首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
We have used transient transfections in MM14 skeletal muscle cells, newborn rat primary ventricular myocardiocytes, and nonmuscle cells to characterize regulatory elements of the mouse muscle creatine kinase (MCK) gene. Deletion analysis of MCK 5'-flanking sequence reveals a striated muscle-specific, positive regulatory region between -1256 and -1020. A 206-bp fragment from this region acts as a skeletal muscle enhancer and confers orientation-dependent activity in myocardiocytes. A 110-bp enhancer subfragment confers high-level expression in skeletal myocytes but is inactive in myocardiocytes, indicating that skeletal and cardiac muscle MCK regulatory sites are distinguishable. To further delineate muscle regulatory sequences, we tested six sites within the MCK enhancer for their functional importance. Mutations at five sites decrease expression in skeletal muscle, cardiac muscle, and nonmuscle cells. Mutations at two of these sites, Left E box and MEF2, cause similar decreases in all three cell types. Mutations at three sites have larger effects in muscle than nonmuscle cells; an A/T-rich site mutation has a pronounced effect in both striated muscle types, mutations at the MEF1 (Right E-box) site are relatively specific to expression in skeletal muscle, and mutations at the CArG site are relatively specific to expression in cardiac muscle. Changes at the AP2 site tend to increase expression in muscle cells but decrease it in nonmuscle cells. In contrast to reports involving cotransfection of 10T1/2 cells with plasmids expressing the myogenic determination factor MyoD, we show that the skeletal myocyte activity of multimerized MEF1 sites is 30-fold lower than that of the 206-bp enhancer. Thus, MyoD binding sites alone are not sufficient for high-level expression in skeletal myocytes containing endogenous levels of MyoD and other myogenic determination factors.  相似文献   

9.
10.
11.
Isolated chicken myoblasts had previously been utilized in many studies aiming at understanding the emergence and regulation of the adult myogenic precursors (satellite cells). However, in recent years only a small number of chicken satellite cell studies have been published compared to the increasing number of studies with rodent satellite cells. In large part this is due to the lack of markers for tracing avian myogenic cells before they become terminally differentiated and express muscle-specific structural proteins. We previously demonstrated that myoblasts isolated from fetal and adult chicken muscle display distinct schedules of myosin heavy-chain isoform expression in culture. We further showed that myoblasts isolated from newly hatched and young chickens already possess the adult myoblast phenotype. In this article, we report on the use of polyclonal antibodies against the chicken myogenic regulatory factor proteins MyoD and myogenin for monitoring fetal and adult chicken myoblasts as they progress from proliferation to differentiation in culture. Fetal-type myoblasts were isolated from 11-day-old embryos and adult-type myoblasts were isolated from 3-week-old chickens. We conclude that fetal myoblasts express both MyoD and myogenin within the first day in culture and rapidly transit into the differentiated myosin-expressing state. In contrast, adult myoblasts are essentially negative for MyoD and myogenin by culture Day 1 and subsequently express first MyoD and then myogenin before expressing sarcomeric myosin. The delayed MyoD-to-myogenin transition in adult myoblasts is accompanied by a lag in the fusion into myotubes, compared to fetal myoblasts. We also report on the use of a commercial antibody against the myocyte enhancer factor 2A (MEF2A) to detect terminally differentiated chicken myoblasts by their MEF2+ nuclei. Collectively, the results support the hypothesis that fetal and adult myoblasts represent different phenotypic populations. The fetal myoblasts may already be destined for terminal differentiation at the time of their isolation, and the adult myoblasts may represent progenitors that reside in an earlier compartment of the myogenic lineage.  相似文献   

12.
Satellite cells from adult rat muscle coexpress proliferating cell nuclear antigen and MyoD upon entry into the cell cycle, suggesting that MyoD plays a role during the recruitment of satellite cells. Moreover, the finding that muscle regeneration is compromised in MyoD-/- mice, has provided evidence for the role of MyoD during myogenesis in adult muscle. In order to gain further insight into the role of MyoD during myogenesis in the adult, we compared satellite cells from MyoD-/- and wildtype mice as they progress through myogenesis in single-myofiber cultures and in tissue-dissociated cell cultures (primary cultures). Satellite cells undergoing proliferation and differentiation were traced immunohistochemically using antibodies against various regulatory proteins. In addition, an antibody against the mitogen-activated protein kinases ERK1 and ERK2 was used to localize the cytoplasm of the fiber-associated satellite cells regardless of their ability to express specific myogenic regulatory factor proteins. We show that during the initial days in culture the myofibers isolated from both the MyoD-/- and the wildtype mice contain the same number of proliferating, ERK+ satellite cells. However, the MyoD-/- satellite cells continue to proliferate and only a very small number of cells transit into the myogenin+ state, whereas the wildtype cells exit the proliferative compartment and enter the myogenin+ stage. Analyzing tissue-dissociated cultures of MyoD-/- satellite cells, we identified numerous cells whose nuclei were positive for the Myf5 protein. In contrast, quantification of Myf5+ cells in the wildtype cultures was difficult due to the low level of Myf5 protein present. The Myf5+ cells in the MyoD-/- cultures were often positive for desmin, similar to the MyoD+ cells in the wildtype cultures. Myogenin+ cells were identified in the MyoD-/- primary cultures, but their appearance was delayed compared to the wildtype cells. These "delayed" myogenin+ cells can express other differentiation markers such as MEF2A and cyclin D3 and fuse into myotubes. Taken together, our studies suggest that the presence of MyoD is critical for the normal progression of satellite cells into the myogenin+, differentiative state. It is further proposed that the Myf5+/MyoD- phenotype may represent the myogenic stem cell compartment which is capable of maintaining the myogenic precursor pool in the adult muscle.  相似文献   

13.
Porcine satellite cells represent an ideal model system for studying the cellular and molecular basis regulating myogenic stem cell proliferation and differentiation and for exploring the experimental conditions for myoblast transplantation. Here, we investigated the effects of mechano growth factor (MGF), a spliced variant of the IGF-1 gene, on porcine satellite cells. We show that MGF potently stimulated proliferation while inhibited differentiation of porcine satellite cells. MGF-treatment acutely down-regulates the expression of myogenic determination factor (MyoD) and the cyclin-dependent kinase inhibitor p21. MGF-treatment also markedly reduced the overall expression of cyclin B1 and key factors of the myogenic regulatory and myocyte enhancer families, including Myogenein and MEF2A. Taken together, the gene expression data from MGF-treated porcine satellite cells are in favor of a molecular model in which MGF inhibits porcine satellite cell differentiation by down-regulating either the activity or expression of MyoD, which, in turn, suppresses the expression of key genes required for cell cycle progression and differentiation, such as p21, Myogenin, and MEF2. Overall, our findings are in support of the previous suggestion that MGF may be used in vivo and in vitro to promote proliferation of myogenic stem cells to prevent and treat age-related muscle degenerative diseases.  相似文献   

14.
In vivo studies in the mouse have revealed that the muscle promoter of the mouse dystrophin gene can target the right ventricle of the heart only, suggesting the need for other regulatory elements to target the skeletal muscle as well as other compartments of the heart. In this study we report the identification of the mouse dystrophin gene enhancer that is located approximately 8.5 kilobases downstream from the mouse dystrophin gene muscle promoter. The enhancer was tested in myogenic G8, H9-C2, and nonmyogenic 3T3 cell lines and is mostly active in G8 myotubes. Sequence analysis of the mouse dystrophin gene enhancer revealed the presence of four E-boxes numbered E1-E4, a putative mef-2 binding site, and a serum response element. Site-directed mutagenesis studies have shown that E-boxes 1, 2, and 3 as well as the serum response element are required for enhancer activity. Gel shift analysis revealed two binding activities at binding sites E1 and E3 which were specific to myotubes, and supershift assays confirmed that myoD binds at both these sites. Our study also shows that werum response factor binds the serum response element but in myoblasts and fibroblasts only, suggesting that serum response factor may repress enhancer function.  相似文献   

15.
MyoD is a skeletal muscle-specific protein that is able to induce myogenesis in a wide variety of cell types. In this report, we show that MyoD is a DNA binding protein capable of specific interaction with two regions of the mouse muscle creatine kinase gene upstream enhancer, both of which are required for full muscle-specific enhancer activity. MyoD shares antigenicity and DNA binding specificity with MEF1, a myocyte-specific DNA binding factor. The contiguous basic and myc homology regions of MyoD that are necessary and sufficient for specific DNA interaction are the same regions of the protein required to convert 10T1/2 fibroblasts into muscle. These findings suggest that the biological activity of MyoD is mediated via its capacity for specific DNA interaction.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号