首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以落羽杉〔Taxodium distichum(Linn.)Rich.〕和墨西哥落羽杉(T.mucronatum Tenore)及其3个杂交后代品系'中山杉405'('Zhongshansha 405')、'中山杉406'('Zhongshansha 406')和'中山杉407'('Zhongshansha 407')2年生盆栽扦插苗为研究对象,对株高和地径的年增长量、总叶面积、株高和地径的增长量动态变化、株高和地径的生长期进行了比较分析,并根据地径增长量分析了3个杂交后代品系的杂种优势.结果表明:3个杂交后代品系的年株高增长量介于父本与母本之间但无显著差异,而三者的年地径增长量和总叶面积则明显高于父本和母本.墨西哥落羽杉与3个杂交后代品系的株高和地径生长期均一致,分别为5月11日至10月5日和6月1日至11月9日;而落羽杉的株高和地径生长期分别为5月11日至8月10日和6月8日至11月16日.5月份至10月份,墨西哥落羽杉的株高持续增长,而3个杂交后代品系的株高不连续增长,落羽杉的株高则在8月10日之后停止生长;生长初期和生长末期,3个杂交后代品系的地径增长量均高于父本和母本;秋季3个杂交后代品系均能快速进行地径生长,而此时父本和母本的地径增长量均下降.除夏季的少数时间段外,'中山杉405'在整个生长季都表现出明显的杂种优势,而'中山杉406'和'中山杉407'在整个生长季总体上表现出杂种优势,且它们的杂种优势最大值均出现在生长后期,说明供试的3个杂交后代品系在秋季也能快速生长.研究结果显示:供试的3个杂交后代品系均遗传了落羽杉地径生长迅速和墨西哥落羽杉株高生长期长的特性,秋季3个杂交后代品系的地径和株高增长量总体上均高于父本和母本,表现出明显的杂种优势.  相似文献   

2.
Phaseolus vulgaris (cv. Hawkesbury Wonder) was grown over a range of NaCl concentrations (0–150 mM), and the effects on growth, ion relations and photosynthetic performance were examined. Dry and fresh weight decreased with increasing external NaCl concentration while the root/shoot ratio increased. The Cl- concentration of leaf tissue increased linearly with increasing external NaCl concentration, as did K+ concentration, although to a lesser degree. Increases in leaf Na+ concentration occurred only at the higher external NaCl concentrations (100 mM). Increases in leaf Cl- were primarily balanced by increases in K+ and Na+. X-ray microanalysis of leaf cells from salinized plants showed that Cl- concentration was high in both the cell vacuole and chloroplast-cytoplasm (250–300 mM in both compartments for the most stressed plants), indicating a lack of effective intracellular ion compartmentation in this species. Salinity had little effect on the total nitrogen and ribulose-1,5-bisphosphate (RuBP) carboxylase (EC 4.1.1.39) content per unit leaf area. Chlorophyll per unit leaf area was reduced considerably by salt stress, however. Stomatal conductance declined substantially with salt stress such that the intercellular CO2 concentration (C i) was reduced by up to 30%. Salinization of plants was found to alter the 13C value of leaves of Phaseolus by up to 5 and this change agreed quantitatively with that predicted by the theory relating carbon-isotope fractionation to the corresponding measured intercellular CO2 concentration. Salt stress also brought about a reduction in photosynthetic CO2 fixation independent of altered diffusional limitations. The initial slope of the photosynthesis versus C i response declined with salinity stress, indicating that the apparent in-vivo activity of RuBP carboxylase was decreased by up to 40% at high leaf Cl- concentrations. The quantum yield for net CO2 uptake was also reduced by salt stress.Abbreviations and symbols A net CO2 assimilation rate - C a ambient CO2 concentration - C i intercellular CO2 concentration - RuBP ribulose-1,5-bisphosphate - 13C ratio of 13C to 12C relative to standard limestone  相似文献   

3.
The effect of leaf species composition on decomposition patterns was examined in a coastal plain stream. Red maple leaves (Acer rubrum) decomposed at the same rate separately or when mixed with cypress leaves (Taxodium distichum). Cypress addition increased structural integrity but its effects differed between sites with different hydrologic regimes. Invertebrate communities varied slightly between mixed and single species packs, however invertebrates did not appear to be the primary agent of decomposition. Mixed species packs may be an alternative method to fine mesh bags for studying processing of small, narrow leaves in a more realistic manner.  相似文献   

4.
Augspurger CK 《Oecologia》2008,156(2):281-286
Saplings of many canopy tree species in winter deciduous forests receive the major portion of their light budget for their growing season prior to canopy closure in the spring. This period of high light may be critical for achieving a positive carbon (C) gain, thus contributing strongly to their growth and survival. This study of saplings of Aesculus glabra and Acer saccharum in Trelease Woods, Illinois, USA, tested this hypothesis experimentally by placing tents of shade cloth over saplings during their spring period of high light prior to canopy closure in three consecutive years. Leaf senescence began 16 days (year 0) and 60 days (year 1) earlier for shaded A. glabra saplings than control saplings. No change in senescence occurred for A. saccharum. The annual absolute growth in stem diameter of both species was negligible or negative for shaded saplings, but positive for control saplings. Only 7% of the shaded A. glabra saplings were alive after 2 years, while all control saplings survived for 3 years; only 20% of the shaded A. saccharum saplings survived for 3 years, while 73% of control saplings were alive after the same period. Early spring leaf out is a critical mechanism that allows the long-term persistence of saplings of these species in this winter deciduous forest. Studies and models of C gain, growth, and survival of saplings in deciduous forests may need to take into account their spring phenology because saplings of many species are actually “sun” individuals in the spring prior to their longer period in the summer shade.  相似文献   

5.
Summary Complete plant submergence for 6 or 9 days at 20 days after transplanting effected the same decrease in grain yield as submergence for 12 days at 40 days after transplanting. With increasing duration of submergence, tiller number, green leaves and dry weight of all varieties tested decreased. The decrease was less in the flood tolerant variety FR 13A than in other varieties. Contents of reducing sugars and amylase activity also decreased with increasing duration of submergence. The reducing sugar contents and amylase activity were higher and peroxidase activity was lower in flood tolerant variety FR 13A than in other varieties. The N contents increased and P and K contents decreased with duration of submergence.  相似文献   

6.
We examined relative effects of traits of leaf quality of ten willow species (Salix: Salicaceae) on growth rates of five species of insect herbivores found in interior Alaska (a willow sawfly, Nematus calais; the tiger swallowtail butterfly, Papilio canadensis; and three species of chrysomelid beetles, Gonioctena occidentalis, Calligrapha verrucosa, and Chrysomela falsa). Leaf traits examined were water content, toughness, total nitrogen contnet, pubescence, and presence or absence of phenolic glycosides. Of ten Salix species, four species contain phenolic glycosides in their leaves. We examined relative effects of water content, toughness, and nitrogen content of the Salix leaves on larval growth rates at three different levels, i.e., on a single host species, between different host species, and between herbivore species. The within-host analyses showed that effects of water content, toughness and/or nitrogen content on herbivore growth rates were generally significant in early-season herbivores but not in late-season herbivores. For each herbivore species, differences in growth rates between hosts were not explained by differences in water content, toughness, or nitrogen content. The between-herbivore analysis showed that the interspecific difference in larval growth rates were related to difference in water and nitrogen content of the hosts. Pubescence of Salix leaves had little effects on herbivore growth rates. Presence of phenolic glycosides had a positive effects on growth rates of a specialist, N. calais, but no effect on the other specialist, Ch. falsa. Presence of phenolic glycosides had, in general, negative effects on growth rates of nonspecialists, G. occidentalis, C. verrucosa, and P. canadensis.  相似文献   

7.
Kochia sieversiana (Pall.) C. A. M., a naturally alkali-resistant halophyte, was chosen as the test organism for our research. The seedlings of K. sieversiana were treated with varying (0–400 mM) salt stress (1:1 molar ratio of NaCl to Na2SO4) and alkali stress (1:1 molar ratio of NaHCO3 to Na2CO3). The concentrations of various solutes in fresh shoots, including Na+, K+, Ca2+, Mg2+, Cl, SO42−, NO3, H2PO3, betaine, proline, soluble sugar (SS), and organic acid (OA), were determined. The water content (WC) of the shoots was calculated and the OA components were analyzed. Finally, the osmotic adjustment and ion balance traits in the shoots of K. sieversiana were explored. The results showed that the WC of K. sieversiana remained higher than 6 [g g−1 Dry weight (DW)] even under the highest salt or alkali stress. At salinity levels >240 mM, proline concentrations increased dramatically, with rising salinity. We proposed that this was not a simple response to osmotic stress. The concentrations of Na+ and K+ all increased with increasing salinity, which implies that there was no competitive inhibition for absorption of either in K. sieversiana. Based on our results, the osmotic adjustment feature of salt stress was similar to that of alkali stress in the shoots of K. sieversiana. The shared essential features were that the shoots maintained a state of high WC, OA, Na+, K+ and other inorganic ions, accumulated largely in the vacuoles, and betaine, accumulated in cytoplasm. On the other hand, the ionic balance mechanisms under both stresses were different. Under salt stress, K. sieversiana accumulated OA and inorganic ions to maintain the intracellular ionic equilibrium, with close to equal contributions of OA and inorganic ions to anion. However, under alkali stress, OA was the dominant factor in maintaining ionic equilibrium. The contribution of OA to anion was as high as 84.2%, and the contribution of inorganic anions to anion was only 15.8%. We found that the physiological responses of K. sieversiana to salt and alkali stresses were unique, and that mechanisms existed in it that were different from other naturally alkali-resistant gramineous plants, such as Aneurolepidium chinense, Puccinellia tenuiflora. Responsible Editor: John McPherson Cheeseman.  相似文献   

8.
Summary Of the three growth stagesviz., seedling establishment, maximum tillering and flowering, complete submergence of plant at flowering stage was found to be most critical followed by seedling estabilishment and maximum tillering stages. Among the three stages of reproductive growth phase, booting stage was found to be most susceptible to complete submergence followed by flowering and post-flowering. The submergence at booting for 4 days was equally detrimental as that of 6 or 8 days at flowering. Irrespective of the growth stages, the plants subjected to complete submergence showed higher nitrogen content (in plant as well as in grain) as compared to those grown under control conditions (5±2 cm) and increased with the increase in duration of submergence. The P and K contents in the plant decreased under submergence.  相似文献   

9.
The physicochemical properties and inherent ion content of the gelling agents used for the preparation of semi-solid substrates significantly affect the germination of tomato pollen in vitro. The addition of Ca, K and Mg to semi-solid, agar-based, substrates improved the germination of tomato pollen when the inherent Ca content of the agar was low, but was without effect or even inhibitory when the Ca level was high. However, Κ and/or Mg addition was beneficial irrespective of the agar source. When agarose replaced agar and K, Mg and Ca were added individually or in combination, pollen germination and pollen tube growth were affected differently by each ion but were optimal only in the presence of all three ions, reflecting the absence of these ions in agarose. An involvement of Na was also implicated since reduction of the inherently high Na content of agar by washing improved germination, with or without the addition of Κ, Mg and Ca. Since >3 mM Ca in the semi-solid substrate impairs tomato pollen germination, the gelling agent must be of high purity, which in the case of agar may entail washing, followed by the addition of K, Mg and Ca. The adoption of such a medium would permit the standardization of semi-solid substrates for in vitro tomato pollen germination studies.  相似文献   

10.
Anderson  P.H.  Pezeshki  S.R. 《Photosynthetica》2000,37(4):543-552
Under greenhouse conditions, seedlings of three forest species, baldcypress (Taxodium distichum), nuttall oak (Quercus nuttallii), and swamp chestnut oak (Quercus michauxii) were subjected to an intermittent flooding and subsequent physiological and growth responses to such conditions were evaluated. Baldcypress showed no significant reductions in stomatal conductance (g s) or net photosynthetic rate (P N) in response to flood pulses. In nuttall oak seedlings g s and P N were significantly decreased during periods of inundation, but recovered rapidly following drainage. In contrast, in swamp chestnut oak g s was reduced by 71.8 % while P N was reduced by 57.2 % compared to controls. Baldcypress displayed no significant changes in total mass while oak species had significantly lower leaf and total mass compared to their respective controls. Thus baldcypress and nuttall oak showed superior performance under frequent intermittent flooding regimes due to several factors including the ability for rapid recovery of gas exchange soon after soil was drained. In contrast, swamp chestnut oak seedlings failed to resume gas exchange functions after the removal of flooding.  相似文献   

11.
A selected Glycine max (L.) salt-tolerant calluscell line (R100) was significantly more tolerant to salt than a salt-sensitiveline (S100) during exposure to salt stress. Growth (Fresh and Dry weights) ofthe R100 cell line declined significantly at NaCl concentrations greater than 75mM, while growth of the S100 cell line was already impaired at 25mM NaCl. Levels of Na+ and Cl inthe callus were elevated as the salt concentration increased, whileK+, Ca2+ and Mg2+ levels weremarkedly reduced. The lower s reduction and Na+accumulation found in the S100 callus corresponded with the higher callusdehydration during salinity. Calli grown on Miller's basal medium weresupplied with 100 mM NaCl for 12 days and then supplied with mediumwithout NaCl to relieve salinity stress. The Na+ andCl content decreased in both R100 and S100 cell lines duringthe first 24 h and reached normal levels four days after transferto the normal medium. This lower concentration was maintained until the end ofthe experiment. Concurrently, the K+ content andK+/Na+ ratio increased sharply and reached theirhighest levels within 24 h in both salt-sensitive and salt-tolerantcell lines. These data suggest that the inhibitory effects of salinization ongrowth and accumulation of potentially toxic ions (Na+,Cl) can be readily reversed when salinity is relieved.  相似文献   

12.
Shabala S  Hariadi Y 《Planta》2005,221(1):56-65
Considering the physiological significance of Mg homeostasis in plants, surprisingly little is known about the molecular and ionic mechanisms mediating Mg transport across the plasma membrane and the impact of Mg availability on transport processes at the plasmalemma. In this study, a non-invasive ion-selective microelectrode technique (MIFE) was used to characterize the effects of Mg availability on the activity of plasma membrane H+, K+, Ca2+, and Mg2+ transporters in the mesophyll cells of broad bean (Vicia faba L.) plants. Based on the stoichiometry of ion-flux changes and results of pharmacological experiments, we suggest that at least two mechanisms are involved in Mg2+ uptake across the plasma membrane of bean mesophyll cells. One of them is a non-selective cation channel, also permeable to K+ and Ca2+. The other mechanism, operating at concentrations below 30 M, was speculated to be an H+/Mg+ exchanger. Experiments performed on leaves grown at different levels of Mg availability (from deficient to excessive) showed that Mg availability has a significant impact on the activity of plasma-membrane transporters for Ca2+, K+, and H+. We discuss the physiological significance of Mg-induced changes in leaf electrophysiological responses to light and the ionic mechanisms underlying this process.  相似文献   

13.
Calluses initiated from leaves and seedlings of the mangrove,Bruguiera sexangula, were isolated from the original tissues and subcultured. Effects of NaCl on growth and ion content of each callus were measured. The growth rate of calluses derived from leaves (leaf callus) gradually decreased as the NaCl concentration in the medium increased, while that of calluses derived from seedlings (seedling callus) was highest in the medium containing 100 mM NaCl. Concentrations of Na and Cl in both calluses increased with increasing the NaCl concentration in the culture medium. The concentration of K of leaf calluses greatly decreased at 300 mM NaCl, while the K concentration of seedling calluses decreased only slightly and remained relatively high even in the presence of 300 mM NaCl. Transient treatment of leaf calluses with media containing high concentrations of NaCl frequently induced regeneration of adventitious tissues.  相似文献   

14.
Branch architecture, leaf photosynthetic traits, and leaf demography were investigated in saplings of two woody species, Homolanthus caloneurus and Macaranga rostulata, co-occurring in the understory of a tropical mountain forest. M. rostulata saplings have cylindrical crowns, whereas H. caloneurus saplings have flat crowns. Saplings of the two species were found not to differ in area-based photosynthetic traits and in average light conditions in the understory of the studied site, but they do differ in internode length, leaf emergence rate, leaf lifespan, and total leaf area. Displayed leaf area of H. caloneurus saplings, which have the more rapid leaf emergence, was smaller than that of M. rostulata saplings, which have a longer leaf lifespan and larger total leaf area, although M. rostulata saplings showed a higher degree of leaf overlap. Short leaf lifespan and consequent small total leaf area would be linked to leaf overlap avoidance in the densely packed flat H. caloneurus crown. In contrast, M. rostulata saplings maintained a large total leaf area by producing leaves with a long leaf lifespan. In these understory saplings with a different crown architecture, we observed two contrasting adaptation strategies to shade which are achieved by adjusting a suite of morphological and leaf demographic characters. Each understory species has a suite of morphological traits and leaf demography specific to its architecture, thus attaining leaf overlap avoidance or large total leaf area.  相似文献   

15.
The growth of kiwifruit explants was affected by boron (B) and methionine (Meth) in the culture medium. The longest shoots, the greatest number of shoots and the highest amount of fresh mass per explant were produced in Murashige and Skoog medium with 2 mM B and 2 μM Meth. Furthermore, by increasing B concentration in the culture medium from 0 to 2 mM, an increased rate of shoot proliferation was observed for the various Meth concentrations employed.  相似文献   

16.
17.
Cores were collected from dominant pondcypress trees growing in a swamp that had received sewage effluent for 7 yr and a nearby control swamp to determine the combined effects of changes in nutrient supply and hydrologic regime on tree growth. The cores were used to measure two indices of tree growth: basal area increment (BAI) and relative basal area increment (RBAI, which accounts for differences in growth due to the size of teh tree) between 1970–1983 while one swamp remained untreated and the other received weekly additions of sewage effluent from 1974–1981. Throughout the whole period, the mean BAI and RBAI of pond-cypress trees in the untreated swamp remained unchanged, ranging between 5.55–6.38 cm2 yr–1 and 1.09–1.27% yr–1, respectively. In contrast, trees in the treated swamp increased their BAI approximately two-fold from 7.40 cm2 yr–1 prior to treatment to 14.83 cm2 yr–1 after the onset of treatment and maintained this rate of growth in the 2 yr period after cessation of treatment. Relative basal area increment showed a similar response, but the proportional increase due to treatment was less (1.5-fold factor) than for BAI. The response of pondcypress trees to the sewage effluent differed depending upon whether the trees were located in the deep or shallow water zones. Trees in the deep zone of the treated swamp had lower BAIs and RBAIs than those in the shallow zone during the treatment period, whereas in pre- and post-treatment periods growth indices were equal in both zones. No significant differences in growth between deep and shallow zones were observed during all three time periods in the control swamp.  相似文献   

18.
Thellungiella halophila seedlings grown on a solid substrate for 25 days on standard medium were challenged with NaCl. Growth, tissue hydration, ion accumulation, photosynthesis, lipid peroxidation and antioxidant enzymatic activities were studied on rosette leaves. Three accessions of Arabidopsis thaliana were cultivated under the same conditions. During the first two weeks of salt treatment, the growth of T. halophila leaves was restricted by NaCl. No significant difference appeared between T. halophila and A. thaliana concerning biomass deposition, or hydric and ionic parameters. However, all A. thaliana plants displayed foliar damage, and died during the third week of salt (50mM NaCl) treatment. Almost all (94%) T. halophila plants remained alive, but did not display any sign of altered physiological condition. Tissue hydration, chlorophyll content, stomatal conductance, photosynthetic quantum yield, and photosynthetic rate were very similar to those of control plants. Lipid peroxidation, estimated from thermoluminescence, was very low and insensitive to salt treatment. Only slight changes occurred in antioxidant enzymatic activities (SOD, several peroxidases, and catalase). From the absence of physiological disorder symptoms, we infer that salt was efficiently compartmentalized in leaf vacuoles. In salt-treated A. thaliana, the photosynthetic quantum yield was diminished, and lipid peroxidation was augmented. These observations reinforce the conclusion that T. halophila could accumulate salt in its leaves without damage, in contrast to A. thaliana.  相似文献   

19.
Shootlets of kiwifruit plants (Actinidia deliciosa) were culturedin vitro. Combinations of light intensity, Mg and sucrose in the cultures showed that an increase of light intensity resulted in a corresponding increase of the relative size of the leaf mesophyll cells and in a decrease of the numbers of chloroplasts and contained starch grains. The addition of sucrose to the substrate media negatively affected the size of the mesophyll cells under normal Mg concentration (35 mg l−1), and positively under high Mg concentration (105 mg l−1 ). Sucrose further resulted in an increase in the numbers of chloroplasts and contained starch grains. The photosynthetic capacity of leaves greatly increased when Mg concentration was enhanced and sucrose was excluded from the nutrient substrate. Total sugar accumulation in all treatments was favoured by normal light intensity and addition of sucrose.  相似文献   

20.
The circadian movement of the lamina of primary leaves ofPhaseolus coccineus L. depends on circadian changes of the K+, Cl- and (depending on the Cl- availability) malate content in the swelling and shrinking motor cells of the laminar pulvinus. After sowing in soil, the laminar pulvinus develops within about 26 days. When the leaves emerge from the soil (about 6 days after sowing) and the pulvinus starts with the diurnal movement (about 9 days after sowing) the pulvinar dimensions are about half of those of the mature pulvinus. The anatomical structure, however, is basically the same as in the developed pulvinus. In soil-grown plants, the K+, Cl- and malate content as well as the period length of the circadian leaf movement rhythm change in the developing pulvinus. In the embryo of the dry seed, the Cl- content is low (0.03 mmol g-1 DW), the K+ content, however, 22-fold higher than the Cl- content. When the leaves emerge from the soil, the pulvinar K+ and Cl- content is the same as in the whole embryo of the dry seed. In the developing pulvinus the K+ content increases by a factor of 2 and the Cl- content by a factor of 41 in the mature pulvinus. The pulvinar malate content increases between the 6th and 10th day from about 40 to 180Μmol g-1 DW, then decreases until the 17th day and remains thereafter on a low level (around 80 Μmol g-1 DW). These results indicate that the Cl- availability increases in the developing pulvinus with age. It explains furthermore why in young leaves malate was found as counterion to K+ in the osmotic leaf movement motor, in older ones, however, Cl-. The circadian leaf movement starts 9 days after sowing. The period length decreases during the development of the pulvinus from 31.3 to 28.6 h in leaves of intact soil-grown plants. In leaves which were cut from the plants and immersed with their petioles in distilled water, the age dependent decrease of the period length is also found. However, the period lengths are shorter by more than 1 h than in the leaves of intact plants. The increasing Cl- availability in the developing pulvinus does not seem to be the cause for the age dependent shortening of the period length, because the period length in 22 days old Cl- deprived pulvini is the same as in 22 days old pulvini with a high Cl- content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号