首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ubiquinone complement of Rhodobacter capsulatus chromatophore membranes has been characterized by its isooctane solvent extractability and electrochemistry; we find that the main ubiquinone pool (Qpool) amounts to about 80% of the total ubiquinone and has an Em7 value close to 90 mV. To investigate the interactions of ubiquinone with the cyt bc1 complex, we have examined the distinctive EPR line shapes of the [2Fe-2S] cluster of the cyt bc1 complex when the Qpool-cyt bc1 complex interactions are modulated by changing the numbers of Q or QH2 present (by solvent extraction and reconstitution), by the exposure of the [2Fe-2S] to the Qpool in different redox states, by the presence of inhibitors specific for the Qo site (myxothiazol and stigmatellin) and Qi site (antimycin), and by site-specific mutations of side chains of the cyt b polypeptide (mutants F144L and F144G) previously identified as important for Qo site structure. Evidence suggests that the Qo site can accommodate two ubiquinone molecules. One (designated Qos) is bound relatively strongly and is second only to the ubiquinone of the QA site of the reaction center in its resistance to solvent extraction. In this strong interaction, the Qo site binds Q and QH2 with approximately equal affinities. Their bound states are distinguished by their effects on the [2Fe-2S] cluster spectral feature at gx at 1.783 (Q) and gx at 1.777 (QH2); titration of the line-shape change reveals an Em7 value of approximately 95 mV. The other molecule (Qow) is bound more weakly, in the same range as the ubiquinone of the QB site of the reaction center. Again, the affinities of the Q form (gx at 1.800) and QH2 form (gx at 1.777) are nearly equal, and the Em7 value measured is approximately 80 mV. These results are discussed in terms of earlier EPR analyses of the cyt bc1 complexes of other systems. A Qo site double-occupancy model is considered that builds on the previous model based on Qo site mutants [Robertson, D. E., Daldal, F.,& Dutton, P. L. (1990) Biochemistry 29, 11249-11260] and includes the recent suggestion that two of the [2F3-2S] cluster ligands of the R. capsulatus cyt bc1 complex are histidines [Gurbiel, R. J. Ohnishi, T., Robertson, D. E. Daldal, F., & Hoffman, B. M. (1991) Biochemistry 30, 11579-11584]. We speculate that the cyt bc1 complex complexes a full enzymatic turnover without necessary exchange of ubiquinone with the Qpool.  相似文献   

2.
Diphenylamine (DPA), a known inhibitor of polyene and isoprene biosynthesis, is shown to inhibit flash-activatable electron transfer in photosynthetic membranes of Rhodobacter capsulatus. DPA is specific to the QO site of ubihydroquinone:cytochrome c oxidoreductase, where it inhibits not only reduction of the [2Fe-2S]2+ cluster in the FeS subunit and subsequent cytochrome c reduction but also heme bL reduction in the cytochrome b subunit. In both cases, the kinetic inhibition constant (Ki) is 25 +/- 10 microM. A novel aspect of the mode of action of DPA is that complete inhibition is established without disturbing the interaction between the reduced [2Fe-2S]+ cluster and the QO site ubiquinone complement, as observed from the electron paramagnetic resonance (EPR) spectral line shape of the reduced [2Fe-2S] cluster, which remained characteristic of two ubiquinones being present. These observations imply that DPA is behaving as a noncompetitive inhibitor of the QO site. Nevertheless, at higher concentrations (>10 mM), DPA can interfere with the QO site ubiquinone occupancy, leading to a [2Fe-2S] cluster EPR spectrum characteristic of the presence of only one ubiquinone in the QO site. Evidently, DPA can displace the more weakly bound of the two ubiquinones in the site, but this is not requisite for its inhibiting action.  相似文献   

3.
The primary energy conversion (QO) site of the cytochrome bc 1 complex is flanked by bothhigh- and low-potential redox cofactors, the [2Fe–2S] cluster and cytochrome b L, respectively.From the sensitivity of the reduced [2Fe–2S] cluster electron paramagnetic resonance (EPR)spectral g x-band and line shape to the degree and type of QO site occupants, we have proposeda double-occupancy model for the QO site by ubiquinone in Rhodobacter capsulatus membranevesicles containing the cytochrome bc 1 complex. Biophysical and biochemical experimentshave confirmed the double occupancy model and from a combination of these results and theavailable cytochrome bc 1 crystal structures we suggest that the two ubiquinone molecules inthe QO site serve distinct catalytic roles. We propose that the strongly bound ubiquinone,termed QOS, is close to the [2Fe–2S] cluster, where it remains tightly associated with the QOsite during turnover, serving as a catalytic cofactor; and the weaker bound ubiquinone, QOW,is distal to the [2Fe–2S] cluster and can exchange with the membrane Qpool on a time scalemuch faster than the turnover, acting as the substrate. The crystallographic data demonstratesthat the FeS subunit can adopt different positions. Our own observations show that theequilibrium position of the reduced FeS subunit is proximal to the QO site. On the basis of this, wealso report preliminary results modeling the electron transfer reactions that can occur in thecytochrome bc 1 complex and show that because of the strong distance dependence of electrontransfer, significant movement of the FeS subunit must occur in order for the complex to beable to turn over at the experimental observed rates.  相似文献   

4.
A key issue concerning the primary conversion (Q(O)) site function in the cytochrome bc(1) complex is the stoichiometry of ubiquinone/ubihydroquinone occupancy. Previous evidence suggests that the Q(O) site is able to accommodate two ubiquinone molecules, the double occupancy model [Ding, H., Robertson, D. E., Daldal, F., and Dutton, P. L. (1992) Biochemistry 31, 3144-3158]. In the recently reported crystal structures of the cytochrome bc(1) complex, no electron density was identified in the Q(O) site that could be ascribed to ubiquinone. To provide further insight into this issue, we have manipulated the cytochrome bc(1) complex Q(O) site occupancy in photosynthetic membranes from Rhodobacter capsulatus by using inhibitor titrations and ubiquinone extraction to modulate the amount of ubiquinone bound in the site. The nature of the Q(O) site occupants was probed via the sensitivity of the reduced [2Fe-2S] cluster electron paramagnetic resonance (EPR) spectra to modulation of Q(O) site occupancy. Diphenylamine (DPA) and methoxyacrylate (MOA)-stilbene are known Q(O) site inhibitors of the cytochrome bc(1) complex. Addition of stoichiometric concentrations of MOA-stilbene or excess DPA to cytochrome bc(1) complexes with natural levels of ubiquinone elicits the same change in the [2Fe-2S] cluster EPR spectra; the g(x)() resonance broadens and shifts from 1. 800 to 1.783. This is exactly the same signal as that obtained when there is only one ubiquinone present in the Q(O) site. Furthermore, addition of MOA-stilbene or DPA to the cytochrome bc(1) complex depleted of ubiquinone does not alter the [2Fe-2S] cluster EPR spectral line shapes, which remain indicative of one ubiquinone or zero ubiquinones in the Q(O) site, with broad g(x)() resonances at 1. 783 or 1.765, respectively. The results are quite consistent with the Q(O) site double occupancy model, in which MOA-stilbene and DPA inhibit by displacing one, but not both, of the Q(O) site ubiquinones.  相似文献   

5.
This review is focused on the mechanism of ubiquinol oxidation by the cytochrome bc1 complex (bc1). This integral membrane complex serves as a "hub" in the vast majority of electron transfer chains. The bc1 oxidizes a ubiquinol molecule to ubiquinone by a unique "bifurcated" reaction where the two released electrons go to different acceptors: one is accepted by the mobile redox active domain of the [2Fe-2S] iron-sulfur Rieske protein (FeS protein) and the other goes to cytochrome b. The nature of intermediates in this reaction remains unclear. It is also debatable how the enzyme prevents short-circuiting that could happen if both electrons escape to the FeS protein. Here, I consider a reaction mechanism that (i) agrees with the available experimental data, (ii) entails three traits preventing the short-circuiting in bc1, and (iii) exploits the evident structural similarity of the ubiquinone binding sites in the bc1 and the bacterial photosynthetic reaction center (RC). Based on the latter congruence, it is suggested that the reaction route of ubiquinol oxidation by bc1 is a reversal of that leading to the ubiquinol formation in the RC. The rate-limiting step of ubiquinol oxidation is then the re-location of a ubiquinol molecule from its stand-by site within cytochrome b into a catalytic site, which is formed only transiently, after docking of the mobile redox domain of the FeS protein to cytochrome b. In the catalytic site, the quinone ring is stabilized by Glu-272 of cytochrome b and His-161 of the FeS protein. The short circuiting is prevented as long as: (i) the formed semiquinone anion remains bound to the reduced FeS domain and impedes its undocking, so that the second electron is forced to go to cytochrome b; (ii) even after ubiquinol is fully oxidized, the reduced FeS domain remains docked to cytochrome b until electron(s) pass through cytochrome b; (iii) if cytochrome b becomes (over)reduced, the binding and oxidation of further ubiquinol molecules is hampered; the reason is that the Glu-272 residue is turned towards the reduced hemes of cytochrome b and is protonated to stabilize the surplus negative charge; in this state, this residue cannot participate in the binding/stabilization of a ubiquinol molecule.  相似文献   

6.
Structural analysis of the bc(1) complex suggests that the extra membrane domain of iron-sulfur protein (ISP) undergoes substantial movement during the catalytic cycle. Binding of Qo site inhibitors to this complex affects the mobility of ISP. Taking advantage of the difference in the pH dependence of the redox midpoint potentials of cytochrome c(1) and ISP, we have measured electron transfer between the [2Fe-2S] cluster and heme c(1) in native and inhibitor-treated partially reduced cytochrome bc(1) complexes. The rate of the pH-induced cytochrome c(1) reduction can be estimated by conventional stopped-flow techniques (t1/2, 1-2 ms), whereas the rate of cytochrome c(1) oxidation is too high for stopped-flow measurement. These results suggest that oxidized ISP has a higher mobility than reduced ISP and that the movement of reduced ISP may require an energy input from another component. In the 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT)-inhibited complex, the rate of cytochrome c(1) reduction is greatly decreased to a t1/2 of approximately 2.8 s. An even lower rate is observed with the stigmatellin-treated complex. These results support the idea that UHDBT and stigmatellin arrest the [2Fe-2S] cluster at a fixed position, 31 A from heme c(1), making electron transfer very slow.  相似文献   

7.
Recent crystallographic and kinetic data have revealed the crucial role of the large scale domain movement of the iron-sulfur subunit [2Fe-2S] cluster domain during the ubihydroquinone oxidation reaction catalyzed by the cytochrome bc(1) complex. Previously, the electron paramagnetic resonance signature of the [2Fe-2S] cluster and its redox midpoint potential (E(m)) value have been used extensively to characterize the interactions of the [2Fe-2S] cluster with the occupants of the ubihydroquinone oxidation (Q(o)) catalytic site. In this work we analyze these interactions in various iron-sulfur subunit mutants that carry mutations in its flexible hinge region. We show that the E(m) increases of the iron-sulfur subunit [2Fe-2S] cluster induced either by these mutations or by the addition of stigmatellin do not act synergistically. Moreover, the E(m) increases disappear in the presence of class I inhibitors like myxothiazol. Because various inhibitors are known to affect the location of the iron-sulfur subunit cluster domain, the measured E(m) value of the [2Fe-2S] cluster therefore reflects its equilibrium position in the Q(o) site. We also demonstrate the existence in this site of a location where the E(m) of the cluster is increased by about 150 mV and discuss its possible implications in term of Q(o) site catalysis and energetics.  相似文献   

8.
The destruction of the Rieske iron-sulfur cluster ([2Fe-2S]) in the bc(1) complex by hematoporphyrin-promoted photoinactivation resulted in the complex becoming proton-permeable. To study further the role of this [2Fe-2S] cluster in proton translocation of the bc(1) complex, Rhodobacter sphaeroides mutants expressing His-tagged cytochrome bc(1) complexes with mutations at the histidine ligands of the [2Fe-2S] cluster were generated and characterized. These mutants lacked the [2Fe-2S] cluster and possessed no bc(1) activity. When the mutant complex was co-inlaid in phospholipid vesicles with intact bovine mitochondrial bc(1) complex or cytochrome c oxidase, the proton ejection, normally observed in intact reductase or oxidase vesicles during the oxidation of their corresponding substrates, disappeared. This indicated the creation of a proton-leaking channel in the mutant complex, whose [2Fe-2S] cluster was lacking. Insertion of the bc(1) complex lacking the head domain of the Rieske iron-sulfur protein, removed by thermolysin digestion, into PL vesicles together with mitochondrial bc(1) complex also rendered the vesicles proton-permeable. Addition of the excess purified head domain of the Rieske iron-sulfur protein partially restored the proton-pumping activity. These results indicated that elimination of the [2Fe-2S] cluster in mutant bc(1) complexes opened up an otherwise closed proton channel within the bc(1) complex. It was speculated that in the normal catalytic cycle of the bc(1) complex, the [2Fe-2S] cluster may function as a proton-exiting gate.  相似文献   

9.
Recent kinetics experiments using mutants of the bc(1) complex (ubihydroquinone-cytochrome c oxidoreductase) iron-sulfur subunit with modified hinge regions have revealed the crucial role played by the large scale movement of its [2Fe-2S] cluster domain during the activity of this enzyme. In particular, one of these mutants (+1Ala) with an insertion of one alanine residue in the hinge region is partially deficient in performing this movement. We found that this defect can be overcome by the appearance of a second mutation substituting the leucine at position 286 in the ef loop of cytochrome b with a phenylalanine. Detailed studies of these mutants and their derivatives revealed that the ef loop acts as a barrier that needs to be crossed for multiple turnovers of the enzyme but not for a single turnover ubihydroquinone oxidation site catalysis. These findings indicate that the movement of the iron-sulfur subunit is composed of two discrete parts: a "micro-movement" at the cytochrome b interface, during which the [2Fe-2S] cluster interacts with ubihydroquinone oxidation site occupants and catalyzes ubihydroquinone oxidation, and a "macro-movement," during which the cluster domain swings away from cytochrome b interface, crosses the ef loop, and reaches a position close to cytochrome c(1) heme, to which it ultimately transfers an electron.  相似文献   

10.
The first crystal structure of an archaeal Rieske iron-sulfur protein, the soluble domain of Rieske iron-sulfur protein II (soxF) from the hyperthermo-acidophile Sulfolobus acidocaldarius, has been solved by multiple wavelength anomalous dispersion (MAD) and has been refined to 1.1 A resolution. SoxF is a subunit of the terminal oxidase supercomplex SoxM in the plasma membrane of S. acidocaldarius that combines features of a cytochrome bc(1) complex and a cytochrome c oxidase. The [2Fe-2S] cluster of soxF is most likely the primary electron acceptor during the oxidation of caldariella quinone by the cytochrome a(587)/Rieske subcomplex. The geometry of the [2Fe-2S] cluster and the structure of the cluster-binding site are almost identical in soxF and the Rieske proteins from eucaryal cytochrome bc(1) and b(6)f complexes, suggesting a strict conservation of the catalytic mechanism. The main domain of soxF and part of the cluster-binding domain, though structurally related, show a significantly divergent structure with respect to topology, non-covalent interactions and surface charges. The divergent structure of soxF reflects a different topology of the soxM complex compared to eucaryal bc complexes and the adaptation of the protein to the extreme ambient conditions on the outer membrane surface of a hyperthermo-acidophilic organism.  相似文献   

11.
Barker CD  Reda T  Hirst J 《Biochemistry》2007,46(11):3454-3464
Complex I (NADH:ubiquinone oxidoreductase) from bovine heart mitochondria contains 45 different subunits and nine redox cofactors. NADH is oxidized by a noncovalently bound flavin mononucleotide (FMN), then seven iron-sulfur clusters transfer the two electrons to quinone, and four protons are pumped across the inner mitochondrial membrane. Here, we use protein film voltammetry to investigate the mechanisms of NADH oxidation and NAD+ reduction in the simplest catalytically active subcomplex of complex I, the flavoprotein (Fp) subcomplex. The Fp subcomplex was prepared using chromatography and contained the 51 and 24 kDa subunits, the FMN, one [4Fe-4S] cluster, and one [2Fe-2S] cluster. The reduction potential of the FMN in the enzyme's active site is lower than that of free FMN (thus, the oxidized state of the FMN is most strongly bound) and close to the reduction potential of NAD+. Consequently, the catalytic transformation is reversible. Electrocatalytic NADH oxidation by subcomplex Fp can be explained by a model comprising substrate mass transport, the Michaelis-Menten equation, and interfacial electron transfer kinetics. The difference between the "catalytic" potential and the FMN potential suggests that the flavin is reoxidized before NAD+ is released or that intramolecular electron transfer from the flavin to the [4Fe-4S] cluster influences the catalytic rate. NAD+ reduction displays a marked activity maximum, below which the catalytic rate decreases sharply as the driving force increases. Two possible models reproduce the observed catalytic waveshapes: one describing an effect from reducing the proximal [2Fe-2S] cluster and the other the enhanced catalytic ability of the semiflavin state.  相似文献   

12.
Cooley JW  Ohnishi T  Daldal F 《Biochemistry》2005,44(31):10520-10532
Multiple instances of low-potential electron-transport pathway inhibitors that affect the structure of the cytochrome (cyt) bc(1) complex to varying degrees, ranging from changes in hydroquinone (QH(2)) oxidation and cyt c(1) reduction kinetics to proteolytic accessibility of the hinge region of the iron-sulfur-containing subunit (Fe/S protein), have been reported. However, no instance has been documented of any ensuing change on the environment(s) of the [2Fe-2S] cluster. In this work, this issue was addressed in detail by taking advantage of the increased spectral and spatial resolution obtainable with orientation-dependent electron paramagnetic resonance (EPR) spectroscopic analysis of ordered membrane preparations. For the first time, perturbation of the low-potential electron-transport pathway by Q(i)-site inhibitors or various mutations was shown to change the EPR spectra of both the cyt b hemes and the [2Fe-2S] cluster of the Fe/S protein. In particular, two interlinked effects of Q(i)-site modifications on the Fe/S subunit, one changing the local environment of its [2Fe-2S] cluster and a second affecting the mobility of this subunit, are revealed. Remarkably, different inhibitors and mutations at or near the Q(i) site induce these two effects differently, indicating that the events occurring at the Q(i) site affect the global structure of the cyt bc(1). Furthermore, occupancy of discrete Q(i)-site subdomains differently impede the location of the Fe/S protein at the Q(o) site. These findings led us to propose that antimycin A and HQNO mimic the presence of QH(2) and Q at the Q(i) site, respectively. Implications of these findings in respect to the Q(o)-Q(i) sites communications and to multiple turnovers of the cyt bc(1) are discussed.  相似文献   

13.
Taylor AM  Stoll S  Britt RD  Jarrett JT 《Biochemistry》2011,50(37):7953-7963
Biotin synthase catalyzes the conversion of dethiobiotin (DTB) to biotin through the oxidative addition of sulfur between two saturated carbon atoms, generating a thiophane ring fused to the existing ureido ring. Biotin synthase is a member of the radical SAM superfamily, composed of enzymes that reductively cleave S-adenosyl-l-methionine (SAM or AdoMet) to generate a 5'-deoxyadenosyl radical that can abstract unactivated hydrogen atoms from a variety of organic substrates. In biotin synthase, abstraction of a hydrogen atom from the C9 methyl group of DTB would result in formation of a dethiobiotinyl methylene carbon radical, which is then quenched by a sulfur atom to form a new carbon-sulfur bond in the intermediate 9-mercaptodethiobiotin (MDTB). We have proposed that this sulfur atom is the μ-sulfide of a [2Fe-2S](2+) cluster found near DTB in the enzyme active site. In the present work, we show that formation of MDTB is accompanied by stoichiometric generation of a paramagnetic FeS cluster. The electron paramagnetic resonance (EPR) spectrum is modeled as a 2:1 mixture of components attributable to different forms of a [2Fe-2S](+) cluster, possibly distinguished by slightly different coordination environments. Mutation of Arg260, one of the ligands to the [2Fe-2S] cluster, causes a distinctive change in the EPR spectrum. Furthermore, magnetic coupling of the unpaired electron with (14)N from Arg260, detectable by electron spin envelope modulation (ESEEM) spectroscopy, is observed in WT enzyme but not in the Arg260Met mutant enzyme. Both results indicate that the paramagnetic FeS cluster formed during catalytic turnover is a [2Fe-2S](+) cluster, consistent with a mechanism in which the [2Fe-2S](2+) cluster simultaneously provides and oxidizes sulfide during carbon-sulfur bond formation.  相似文献   

14.
Two conserved charged amino acids, aspartate-186 and arginine-190, localized in the aqueous head region of the iron-sulfur protein of the cytochrome bc(1) complex of yeast mitochondria, were mutated to alanine, glutamate, or asparagine and isoleucine, respectively. The R190I mutation resulted in the complete loss of antimycin- and myxothiazol-sensitive cytochrome c reductase activity due to loss of more than 60% of the iron-sulfur protein in the complex. Mitochondria isolated from the D186A mutant had a 50% decrease in cytochrome c reductase activity but no loss of the iron-sulfur protein or the [2Fe-2S] cluster. The midpoint potential of the [2Fe-2S] cluster of the D186A mutant was decreased from 281 to 178 mV. The D186E and D186N mutations did not result in a loss of cytochrome c reductase activity or content of iron-sulfur protein; however, the redox potential of the [2Fe-2S] cluster of D186N was decreased from 281 to 241 mV. Molecular modeling/dynamics studies predicted that substituting an alanine for Asp-186 causes global structural changes in the head group of the iron-sulfur protein resulting in changes in the orientation of the [2Fe-2S] cluster and consequently a lowered redox potential. The rate of electrogenic proton pumping in the bc(1) complex isolated from mutant D186A reconstituted into proteoliposomes decreased 64%; however, the H(+)/2e(-) ratio of 1.9 was identical in the mutant and the wild-type complexes. The carboxyl binding reagent, N-(ethoxycarbonyl)-2-ethoxyl-1,2-dihydroquinoline (EEDQ) blocked electrogenic proton pumping in the bc(1) complex reconstituted into proteoliposomes without affecting electron transfer resulting in a decrease in the H(+)/2e(-) ratio to 1.2 and 1.1, respectively. EEDQ was bound to the iron-sulfur protein and core protein II in both the wild type and the D186A mutant, indicating that Asp-186 of the iron-sulfur protein is not required for proton translocation in the bc(1) complex.  相似文献   

15.
The NADP-reducing hydrogenase complex from Desulfovibrio fructosovorans is a heterotetramer encoded by the hndABCD operon. Sequence analysis indicates that the HndC subunit (52 kDa) corresponds to the NADP-reducing unit, and the HndD subunit (63.5 kDa) is homologous to Clostridium pasteurianum hydrogenase. The role of HndA and HndB subunits (18.8 kDa and 13.8 kDa, respectively) in the complex remains unknown. The HndA subunit belongs to the [2Fe-2S] ferredoxin family typified by C. pasteurianum ferredoxin. HndA is organized into two independent structural domains, and we report in the present work the NMR structure of its C-terminal domain, HndAc. HndAc has a thioredoxin-like fold consisting in four beta-strands and two relatively long helices. The [2Fe-2S] cluster is located near the surface of the protein and bound to four cysteine residues particularly well conserved in this class of proteins. Electron exchange between the HndD N-terminal [2Fe-2S] domain (HndDN) and HndAc has been previously evidenced, and in the present studies we have mapped the binding site of the HndDN domain on HndAc. A structural analysis of HndB indicates that it is a FeS subunit with 41% similarity with HndAc and it contains a possible thioredoxin-like fold. Our data let us propose that HndAc and HndB can form a heterodimeric intermediate in the electron transfer between the hydrogenase (HndD) active site and the NADP reduction site in HndC.  相似文献   

16.
Structures of mitochondrial bc1 complex have been reported based on four different crystal forms by three different groups. In these structures, the extrinsic domain of the Rieske [2Fe-2S] protein, surprisingly, appeared at three different positions: the "c1" position, where the [2Fe-2S] cluster exists in close proximity to the heme c1; the "b" position, where the [2Fe-2S] cluster exist in close proximity to the cytochrome b; and the "intermediate" position where the [2Fe-2S] cluster exists in-between "c1" and "b" positions. The conformational changes between these three positions can be explained by a combination of two rotations; (1) a rotation of the entire extrinsic domain and (2) a relative rotation between the cluster-binding fold and the base fold within the extrinsic domain. The hydroquinone oxidation and the electron bifurcation mechanism at the Q(P) binding pocket of the bc1 complex is well explained using these conformational changes of the Rieske [2Fe-2S] protein.  相似文献   

17.
Transfer of electron from quinol to cytochrome c is an integral part of catalytic cycle of cytochrome bc1. It is a multi-step reaction involving: i) electron transfer from quinol bound at the catalytic Qo site to the Rieske iron-sulfur ([2Fe-2S]) cluster, ii) large-scale movement of a domain containing [2Fe-2S] cluster (ISP-HD) towards cytochrome c1, iii) reduction of cytochrome c1 by reduced [2Fe-2S] cluster, iv) reduction of cytochrome c by cytochrome c1.In this work, to examine this multi-step reaction we introduced various types of barriers for electron transfer within the chain of [2Fe-2S] cluster, cytochrome c1 and cytochrome c. The barriers included: impediment in the motion of ISP-HD, uphill electron transfer from [2Fe-2S] cluster to heme c1 of cytochrome c1, and impediment in the catalytic quinol oxidation. The barriers were introduced separately or in various combinations and their effects on enzymatic activity of cytochrome bc1 were compared. This analysis revealed significant degree of functional flexibility allowing the cofactor chains to accommodate certain structural and/or redox potential changes without losing overall electron and proton transfers capabilities. In some cases inhibitory effects compensated one another to improve/restore the function. The results support an equilibrium model in which a random oscillation of ISP-HD between the Qo site and cytochrome c1 helps maintaining redox equilibrium between all cofactors of the chain. We propose a new concept in which independence of the dynamics of the Qo site substrate and the motion of ISP-HD is one of the elements supporting this equilibrium and also is a potential factor limiting the overall catalytic rate.  相似文献   

18.
Reda T  Barker CD  Hirst J 《Biochemistry》2008,47(34):8885-8893
NADH:ubiquinone oxidoreductase (complex I) is the first enzyme of the mitochondrial electron transport chain. It contains a flavin mononucleotide to oxidize NADH, and eight iron-sulfur clusters. Seven of them transfer electrons between the flavin and the quinone-binding site, and one is on the opposite side of the flavin. Although most information about their properties is from EPR, the spectra from only five clusters have been observed, and it is difficult to match them to the structurally defined clusters. Here, we analyze complex I from bovine mitochondria reacted with a very low potential reductant, to impose a potential approaching -1 V. We compare the spectra with those from higher potentials and from the 24 kDa subunit and flavoprotein subcomplex, and model the spectra by starting from those with fewer components and building the complexity gradually. Spectrum N1a, from the 24 kDa subunit [2Fe-2S] cluster, is not observed in bovine complex I at any potential. Spectrum N1b, from the 75 kDa subunit [2Fe-2S] cluster, exhibits a lower potential than the N3, N4 and N5 spectra of three [4Fe-4S] clusters. In the lowest potential spectra an N5-type spectrum is observed at unusually high temperature (indicating a significant change to the cluster, or that two clusters have very similar g values), the relaxation rate of N1b increases (indicating that a nearby cluster has become reduced) and a new feature with an apparent g value of 2.16 suggests an interaction between two reduced clusters. The consequences of these observations for electron transfer in complex I are discussed.  相似文献   

19.
Darrouzet E  Daldal F 《Biochemistry》2003,42(6):1499-1507
The ubihydroquinone:cytochrome (cyt) c oxidoreductase, or bc(1) complex, and its homologue the b(6)f complex are key components of respiratory and photosynthetic electron transport chains as they contribute to the generation of an electrochemical gradient used by the ATP synthase to produce ATP. The bc(1) complex has two catalytic domains, ubihydroquinone oxidation (Q(o)) and ubiquinone reduction (Q(i)) sites, that are located on each side of the membrane. The key to the energetic efficiency of this enzyme relies upon the occurrence of a unique electron bifurcation reaction at its Q(o) site. Recently, several lines of evidence have converged to establish that in the bc(1) complex the extrinsic domain of the Fe-S subunit that contains a [2Fe2S] metal cluster moves during catalysis to shuttle electrons between the Q(o) site and c(1) heme. While this step is required for electron bifurcation, available data also suggest that the movement might be controlled to ensure maximal energetic efficiency [Darrouzet et al. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 4567-4572]. To gain insight into the plausible control mechanism, we used a biochemical genetic approach to define the different regions of the bc(1) complex that might interact with each other. Previously, we found that a mutation located at position L286 of the ef loop of Rhodobacter capsulatus cyt b could alleviate movement impairment resulting from a mutation in the hinge region, linking the [2Fe2S] cluster domain to the membrane anchor of the Fe-S subunit. Here we report that various substitutions at position 288 on the opposite side of the ef loop also impair Q(o) site catalysis. In particular, we note that while most of the substitutions affect only QH(2) oxidation, yet others like T288S also hinder the rate of the movement of the Fe-S subunit. Thus, position 288 of cyt b appears to be important for both the QH(2) oxidation and the movement of the Fe-S subunit. Moreover, we found that, upon substitution of T288 by other amino acids, additional compensatory mutations located at the [2Fe2S] cluster or the hinge domains of the Fe-S subunit, or on the cd loop of cyt b, arise readily to alleviate these defects. These studies indicate that intimate protein-protein interactions occur between cyt b and the Fe-S subunits to sustain fast movement and efficient QH(2) oxidation and highlight the critical dual role the ef loop of cyt b to fine-tune the docking and movement of the Fe-S subunit during Q(o) site catalysis.  相似文献   

20.
L Zhang  C Snyder  B L Trumpower  L Yu  C A Yu 《FEBS letters》1999,460(2):349-352
Based on the high electron transfer rate between the [2Fe-2S] cluster and heme c(1) and the elevation of the redox midpoint potential of iron sulfur protein (ISP) upon binding of certain Qo inhibitors, the binding rate constants of stigmatellin and UHDBT to the cytochrome bc(1) complex were determined using a stopped-flow rapid scanning technique. Assuming that the intramolecular electron transfer from ISP to cytochrome c(1) is much faster than the binding of inhibitors, the rate of the inhibitor binding can be determined by the rate of cytochrome c(1) oxidation. The binding rate constants were calculated to be 1.0x10(5) and 2.3x10(5) M(-1) s(-1) at pH 7.5 for stigmatellin and UHDBT, respectively. The binding rate constant of UHDBT is pH dependent and that of stigmatellin is not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号