首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Substantial evidence from the animal kingdom shows that there is a trade-off between benefits and costs associated with rapid somatic growth. One would therefore expect growth rates under natural conditions to be close to an evolutionary optimum. Nevertheless, natural selection in many salmonid species appears to be toward larger size and earlier emergence from spawning redds, indicating a potential for increased growth rate to evolve. We tested how selection for genetic variants (growth hormone transgenic coho salmon, Oncorhynchus kisutch, with more than doubled daily growth rate potential relative to wild genotypes) depended on predator timing and food abundance during the early period of life (fry stage). In artificial redds, fry of the fast-growing genotypes showed a highly significant developmental shift, emerging from gravel nests approximately two weeks sooner, but with an 18.6% reduced survival, relative to wild-genotype fry. In seminatural streams, fry of the fast-growing genotypes suffered higher predation than those of wild genotypes when predators were present at the time of fry emergence, but this difference was less pronounced when food was scarce. In streams where predators were introduced after emergence, fry survived equally well regardless of food availability. Surviving fry grew faster in habitats provided with more food, and fast-growing genotypes also grew faster than wild genotypes when predators arrived late and food was abundant. Fewer fish migrated downstream past a waterfall when food availability was high and in the presence of predators, and wild-genotype fry were more likely to migrate than fry of the fast-growing genotypes. After being returned to the experimental streams after migration, fast-growing genotypes survived equally well as those of the same genotypes that did not migrate, whereas migrating wild genotypes experienced higher mortality relative to those of the same genotypes that did not migrate. Comparisons of growth rates between siblings retained under hatchery conditions and those from habitats with the fastest growth in the experimental stream revealed that growth rates were similar for wild genotypes in both environments, whereas the fast-growing genotypes in the streams only realized 90% of their growth potential. The present study has shown that a major shift in developmental timing can alter critical early stages affecting survival and can have a significant effect on fitness. Furthermore, ecological conditions such as food abundance and predation pressure can strongly influence the potential for fast-growing variants to survive under natural conditions. The large-scale removal of many predatory species around the world may augment the evolution of increased intrinsic growth rates in some taxa.  相似文献   

2.
Summary In Crystal Lake, British Columbia, small fry (15 mm SL) of the threespine stickleback (Gasterosteus aculeatus) are concentrated in vegetation while larger fry are not. Because fry in all size classes feed primarily on zooplankton, even when in vegetation, we hypothesized that size-limited predation was responsible for the observed shift in habitat use with size. The major predators on fry in Crystal Lake are adult threespine stickleback, the water scorpion, Ranatra sp. (Hemiptera: Nepidae), backswimmers, Notonecta spp. (Hemiptera: Notonectidae), and dragonfly naiads of the genus Aeshna (Odonata: Aeschnidae). On the basis of distribution and hunting behavior we excluded the insects Ranatra sp., and Notonecta sp. as causal agents for this shift in resource by fry in water >0.25 m deep. Ranatra was found almost exclusively near the shoreline in water <0.25 m deep, and both insects hunted primarily as ambush predators within vegetation. Such predators seemed more likely to drive vulnerable fry from vegetation than to restrict them to it. In contrast, Aeshna naiads and adult stickleback frequently hunted outside of vegetation. In prey preference experiments the naiads did not show the decline in predation efficiency on fry >15 mm SL that would be expected if size-limited predation by this insect was responsible for the observed shift in resource use by fry. Adult stickleback only fed on fry <15 mm SL, and in an experimental situation, consumed fry at a rate 10 times greater than that exhibited by any of the insects. Predation experiments demonstrated that small fry (11–15 mm) spent more time in vegetation in the presence of adult conspecifics than they did in control pools, as would be expected if size-limited cannibalism caused small, vulnerable fry to be restricted to vegetation. Fry >15 mm SL were found outside of vegetation more often than in control treatments. The probable cause of this result is that adults become aggressive toward fry at this size, and often could be seen chasing large fry from vegetation during the experiments. Dragonfly naiads (Aeshna spp.) spent most of their time in vegetation in the experimental pools. Both size classes of fry spent less time in vegetation in the presence of dragonfly naiads than they did in control treatments, an apparent reflection of their similar vulnerabilities to these naiads. The presence of vegetation in pools reduced predation rates by adult stickleback on small fry. Because the experiments presented here indicate that fry are capable of rapidly assessing predation risk and of altering their behavior adaptively, we conclude that small fry occupy vegetation as a refuge from cannibalism. Once fry have reached the size-threshold at which they are no longer vulnerable to adult conspecifics they are able to forage farther from vegetation thereby reducing risk of predation by insects in vegetation and possibly acquiring more abundant food resources.  相似文献   

3.
ABSTRACT.
  • 1 Once pupal diapause had been terminated, over-wintering cabbage root fly (Delia radicum (L.)) pupae from Wellesbourne required a further 14 days at 20°C for most of the flies to emerge.
  • 2 There were considerable variations in the rates of fly emergence from thirteen populations of cabbage root fly pupae collected between latitudes 50° 42′ and 54° 59′ in England and Wales. These thirteen populations could be grouped into early-, intermediate- and late-emerging types. In the early-emerging type, flies emerged within 14 days at 20°C whereas in the late-emerging type emergence was protracted and was completed only after 100 days at 20°C in one population from Halsall, Lancashire. In the intermediateemerging type, approximately two-thirds of the flies emerged within 14 days at 20° C, the remainder taking considerably longer.
  • 3 The intermediate-emerging types could be just mixtures of the early- and late-emerging types.
  • 4 Subjecting pupae to diapause-breaking temperatures (4°C) for up to 1 year failed to shorten the time to subsequent fly emergence in any of the populations.
  • 5 Populations of early, intermediate- and late-emerging fies could be selected from a parental population, heterogeneous with respect to emergence, within one generation.
  • 6 The type of emergence that occurred in a locality was not correlated with latitude.
  • 7 Any models developed for forecasting the most appropriate time to apply insecticide in a locality will have to include information about the emergence pattern of the fly population in that locality.
  相似文献   

4.
Circadian rhythms play a crucial role in the health and survival of organisms. However, little is known concerning how intrinsic and extrinsic factors affect animal daily rhythms in the field, especially in nocturnal animals. Here, we investigated the first emergence, mid‐emergence, and return times of Vespertilio sinensis, and also integrated environmental conditions (temperature, humidity, and light intensity) and biotic factors (reproductive status and predation risk) to determine causes of variation in the activity rhythms of the bats. We found that variation in the first emergence time, the mid‐emergence time, and the final return time were distinct. The results demonstrated that the emergence and return times of bats were affected by light intensity, reproductive status, and predation risk in a relatively complex pattern. Light intensity had the greatest contribution to activity rhythms. Moreover, we first investigated the effects of actual predators on the activity rhythms of bats; the results showed that the mid‐emergence time of bats was earlier as predators were hunting, but the final return time was later when predators were present. Finally, our results also highlighted the importance of higher energy demands during the lactation in bats to variation in activity rhythms. These results improve our understanding of the patterns and causes of variation in activity rhythms in bats and other nocturnal animals.  相似文献   

5.
Captive-reared fish often have poor survival in the wild and may fail to boost threatened populations. Enrichment during the nursery period can in some circumstances generate a broader behavioural repertoire than conventional hatchery production. Yet, we do not know if enrichment promotes survival after release into the wild. We conducted a field experiment during three field seasons using age 0+ year Atlantic salmon Salmo salar to investigate if enrichment during rearing, in the form of structural complexity (shelters), reduced immediate (within 2 days after release) predation mortality by piscine predators (brown trout Salmo trutta) and if such rearing environments improved long-term (2–3 months after release) post-release survival. In addition, we investigated if predation mortality of released fry was size-selective. S. salar fry were reared in a structurally enriched environment or in a conventional rearing environment and given otolith marks using alizarin during the egg stage to distinguish between enriched and conventionally-reared fry. The outcome from the field experiments showed that structural enrichment did not consistently reduce immediate predation mortality and it did not improve, or had a negative effect on, the recapture rate of fry from the river 2–3 months after release. The data also showed that enriched rearing tended to reduce growth. Additionally, we found that S. trutta predators fed on small individuals of the released fry. Overall, the data suggest that structural enrichment alone is not sufficient to improve long-term survival of hatchery-reared fish after release and that other factors might affect post-release survival.  相似文献   

6.
There is persistent commercial interest in the use of growth modified fishes for shortening production cycles and increasing overall food production, but there is concern over the potential impact that transgenic fishes might have if ever released into nature. To explore the ecological consequences of transgenic fish, we performed two experiments in which the early growth and survival of growth-hormone transgenic rainbow trout (Oncorhynchus mykiss) were assessed in naturalized stream mesocosms that either contained predators or were predator-free. We paid special attention to the survival bottleneck that occurs during the early life-history of salmonids, and conducted experiments at two age classes (first-feeding fry and 60 days post-first-feeding) that lie on either side of the bottleneck. In the late summer, the first-feeding transgenic trout could not match the growth potential of their wild-type siblings when reared in a hydrodynamically complex and oligotrophic environment, irrespective of predation pressure. Furthermore, overall survival of transgenic fry was lower than in wild-type (transgenic = 30% without predators, 8% with predators; wild-type = 81% without predators, 31% with predators). In the experiment with 60-day old fry, we explored the effects of the transgene in different genetic backgrounds (wild versus domesticated). We found no difference in overwinter survival but significantly higher growth by transgenic trout, irrespective of genetic background. We conclude that the high mortality of GH-transgenic trout during first-feeding reflects an inability to sustain the basic metabolic requirements necessary for life in complex, stream environments. However, when older, GH-transgenic fish display a competitive advantage over wild-type fry, and show greater growth and equal survival as wild-type. These results demonstrate how developmental age and time of year can influence the response of genotypes to environmental conditions. We therefore urge caution when extrapolating the results of GH-transgenesis risk assessment studies across multiple life-history or developmental stages.  相似文献   

7.
Gravid and barren Daphnia pulex were exposed to a variety of predators in laboratory aquaria. Small fish (guppies, sticklebacks and shiner fry) consistently preferred the gravid females, establishing the existence of a behavioural cost of reproduction. However, no such cost was associated with predation by more efficient visual predators (sunfish) or by nonvisual predators (hydras), and the excess of gravid females eaten by backswimmers was found to be attributable to their distribution in the water column. Moreover, the cost associated with predation by small fish was observed only when the Daphnia were presented against a light background, and was abolished when a dark background was substituted. In a further series of experiments with guppies we attempted to show that each egg added to the brood caused a decrease in survival; in two such experiments survival rate was related to body size but not to fecundity, while in a third the effect of body size did not appear, and a negative correlation between survival and fecundity could be demonstrated. Although these experiments unambiguously demonstrate a cost of reproduction they also illustrate the elusiveness of the phenomenom and emphasize the need to develop theories which specify the type and magnitude of costs generated by different ways of life.  相似文献   

8.
High nest predation is one of the factors potentially driving farmland bird declines, particularly in the case of ground-nesting species. Accordingly, recent calls have been made to address predation in agri-environment schemes, but this is hindered by limited understanding of how processes operating at different scales affect predation patterns and how additional factors such as livestock trampling contribute to reduced nest survival. Using an artificial nest experiment, we assessed how field management, landscape composition and configuration, and the abundance of potential avian predators and mammalian carnivores affected predation and trampling rates in grassland fields (pastures and fallows) embedded in intensive Mediterranean farmland. Mean predation and trampling rates per field were 0.18?±?0.23 SD and 0.12?±?0.17 SD, respectively. However, there was strong spatial variation, with high nest losses (>50 %) occurring in about one quarter of the fields. Variation in failure rates was mainly related to livestock grazing and predator abundances, while the effects of landscape context were negligible. Predation and trampling rates were highest in fields with short swards. Predation rate was positively related to the abundance of Egyptian mongooses and dogs. To increase nest survival, agri-environment schemes designed for ground-nesting birds should contribute for maintaining low stocking density. Further evaluation is required on the need for controlling populations of fast-expanding generalist predators such as mongooses.  相似文献   

9.
We examined the effect of predation by the backswimmer (Notonecta undulata; Hemiptera: Notonectidae), competition by zooplankton and snails, and both predation and competition on the survival and development time of larval Anopheles quadrimaculatus mosquitoes in experimental mesocosms. We found that both predation and interspecific competition greatly reduced the survivorship of larvae and the number of larvae emerging into adulthood. Treatments with both predators and competitors had fewer larvae transitioning among instars and into adulthood but not in an additive way. In addition, mosquito larvae in the presence of predators and competitors took two days longer to emerge than where predators and competitions were absent. Our work provides evidence that biotic interactions, such as predation and competition, can strongly regulate the number of mosquito larvae by reducing the number of larvae that survive through instars and to emergence and by increasing the generation time.  相似文献   

10.
Parental investment in unrelated offspring is potentially maladaptive but may be promoted by natural selection if the presence of foreign young enhances the survival of the parents' own young. We experimentally augmented broods of free-ranging convict cichlids (Cichlasoma nigrofasciatum) to test whether survival of the adopting parents' young (fry) increases, in relation to that of control broods, after the addition of smaller foreign fry, and whether such an increase can be attributed to the effect of brood dilution acting alone or to a combination of brood dilution and the effect of differential predation on adopted young. Total fry survival did not differ between experimental (E) broods and control (C) broods, but E broods had significantly more large (host) fry after 5 days and 10 days than C broods did. In E broods, small (foreign) fry suffered higher rates of predation than large fry, indicating differential predation. In E broods starting at 7.0 and 7.5 mm standard length (SL), observed fry mortalities did not differ significantly from mortalities expected from the effect of brood dilution. However, E broods starting at 8.0 mm SL had significantly lower mortalities than expected, indicating that parents that adopt smaller foreign fry can increase the survival of their own fry by the combined effects of brood dilution and differential predation. Within E broods, growth of smaller foreign fry was significantly slower than that of larger host fry, suggesting that intra-brood agonistic behaviour affects access to food for smaller fry. Therefore, increased predation and reduced growth are two negative effects that act on fry of donor parents.  相似文献   

11.
Interspecific relationships between Atlantic salmon and coho salmon were studied at early life stages in laboratory and semi-natural stream channels. During emergence, the survival and dispersal patterns were similar for the two species in single or mixed populations. Survival of Atlantic salmon fry was reduced in the presence of older coho fry. However, no predation was observed. Microdistribution differed between the two species, with Atlantic salmon fry more numerous in riffles when coho were present.
Coho juveniles had a pelagic and gregarious distribution, in contrast to the benthic behaviour of the Atlantic salmon. In laboratory streams, Atlantic salmon fry moved out or adopted a subordinate cryptic behaviour which allowed them to escape predation while negatively affecting their growth.  相似文献   

12.
Although predation avoidance is the most commonly invoked explanation for vertebrate social evolution, there is little evidence that individuals in larger groups experience lower predation rates than those in small groups. We compare the morphological and behavioural traits of mammal prey species in the Taï forest, Ivory Coast, with the diet preferences of three of their non-human predators: leopards, chimpanzees and African crowned eagles. Individual predators show marked differences in their predation rates on prey species of different body sizes, but clear patterns with prey behaviour were apparent only when differences in prey habitat use were incorporated into the analyses. Leopard predation rates are highest for terrestrial species living in smaller groups, whereas eagle predation rates are negatively correlated with group size only among arboreal prey. When prey predation rates are summed over all three predators, terrestrial species incur higher predation rates than arboreal species and, within both categories, predation rates decline with increasing prey group size and decreasing density of groups in the habitat. These results reveal that it is necessary to consider anti-predator strategies in the context of a dynamic behavioural interaction between predators and prey.  相似文献   

13.
ABSTRACT.
  • 1 Emergence of cabbage root fly, Delia radicum (L.), from overwintering populations of puparia collected from twenty-one sites in south-west Lancashire, was extremely variable.
  • 2 The patterns of emergence indicated that there were two extreme biotypes, one with early- and the other with late-emerging flies. There was also evidence of an intermediate biotype, tending more to early than to late emergence.
  • 3 This gradient of biotypes, or clinal divergence, was maintained by populations breeding at different times and by females mating close to their sites of emergence. Non-dispersive females then perpetuated their genotype within their own locality.
  • 4 The time of emergence was not obviously associated with the type of host-crop on which larvae had developed.
  • 5 The late-emerging biotype was most prevalent around Halsall. The minimum distance between populations of the late- and the early-emerging biotypes was 16 km. 20 km south-east from Halsall only half of the fly population was early-emerging, possibly a result of a displacement of the Halsall biotype by the prevailing NW wind.
  • 6 Regional-based forecasts will need to take into account the emergence characteristics of the populations to predict the peak periods of cabbage root fly activity adequately in south-west Lancashire and other areas where emergence patterns differ.
  相似文献   

14.
Group living can provide individuals with several benefits, including cooperative vigilance and lower predation rates. Individuals in larger groups may be less vulnerable to predation due to dilution effects, efficient detection or greater ability to repel predators. Individuals in smaller groups may consequently employ alternative behavioural tactics to compensate for their greater vulnerability to predators. Here, we describe how pied babbler (Turdoides bicolor) fledging age varies with group size and the associated risk of nestling predation. Nestling predation is highest in smaller groups, but there is no effect of group size on fledgling predation. Consequently, small groups fledge young earlier, thereby reducing the risk of predation. However, there is a cost to this behaviour as younger fledglings are less mobile than older fledglings: they move shorter distances and are less likely to successfully reach the communal roost tree. The optimal age to fledge young appears to depend on the trade-off between reduced nestling predation and increased fledgling mobility. We suggest that such trade-offs may be common in species where group size critically affects individual survival and reproductive success.  相似文献   

15.
Gómez  José M. 《Plant Ecology》2004,172(2):287-297
This study investigates the effect of microhabitat and seed burial on the main demographic processes operating during the early recruitment of Quercus ilex, such as postdispersal seed predation, seed germination, and seedling emergence, survival and growth. The effect of burial was positive over all the processes analysed in this study, since predation rate was lower (63.6% vs. 88%), whereas germination (53.1% vs. 21.8%) and emergence (32.0% vs. 5.5%) were higher for buried acorns. The quality of some microhabitats remained similar throughout the stages and processes studied. Thus, afforestation provided especially suitable microhabitats for oak establishment, since seed predation was lower, while germination, emergence and seedling survival were higher, than in any other microhabitat. By contrast, the quality of some microhabitats, such as open sites and Holm oaks, differed between recruitment stages. Acorns in open sites escaped predation and germinated easily, but most seedlings died due to summer drought. Similarly, although acorns under Holm oaks can germinate and survive drought, they cannot survive to postdispersal predators. This uncoupling results in a post-dispersal change in the spatial distribution of Q. ilex recruits. Furthermore, there were significant interactions between burial and microhabitat for some demographic processes. The recruitment was in afforestations high irrespective of burial, suggesting that burial is not as beneficial in high-quality habitats as it is in lower-quality ones. An accurate understanding of plant recruitment requires the determination not only of the direct effects of limiting factors but also the potential interactions occurring between them.  相似文献   

16.
Predation can have strong direct and indirect effects on the behavior of prey. We investigated whether predation by chain pickerel (Esox niger) caused adult eastern mosquitofish (Gambusia holbrooki) to alter their habitat use and whether pickerel predation influenced survival of adult and neonate mosquitofish. The number of adult mosquitofish using the riskier of three habitats was lowest when two predators occupied the risky habitat, intermediate in the treatment with one predator, and highest when no predators occurred there. More mosquitofish neonates survived high predation treatments than treatments lacking pickerel. We conclude that pickerel predation causes adult mosquitofish to shift to refuge habitats. The pattern of neonate survival suggests that adult habitat use may create a refuge from cannibalism for neonate mosquitofish, resulting in higher neonate survival in treatments with more pickerel. Hence, pickerel predation has a direct effect on adult mosquitofish behavior and a strong indirect effect on neonate survival. Both interspecific and intraspecific predation can effect prey populations and can interact to produce important indirect effects.  相似文献   

17.
Feeding by marine fish larvae: developmental and functional responses   总被引:10,自引:0,他引:10  
Synopsis The relationship between prey consumption rate and prey concentration (functional response), and its change with growth (developmental response) were examined in the laboratory for three species of marine fish larvae: bay anchovy Anchoa mitchilli (Engraulidae), sea bream Archosargus rhomboidalis (Sparidae) and lined sole Achirus lineatus (Soleidae). The major objective was to determine relative predatory abilities of the larvae by fitting feeding rate data to developmental and functional response models. Feeding success, prey capture success, attack rates, handling times and search rates were estimated. Prey consumption rates and attack rates of bay anchovy usually were highest, but at the lowest prey level (50 per liter) first-feeding sea bream larvae had the highest consumption rate. Sea bream could consume prey at near-maximum rates at prey levels lower than those required by the other species. As larvae grew, time searching per attack decreased rapidly for all species, especially at low prey levels. Handling time also decreased, but most rapidly for bay anchovy. Search rates were highest for bay anchovy and lowest for lined sole. Bay anchovy had the best apparent predation ability, but when previous results on larval growth rates, survival rates and growth efficiencies were considered, sea bream larvae were the most efficient predators and the least likely of the three species to be limited by low prey levels.  相似文献   

18.
This study examined the role of generalist predators in producing higher mortality ofPlutella xylostella L. (Plutellidae) larvae on glossy vs. normal-wax cabbage,Brassica oleracea var.capitata L. To test this, survival and feeding ofP. xylostella were measured on individually caged glossy and normal-wax plants with and without each of three generalist predators,Chrysoperla carnea (Stephens) (Chrysopidae),Orius insidiosus (Say) (Anthocoridae), andHippodamia convergens Guerin-Meneville (Coccinellidae). In the greenhouse, predators always significantly reduced survival ofP. xylostella larvae on glossy plants, but never on normal-wax plants. In the field, predators significantly reducedP. xylostella survival on glossy plants, but onlyC. carnea was effective on normal-wax plants. In similar experiments with excised leaves,O. insidiosus andC. carnea were more effective predators on the glossy leaves, whileH. convergens was equally effective on both kinds of leaves. Patterns for feeding were similar, but significance levels differed from those forP. xylostella survival. The greater effectiveness of predators on glossy plants is apparently due to the reported improved mobility of these animals on glossy leaf surfaces. The data also suggest that reduced mining byP. xylostella exposes the larvae to more predation on glossy plants and contributes some to the resistance. Regardless of the mechanism, resistance toP. xylostella on glossyB. oleracea appears to depend on the action of generalist predators for its full expression. This dependence on predation must be considered in the development and deployment of glossy insect-resistantB. oleracea.  相似文献   

19.
We studied the effects of predation and oviposition activity on reproductive success of a late-season moth, Epirrita autumnata by exposing adult females and eggs to predation in their natural habitat in two successive years. Daily survival rates of adult females ranged from 0.4 to 0.8, average being 0.7. Most predation occurred during nights and was caused by harvestmen and other invertebrate predators. Avian predation did not have an effect on adult survival rates, most likely because of the lateness of E. autumnata flight season. Eggs were also preyed upon by invertebrate predators, although a notable proportion of egg mortality was attributable to causes other than predation. Daily survival rates of eggs were more than 0.99. Using modeling based on empirical data on eclosion of female adults, their oviposition behavior and survival rates of adults and eggs, the daily survival rates were translated into population level consequences. Adult predation was estimated to decrease reproductive success of non-outbreaking E. autumnata by 60–85 percent and egg mortality by 20–40 percent. Predation on adult lepidopterans is a mortality factor potentially as relevant as predation in any other life history stage and thus, should not be ignored in studies of population regulation.  相似文献   

20.
Poor reproductive success driven by nest and chick predation severely limits the population recovery of waders breeding on lowland wet grassland. Managing predation requires knowledge of the predators and because these can be grouped into nocturnal or diurnal hunters, detecting the timing of predation can help assess their relative impacts. Wader nest studies investigating the timing of egg predation have identified nocturnal mammals, primarily Red Foxes Vulpes vulpes, as the most important nest predators, but quantifying predator importance for highly mobile wader chicks is more difficult. Manual radiotelemetry can detect whether chicks are alive but cannot detect the time of predation, and predator identity can be determined only in the few cases where remains are recovered. As an alternative we used automatic radio tracking stations (ARTS) to constantly record the signals and predation timing of 179 radiotagged Lapwing Vanellus vanellus chicks, combining this with manual telemetry, inference about predator identity from predated remains and site‐level Fox, mustelid and avian predator activity monitoring. This approach succeeded in detecting the time of predation for 60% of the 155 chicks that were predated. Diurnal chick predation accounted for a larger number of predation events, but nocturnal predation was more intensive in terms of predation likelihood per hour. Mammalian predation during both day and night had a larger impact on chick survival than did avian predation. Raptors were primarily responsible for predation by birds and Foxes for predation by mammals, with Foxes also having a larger influence on daily chick predation rates than other predators. Chick predation increased seasonally, implying that earlier‐hatching breeding attempts are more likely to be successful. Higher Fox, raptor and mustelid activity resulted in higher proportions of chicks being predated by those predators, so quantifying the activity of those three predator groups on a site could be a quicker alternative to studying chicks when investigating which predator species to target with site‐specific predation management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号