首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yi S  Charlesworth B 《Genetics》2000,156(4):1753-1763
In Drosophila miranda, a chromosome fusion between the Y chromosome and the autosome corresponding to Muller's element C has created a new sex chromosome system. The chromosome attached to the ancestral Y chromosome is transmitted paternally and hence is not exposed to crossing over. This chromosome, conventionally called the neo-Y, and the homologous neo-X chromosome display many properties of evolving sex chromosomes. We report here the transposition of the exuperantia1 (exu1) locus from a neo-sex chromosome to the ancestral X chromosome of D. miranda. Exu1 is known to have several critical developmental functions, including a male-specific role in spermatogenesis. The ancestral location of exu1 is conserved in the sibling species of D. miranda, as well as in a more distantly related species. The transposition of exu1 can be interpreted as an adaptive fixation, driven by a selective advantage conferred by its effect on dosage compensation. This explanation is supported by the pattern of within-species sequence variation at exu1 and the nearby exu2 locus. The implications of this phenomenon for genome evolution are discussed.  相似文献   

2.
R. L. Wang  J. Hey 《Genetics》1996,144(3):1113-1126
Thirty-five period locus sequences from Drosophila pseudoobscura and its siblings species, D. p. bogotana, D. persimilis, and D. miranda, were studied. A large amount of variation was found within D. pseudoobscura and D. persimilis, consistent with histories of large effective population sizes. D. p. bogotana, however, has a severe reduction in diversity. Combined analysis of per with two other loci, in both D. p. bogotana and D. pseudoobscura, strongly suggest this reduction is due to recent directional selection at or near per within D. p. bogotana. Since D. p. bogotana is highly variable and shares variation with D. pseudoobscura at other loci, the low level of variation at per within D. p. bogotana can not be explained by a small effective population size or by speciation via founder event. Both D. pseudoobscura and D. persimilis have considerable intraspecific gene flow. A large portion of one D. persimilis sequence appears to have arisen via introgression from D. pseudoobscura. The time of this event appears to be well after the initial separation of these two species. The estimated times since speciation are one mya for D. pseudoobscura and D. persimilis and 2 mya since the formation of D. miranda.  相似文献   

3.
Yi S  Bachtrog D  Charlesworth B 《Genetics》2003,164(4):1369-1381
There have recently been several studies of the evolution of Y chromosome degeneration and dosage compensation using the neo-sex chromosomes of Drosophila miranda as a model system. To understand these evolutionary processes more fully, it is necessary to document the general pattern of genetic variation in this species. Here we report a survey of chromosomal variation, as well as polymorphism and divergence data, for 12 nuclear genes of D. miranda. These genes exhibit varying levels of DNA sequence polymorphism. Compared to its well-studied sibling species D. pseudoobscura, D. miranda has much less nucleotide sequence variation, and the effective population size of this species is inferred to be several-fold lower. Nevertheless, it harbors a few inversion polymorphisms, one of which involves the neo-X chromosome. There is no convincing evidence for a recent population expansion in D. miranda, in contrast to D. pseudoobscura. The pattern of population subdivision previously observed for the X-linked gene period is not seen for the other loci, suggesting that there is no general population subdivision in D. miranda. However, data on an additional region of period confirm population subdivision for this gene, suggesting that local selection is operating at or near period to promote differentiation between populations.  相似文献   

4.
Chromosomal inversions impact genetic variation and facilitate speciation in part by reducing recombination in heterokaryotypes. We generated multiple whole-genome shotgun sequences of the parapatric species pair Drosophila pseudoobscura and Drosophila persimilis and their sympatric outgroup (Drosophila miranda) and compared the average pairwise differences for neutral sites within, just outside and far outside of the three large inversions. Divergence between D. pseudoobscura and D. persimilis is high inside the inversions and in the suppressed recombination regions extending 2.5 Mb outside of inversions, but significantly lower in collinear regions further from the inversions. We observe little evidence of decreased divergence predicted to exist in the centre of inversions, suggesting that gene flow through double crossovers or gene conversion is limited within the inversion, or selection is acting within the inversion to maintain divergence in the face of gene flow. In combination with past studies, we provide evidence that inversions in this system maintain areas of high divergence in the face of hybridization, and have done so for a substantial period of time. The left arm of the X chromosome and chromosome 2 inversions appear to have arisen in the lineage leading to D. persimilis approximately 2 Ma, near the time of the split of D. persimilis-D. pseudoobscura-D. miranda, but likely fixed within D. persimilis much more recently, as diversity within D. persimilis is substantially reduced inside and near these two inversions. We also hypothesize that the inversions in D. persimilis may provide an empirical example of the 'mixed geographical mode' theory of inversion origin and fixation, whereby allopatry and secondary contact both play a role.  相似文献   

5.
Comparisons of gene orders between species permit estimation of the rate of chromosomal evolution since their divergence from a common ancestor. We have compared gene orders on three chromosomes of Drosophila pseudoobscura with its close relative, D. miranda, and the distant outgroup species, D. melanogaster, by using the public genome sequences of D. pseudoobscura and D. melanogaster and approximately 50 in situ hybridizations of gene probes in D. miranda. We find no evidence for extensive transfer of genes among chromosomes in D. miranda. The rates of chromosomal rearrangements between D. miranda and D. pseudoobscura are far higher than those found before in Drosophila and approach those for nematodes, the fastest rates among higher eukaryotes. In addition, we find that the D. pseudoobscura chromosome with the highest level of inversion polymorphism (Muller's element C) does not show an unusually fast rate of evolution with respect to chromosome structure, suggesting that this classic case of inversion polymorphism reflects selection rather than mutational processes. On the basis of our results, we propose possible ancestral arrangements for the D. pseudoobscura C chromosome, which are different from those in the current literature. We also describe a new method for correcting for rearrangements that are not detected with a limited set of markers.  相似文献   

6.
7.
Substantial insights into basic strategies for embryonic body patterning have been obtained from genetic analyses of Drosophila melanogaster. This knowledge has been used in evolutionary comparisons to ask if genes and functions are conserved. To begin to ask how highly conserved are the mechanisms of mRNA localization, a process crucial to Drosophila body patterning, we have focused on the localization of bcd mRNA to the anterior pole of the embryo. Here we consider two components involved in that process: the exuperantia (exu) gene, required for an early step in localization; and the cis-acting signal that directs bcd mRNA localization. First, we use the cloned D. melanogaster exu gene to identify the exu genes from Drosophila virilis and Drosophila pseudoobscura and to isolate them for comparisons at the structural and functional levels. Surprisingly, D. pseudoobscura has two closely related exu genes, while D. melanogaster and D. virilis have only one each. When expressed in D. melanogaster ovaries, the D. virilis exu gene and one of the D. pseudoobscura exu genes can substitute for the endogenous exu gene in supporting localization of bcd mRNA, demonstrating that function is conserved. Second, we reevaluate the ability of the D. pseudoobscura bcd mRNA localization signal to function in D. melanogaster. In contrast to a previous report, we find that function is retained. Thus, among these Drosophila species there is substantial conservation of components acting in mRNA localization, and presumably the mechanisms underlying this process.  相似文献   

8.
Different electrophoretic alleles of amylase show associations with particular chromosome 3 inversions in D. pseudoobscura and D. persimilis. Relative adult amylase activities were compared in 37, 37 and 10 strains of D. pseudoobscura, D. persimilis and D. miranda, respectively. Strains carrying the same electrophoretic allele were compared by crossing these lines individually to a reference strain carrying a different electrophoretic mobility allele. This procedure allows comparisons among species, inversions, electromorphs and strains for genetic variation in amylase activity. F2 analysis established that the activity variation co-segregates with the structural amylase locus. This type of variation could be due to either structural gene differences or differences in closely linked, cis-acting regulatory regions. Variation has been detected among and within electrophoretic mobility classes. Moreover, this variation is clearly nonrandom and reveals more of the genetic structure associated with the chromosomal inversion phylogeny of D. pseudoobscura and D. persimilis. ----Some of the findings are: (1) Similar electromorphs in D. pseudoobscura and D. persimilis usually show different activities. These species show nearly complete differentiation of amylase alleles, based on activities. (2) D. persimilis has the broadest range of variation in amylase activity, about four-fold between the highest and lowest alleles. D. pseudoobscura and D. miranda are also polymorphic for activity, but have more constrained ranges of variation. D. miranda alleles show on the average about four times the activity of D. pseudoobscura alleles. (3) Some association of electrophoretic mobility and activity has been found. Alleles 1.09 of D. persimilis, as well as 1.43 and 1.55 of D. miranda, have relatively high activity. It may be that these high activity alleles are part of an adaptation to cooler habitats. (4) Within electrophoretic classes, associations of activities with inversions have been found. These are especially strong in D. persimilis. The 1.00 alleles in the ST, KL, MD and WT inversions, the 0.92 allele in the ST and MD inversions and the 1.09 allele in the WT and KL inversions have levels of activities that depend upon the arrangement in which they are located. These results demonstrate that suppression of recombination in inversion heterokaryotypes can result in extensive genic divergence between inversions.  相似文献   

9.
Bachtrog D  Charlesworth B 《Genetics》2003,164(3):1237-1240
In situ hybridization to Drosophila polytene chromosomes is a powerful tool for determining the chromosomal location of genes. Using in situ hybridization experiments, Yi and Charlesworth recently reported the transposition of the exuperantia1 gene (exu1) from a neo-sex chromosome to the ancestral X chromosome of Drosophila miranda, close to exuperantia2 (exu2). By characterizing sequences flanking exu1, however, we found the position of exu1 to be conserved on the neo-sex chromosome. Further, the exu2 gene was found to be tandemly duplicated on the X chromosome of D. miranda. The misleading hybridization signal of exu1 may be caused by multiple copies of exu2, which interfere with the hybridization of the exu1 probe to its genomic position on the neo-X chromosome. This suggests that flanking DNA should be used to confirm the positions of members of gene families.  相似文献   

10.
Cobbs G  Prakash S 《Genetics》1977,87(4):717-742
The relationship between charge changes and electrophoretic mobility changes is investigated experimentally. The charge of several proteins is altered by reaction with small molecules of known structure and the change in electrophoretic mobility is measured. The method of Ferguson plots is used to separate charge and shape components of mobility differences. The average effect of an amino acid charge change on the mobility of the esterase-5( 1.00) allele of Drosophila pseudoobscura is estimated to be 0.046. This estimate is then used to apply the step model of Ohta and Kimura (1973) to electrophoretic mobility data for the esterase-5 locus of D. pseudoobscura and D. miranda. The variation in electrophoretic mobility at this locus was found to be in agreement with the predictions of the step model.  相似文献   

11.
The Sex-Ratio chromosome in Drosophila pseudoobscura is subject to meiotic drive. It is associated with a series of three nonoverlapping paracentric inversions on the right arm of the X chromosome. The esterase-5 gene region has been localized to section 23 within the subbasal inversion of the Sex-Ratio inversion complex, making esterase- 5 a convenient locus for molecular evolutionary analyses of the Sex- Ratio inversion complex and the associated drive system. A 504-bp fragment of noncoding, intergenic DNA from the esterase-5 gene region was amplified and sequenced from 14 Sex-Ratio and 14 Standard X chromosomes of D. pseudoobscura, and from 9 X chromosomes of its two sibling species, Drosophila persimilis and Drosophila miranda. There is extensive sequence differentiation between the Sex-Ratio and Standard chromosomal types. The common Standard chromosome is highly polymorphic, while, as expected from either the neutral mutation theory or the selective sweep hypothesis, the rarer Sex-Ratio chromosome has much less within-chromosome nucleotide polymorphism. We estimate that the Standard and Sex-Ratio chromosomes in D. pseudoobscura diverged between 700,000 and 1.3 Mya, or at least 2 million generations ago. The clustering of D. pseudoobscura Sex-Ratio chromosomes in a neighbor- joining phylogeny indicates a fairly old, monophyletic origin in this species. It appears from these data that Sex-Ratio genes were present prior to the divergence of D. pseudoobscura and D. persimilis and that both the Standard and Sex-Ratio chromosomes of D. persimilis were derived from the Standard chromosome of D. pseudoobscura after the inversion events that isolated the D. pseudoobscura Sex-Ratio chromosome.   相似文献   

12.
The genetic structure of Drosophila pseudoobscura populations was inferred from a nucleotide sequence analysis of a 3.4-kb segment of the alcohol dehydrogenase (Adh) region. A total of 99 isochromosomal strains collected from 13 populations in North and South America were used to determine if any population departed from a neutral model and to estimate levels of gene flow between populations. This study also included the nucleotide sequences from two sibling species, D. persimilis and D. miranda. We estimated the neutral mutation parameter, 4N mu, in synonymous and noncoding sites for 17 subregions of Adh in each of nine populations with sample sizes greater than three. The nucleotide diversity data in the nine populations was tested for departures from an equilibrium neutral model with two statistical tests. The Tajima and the Hudson, Kreitman, Aguade tests showed that each population fails to reject a neutral model. Tests for genetic differentiation between populations fail to show any population substructure among the North American populations of D. pseudoobscura. The nucleotide diversity data is consistent with direct and indirect measures of gene flow that show extensive dispersal between populations of D. pseudoobscura.  相似文献   

13.
Beckenbach AT  Prakash S 《Genetics》1977,87(4):743-761
Recently a number of electrophoretic techniques have been applied to reveal the presence of additional genetic variation among the electrophoretic mobility classes of the highly polymorphic xanthine dehydrogenase (XDH ) and esterase-5 (est-5) loci. We examined the hexokinase loci of Drosophila pseudoobscura and D. persimilis using a variety of techniques to determine whether further allelic variation could be revealed for these much less polymorphic loci and to analyze the nature of the known variation at the hexokinase-1 (hex-1) locus. The following studies were conducted: 135 strains of the two species from six localities were examined with buffer pH ranging from 5.5 to 10.0; 40 strains of D. pseudoobscura and 9 strains of D. persimilis from Mather were studied using starch gel concentrations ranging from 8.5 to 15.5% and were examined for differences in heat stability and reactivity to the thiol reagent pCMSA; strains were also tested for susceptibility to urea denaturation and differences in relative activities. Major findings of the work are: (1) No additional allelic variation could be detected at any of the hexokinase loci by applying these techniques. The finding of abundant hidden genetic variation in XDH and est-5 does not extend to all enzyme loci. (2) Evidence from studies using pCMSA indicates that the hex-1 alleles 0.6, 0.8, 1.0 and 1.2 of the two species form a series of unit charge steps. Since the 0.94 allele of D. persimilis has mobility intermediate between 0.8 and 1.0, it is argued that routine electrophoretic techniques are sensitive to at least some conservative amino acid substitutions. (3) Strong correlations were found at the hex-1 locus between low allelic frequency, reduced relative activity and reduced stability to heat and urea denaturation. Since the three sibling species, D. pseudoobscura, D. persimilis and D. miranda, all appear to share a common high frequency allele (1.0) at that locus, these findings are taken as evidence that the observed allelic frequencies are a result of directional selection and mutation, rather than any form of balancing selection.  相似文献   

14.
Positive and negative selection on indel variation may explain the correlation between intron length and recombination levels in natural populations of Drosophila. A nucleotide sequence analysis of the 3.5 kilobase sequence of the alcohol dehydrogenase (Adh) region from 139 Drosophila pseudoobscura strains and one D. miranda strain was used to determine whether positive or negative selection acts on indel variation in a gene that experiences high levels of recombination. A total of 30 deletion and 36 insertion polymorphisms were segregating within D. pseudoobscura populations and no indels were fixed between D. pseudoobscura and its two sibling species D. miranda and D. persimilis. The ratio of Tajima's D to its theoretical minimum value (D(min)) was proposed as a metric to assess the heterogeneity in D among D. pseudoobscura loci when the number of segregating sites differs among loci. The magnitude of the D/D(min) ratio was found to increase as the rate of population expansion increases, allowing one to assess which loci have an excess of rare variants due to population expansion versus purifying selection. D. pseudoobscura populations appear to have had modest increases in size accounting for some of the observed excess of rare variants. The D/D(min) ratio rejected a neutral model for deletion polymorphisms. Linkage disequilibrium among pairs of indels was greater than between pairs of segregating nucleotides. These results suggest that purifying selection removes deletion variation from intron sequences, but not insertion polymorphisms. Genome rearrangement and size-dependent intron evolution are proposed as mechanisms that limit runaway intron expansion.  相似文献   

15.
There is increasing evidence that closely related species contain many polymorphisms that were present in their common ancestral species. Use of a more distant relative as an outgroup increases the ability to detect such ancestral polymorphisms. We describe a method for further improving estimates of the fraction of polymorphisms that are ancestral, and illustrate this with reference to data on Drosophila pseudoobscura and D. miranda. We also derive formulae for the proportion of fixations arising from ancestral polymorphisms and new mutations, respectively. The results should be useful for tests of selection based on the levels of expected and observed ancestral polymorphisms.  相似文献   

16.
L M King 《Genetics》1998,148(1):305-315
Nucleotide sequences of eight Est-5A and Est-5C genes corresponding to previously sequenced Est-5B genes in Drosophila pseudoobscura were determined to compare patterns of polymorphism and divergence among members of this small gene family. The three esterase genes were also sequenced from D. persimilis and D. miranda for interspecific comparisons. The data provide evidence that gene conversion between loci contributes to polymorphism and to the homogenization of the Est5 genes. For Est-5B, which encodes one of the most highly polymorphic proteins in Drosophila, 12% of the segregating amino acid variants appear to have been introduced via gene conversion from other members of the gene family. Interlocus gene conversion can also explain high sequence similarity, especially at synonymous sites, between Est-5B and Est-5A. Tests of neutrality using interspecific comparisons show that levels of polymorphism conform to neutral expectations at each Est-5 locus. However, McDonald-Kreitman tests based on intraspecific gene comparisons indicate that positive selection on amino acids has accompanied Est-5 gene duplication and divergence in D. pseudoobscura.  相似文献   

17.
18.
R. S. Wells 《Genetics》1996,143(1):375-384
The Gpdh locus was sequenced in a broad range of Drosophila species. In contrast to the extreme evolutionary constraint seen at the amino acid level, the synonymous sites evolve at rates comparable to those of other genes. Gpdh nucleotide sequences were used to infer a phylogenetic tree, and the relationships among the species of the obscura group were examined in detail. A survey of nucleotide polymorphism within D. pseudoobscura revealed no amino acid variation in this species. Applying a modified McDonald-Kreitman test, the amino acid divergence between species in the obscura group does not appear to be excessive, implying that drift is adequate to explain the patterns of amino acid change at this locus. In addition, the level of polymorphism at the Gpdh locus in D. pseudoobscura is comparable to that found at other loci, as determined by a Hudson-Kreitman-Aguade test. Thus, the pattern of nucleotide variation within and between species at the Gpdh locus is consistent with a neutral model.  相似文献   

19.
The divergence of Drosophila pseudoobscura from its close relatives, D. persimilis and D. pseudoobscura bogotana, was examined using the pattern of DNA sequence variation in a common set of 50 inbred lines at 11 loci from diverse locations in the genome. Drosophila pseudoobscura and D. persimilis show a marked excess of low-frequency variation across loci, consistent with a model of recent population expansion in both species. The different loci vary considerably, both in polymorphism levels and in the levels of polymorphisms that are shared by different species pairs. A major question we address is whether these patterns of shared variation are best explained by gene flow or by persistence since common ancestry. A new test of gene flow, based on patterns of linkage disequilibrium, is developed. The results from these, and other tests, support a model in which D. pseudoobscura and D. persimilis have exchanged genes at some loci. However, the pattern of variation suggests that most gene flow, although occurring after speciation began, was not recent. There is less evidence of gene flow between D. pseudoobscura and D. p. bogotana. The results are compared with recent work on the genomic locations of genes that contribute to reproductive isolation between D. pseudoobscura and D. persimilis. We show that there is a good correspondence between the genomic regions associated with reproductive isolation and the regions that show little or no evidence of gene flow.  相似文献   

20.
The alpha-Amylase locus in Drosophila pseudoobscura is a multigene family of one, two or three copies on the third chromosome. The nucleotide sequences of the three Amylase genes from a single chromosome of D. pseudoobscura are presented. The three Amylase genes differ at about 0.5% of their nucleotides. Each gene has a putative intron of 71 (Amy1) or 81 (Amy2 and Amy3) bp. In contrast, Drosophila melanogaster Amylase genes do not have an intron. The functional Amy1 gene of D. pseudoobscura differs from the Amy-p1 gene of D. melanogaster at an estimated 13.3% of the 1482 nucleotides in the coding region. The estimated rate of synonymous substitutions is 0.398 +/- 0.043, and the estimated rate of nonsynonymous substitutions is 0.068 +/- 0.008. From the sequence data we infer that Amy2 and Amy3 are more closely related to each other than either is to Amy1. From the pattern of nucleotide substitutions we reason that there is selection against synonymous substitutions within the Amy1 sequence; that there is selection against nonsynonymous substitutions within the Amy2 sequence, or that Amy2 has recently undergone a gene conversion with Amy1; and that Amy3 is nonfunctional and subject to random genetic drift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号