacA two-component regulatory system in pseudomonads regulates genes involved in virulence, secondary metabolism and biofilm formation. Despite these regulatory functions, some Pseudomonas species are prone to spontaneous inactivating mutations in gacA and gacS. A gacS(-) strain of Pseudomonas aeruginosa PA14 was constructed to study the physiological role of this sensor histidine kinase. This loss-of-function mutation was associated with hypermotility, reduced production of acylhomoserine lactones, impaired biofilm maturation, and decreased antimicrobial resistance. Biofilms of the gacS(-) mutant gave rise to phenotypically stable small colony variants (SCVs) with increasing frequency when exposed to silver cations, hydrogen peroxide, human serum, or certain antibiotics (tobramicin, amikacin, azetronam, ceftrioxone, oxacilin, piperacillin or rifampicin). When cultured, the SCV produced thicker biofilms with greater cell density and greater antimicrobial resistance than did the wild-type or parental gacS(-) strains. Similar to other colony morphology variants described in the literature, this SCV was less motile than the wild-type strain and autoaggregated in broth culture. Complementation with gacS in trans restored the ability of the SCV to revert to a normal colony morphotype. These findings indicate that mutation of gacS is associated with the occurrence of stress-resistant SCV cells in P. aeruginosa biofilms and suggests that in some instances GacS may be necessary for reversion of these variants to a wild-type state.  相似文献   

20.
摘要:【目的】由于金黄色葡萄球菌(金葡菌)小菌落突变株(small colony variants,简称SCVs )可引起持续复发性感染,且对氨基糖苷类有抗药性,在临床诊断和治疗上造成很大的困扰。我国国内尚无金葡菌SCVs的报道,本研究旨在分离鉴定出金葡菌SCVs菌株,为国内进行SCVs的相关研究提供生物学材料。【方法】通过细菌的形态鉴定、种特异性基因(nuc)的PCR扩增鉴定以及系列生化实验,从人源、动物源及环境源共104株金葡菌分离株中筛选得到金葡菌SCVs,并通过甲萘醌、硫胺素、胸腺嘧啶和血红素等补  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号