首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
OsAMT is a high-affinity ammonium transporter responsible for NH 4 + uptake by rice plants. To investigate the expression patterns of OsAMT in different genotypes in relation to nitrogen accumulation, we measured the expression of OsAMT1.1, OsAMT1.2, and OsAMT1.3 using Real-Time PCR (RT-PCR) in GD (higher N accumulation) and NG (lower N accumulation) seedlings of the Oryza sativa L. cultivar treated with 0.1 mM NH4NO3 and 2 mM NH4NO3. We found that the expression level of OsAMT1.1 was significantly higher than those of OsAMT1.2 and OsAMT1.3 in the roots treated with 0.1 mM NH4NO3, suggesting that OsAMT1.1 contributed the most to N accumulation among the three genes. In GD root, OsAMT1.1 had significantly higher expression levels when it was up-regulated by 0.1 mM NH4NO3 than when down-regulated by 2 mM NH4NO3. OsAMT1.1 was mainly found in GD roots treated with 0.1 mM NH4NO3. We conclude that the OsAMT1.1 in GD roots, which was significantly up-regulated by low N and down-regulated by high N, was the dominating factor in determining the higher N acquisition in GD than in NG at 0.1 mM NH4NO3.  相似文献   

2.
The carbon and nitrogen partitioning characteristics of wheat (Triticum aestivum L.) and maize (Zea mays L.) grown hydroponically at a constant pH on either 4 mM or 12 mM NO3 - or NH4 + nutrition were investigated using either 14C or 15N techniques. Greater allocation of 14C to amino-N fractions occurred at the expense of allocation of 14C to carbohydrate fractions in NH4 +-compared to NO3 --fed plants. The [14C]carbohydrate:[14C]amino-N ratios were 1.5-fold and 2.0-fold greater in shoots and roots respectively of 12 mM NO3 --compared to 12 mM NH4 +-fed wheat. In both 4 mM and 12 mM N-fed maize the [14C]carbohydrate:[14C]amino-N ratios were approximately 1.7-fold and 2.0-fold greater in shoots and roots respectively of NO3 --compared to NH4 +-fed plants. Similar results were observed in roots of wheat and maize grown in split-root culture with one root-half in NO3 --and the other in NH4 +-containing nutrient media. Thus the allocation of carbon to the amino-N fractions occurred at the expense of carbohydrate fractions, particularly within the root. Allocation of 14N and 15N within separate sets of plants confirmed that NH4 --fed plants accumulated more amino-N compounds than NO3 --fed plants. Wheat roots supplied with 15NH4 + for 8 h were found to accumulate 15NH4 + (8.5 g 15N g-1 h-1) whereas in maize roots very little 15NH4 + accumulated (1.5 g 15N g-1 h-1)It is proposed that the observed accumulation of 15NH4 + in wheat roots in these experiments is the result of limited availability of carbon within the roots of the wheat plants for the detoxification of NH4 +, in contrast to the situation in maize. Higher photosynthetic capacity and lower shoot: root ratios of the C4 maize plants ensure greater carbon availability to the root than in the C3 wheat plants. These differences in carbon and nitrogen partitioning between NO3 --and NH4 +-fed wheat and maize could be responsible for different responses of wheat and maize root growth to NO3 - and NH4 + nutrition.  相似文献   

3.
The uptake of 15NO3 - and 15NH4 + has been examined in 5-,10- and 28-day-old micropropagated strawberry (Fragaria x ananassa Duch. cv. Kent) shoots rooted in one-half strength Murashige and Skoog (MS) liquid medium on cellulose plugs (Sorbarods). The results indicated that the plantlets absorbed both NO3 - and NH4 + during the culture with a greater uptake of NH4 + at 5 days of culture. Furthermore, a pronounced reduction in NO3 - and NH4 + uptake at 10 and 28 days of culture was observed within 6 h of the short-term uptake study. This reduction could be explained by the low CO2 concentration in test tubes during the photoperiod, since no reduction in nitrogen uptake occurred in the CO2 enriched condition. The results are interpreted as an indication of the important role for photosynthetic CO2 fixation in the process of nitrogen uptake by the plantlets during the rooting stage.Contribution No. CRH 82, Centre de Recherche en Horticulture, F.S.A.A., Université Laval, Québec.  相似文献   

4.
The author studied the effect of different nickel concentrations (0, 0.4, 40 and 80 μM Ni) on the nitrate reductase (NR) activity of New Zealand spinach (Tetragonia expansa Murr.) and lettuce (Lactuca sativa L. cv. Justyna) plants supplied with different nitrogen forms (NO3 –N, NH4 +–N, NH4NO3). A low concentration of Ni (0.4 μM) did not cause statistically significant changes of the nitrate reductase activity in lettuce plants supplied with nitrate nitrogen (NO3 –N) or mixed (NH4NO3) nitrogen form, but in New Zealand spinach leaves the enzyme activity decreased and increased, respectively. The introduction of 0.4 μM Ni in the medium containing ammonium ions as a sole source of nitrogen resulted in significantly increased NR activity in lettuce roots, and did not cause statistically significant changes of the enzyme activity in New Zealand spinach plants. At a high nickel level (Ni 40 or 80 μM), a significant decrease in the NR activity was observed in New Zealand spinach plants treated with nitrate or mixed nitrogen form, but it was much more marked in leaves than in roots. An exception was lack of significant changes of the enzyme activity in spinach leaves when plants were treated with 40 μM Ni and supplied with mixed nitrogen form, which resulted in the stronger reduction of the enzyme activity in roots than in leaves. The statistically significant drop in the NR activity was recorded in the aboveground parts of nickel-stressed lettuce plants supplied with NO3 –N or NH4NO3. At the same time, there were no statistically significant changes recorded in lettuce roots, except for the drop of the enzyme activity in the roots of NO3 -fed plants grown in the nutrient solution containing 80 μM Ni. An addition of high nickel doses to the nutrient solution contained ammonium nitrogen (NH4 +–N) did not affect the NR activity in New Zealand spinach plants and caused a high increase of this enzyme in lettuce organs, especially in roots. It should be stressed that, independently of nickel dose in New Zealand spinach plants supplied with ammonium form, NR activity in roots was dramatically higher than that in leaves. Moreover, in New Zealand spinach plants treated with NH4 +–N the enzyme activity in roots was even higher than in those supplied with NO3 –N.  相似文献   

5.
To characterize ammonium transport pathways in rice, two cDNAs with high homology to MEP/AMT2-type ammonium transporters, OsAMT2;1 and OsAMT3;1, were isolated. Expression of OsAMT2;1 in an ammonium-uptake-defective yeast mutant showed that this gene encodes functional ammonium transporters. OsAMT2;1 was constitutively expressed in both roots and shoots irrespective of the supply of inorganic nitrogen to the medium, whereas OsAMT3;1 expression was relatively weak. A database search with the amino acid sequence of OsAMT2;1 showed that there are 10 putative OsAMT genes in rice, i.e. three each for OsAMT1, OsAMT2 and OsAMT3, respectively, and one for OsAMT4.  相似文献   

6.
Rooting of Eucalyptus globulus shoots was influenced by the concentration of the indole butyric acid (IBA) and NH4 + in the root-induction medium. Optimum plantlet vigor and survival were achieved using low concentrations (1 – 2.5 μM) of IBA and when NH4NO3 was removed. Removal of NH4 + also had a significant effect on medium pH, its presence caused a decrease in pH as the culture period proceeded. When different nitrate compounds (excluding NH4NO3) were used as the nitrogen source, the medium pH was more stable and this was associated with higher root production. The higher root production, in association with appropriate IBA concentrations, produced plantlets with higher survival and better growth on transfer to soil. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Growth of the green algae Chlamydomonas reinhardtii and Chlorella sp. in batch cultures was investigated in a novel gas-tight photobioreactor, in which CO2, H2, and N2 were titrated into the gas phase to control medium pH, dissolved oxygen partial pressure, and headspace pressure, respectively. The exit gas from the reactor was circulated through a loop of tubing and re-introduced into the culture. CO2 uptake was estimated from the addition of CO2 as acidic titrant and O2 evolution was estimated from titration by H2, which was used to reduce O2 over a Pd catalyst. The photosynthetic quotient, PQ, was estimated as the ratio between O2 evolution and CO2 up-take rates. NH4 +, NO2 , or NO3 was the final cell density limiting nutrient. Cultures of both algae were, in general, characterised by a nitrogen sufficient growth phase followed by a nitrogen depleted phase in which starch was the major product. The estimated PQ values were dependent on the level of oxidation of the nitrogen source. The PQ was 1 with NH4 + as the nitrogen source and 1.3 when NO3 was the nitrogen source. In cultures grown on all nitrogen sources, the PQ value approached 1 when the nitrogen source was depleted and starch synthesis became dominant, to further increase towards 1.3 over a period of 3–4 days. This latter increase in PQ, which was indicative of production of reduced compounds like lipids, correlated with a simultaneous increase in the degree of reduction of the biomass. When using the titrations of CO2 and H2 into the reactor headspace to estimate the up-take of CO2, the production of O2, and the PQ, the rate of biomass production could be followed, the stoichiometrical composition of the produced algal biomass could be estimated, and different growth phases could be identified.  相似文献   

8.
以5份不同种源的菘蓝为材料,采用田间小区试验,设置不施氮(CK)、硝态氮(NO3--N)、铵态氮(NH4+-N)、NH4+-N/NO3--N=75/25、NH4+-N/NO3--N=50/50、NH4+-N/NO3--N=25/75和酰胺态氮等7个处理,分析比较了不同种源植株的靛蓝、靛玉红和总生物碱含量、(R,S)-告依春及多糖含量等指标的差异,为菘蓝栽培生产中氮素的高效利用提供理论参考。结果表明:氮素处理有利于提高山西运城菘蓝和陕西商洛菘蓝叶内靛蓝含量,以及安徽亳州菘蓝和陕西商洛菘蓝叶内的总生物碱含量;NH4+-N/NO3--N=50/50处理对山西运城菘蓝,以及酰胺态氮处理对山西运城菘蓝和陕西商洛菘蓝叶内生物碱类成分的积累均有促进作用;与对照相比,氮素处理亦能有效地提高甘肃张掖菘蓝和陕西商洛菘蓝根内的(R,S)-告依春及安徽亳州菘蓝根内的多糖含量;安徽阜阳菘蓝(R,S)-告依春含量在任一氮处理下均远远高于其他种质菘蓝。研究表明,不同种源菘蓝对氮素处理的响应存在较大的差异,建议生产中综合考虑菘蓝的来源和需肥规律,采用经济有效的施氮组合,以提高其活性成分含量。  相似文献   

9.
To study the regulation of ammonium uptake into rice roots, three ammonium transporter genes (OsAMT1;1, 1;2 and 1;3; Oryza sativa ammonium transporter) were isolated and examined. OsAMT1s belong to AMT1 family, containing 11 putative transmembrane-spanning domains. Southern blot analysis and screening of the rice genome database confirmed that with OsAMT1;1-1;3 the complete AMT1 family of rice had been isolated. Heterologous expression of OsAMT1s in the yeast Saccharomyces cerevisiae mutant 31019b showed that all three OsAMT1s exhibit ammonium transport activity. Northern blot analysis showed a distinct expression pattern for the three genes; more constitutive expression in shoots and roots for OsAMT1;1, root-specific and ammonium-inducible expression for OsAMT1;2, and root-specific and nitrogen-derepressible expression for OsAMT1;3. In situ mRNA detection revealed that OsAMT1;2 is expressed in the central cylinder and cell surface of root tips. This gene expression analysis revealed a distinct nitrogen-dependent regulation for AMTs in rice, differing from that in tomato or ARABIDOPSIS:  相似文献   

10.
The effect of two N-forms (NH4 + and NO3 ) and NaCl on pattern of accumulation of some essential inorganic nutrients was examined in sunflower (Helianthus annuus L.) cv. Hisun 33. Eight-day-old plants of were subjected for 21 d to Hoagland's nutrient solution containing 8 mM N as NH4 + or NO3 ·, and salinized with and addition of NaCl to the growth medium had no significant effect on total leaf N. However, root N of NH4-supplied plants decreased significantly with increase in NaCl concentration, whereas that of NO3-supplied plants remained unaffected. There was no significant effect of NaCl on leaf or root P, but the NO3-supplied plants had significa concentration of leaf P than that of NH4-supplied plants at varying salt treatments. Salinity of the rooting med did not show any significant effect on Na+ concentrations of leaves or roots of plants subjected to two differen N. NH4-treated plants generally had greater concentrations of Cl in leaves and roots and lower K+ content in leaves than NO3-supplied plants. Ca2+ concentrations of leaves and roots and Mg2+ concentrations of leaves decreased in NH4-supplied plants due to NaCl, but they remained unaffected in NO3-treated plants.  相似文献   

11.
12.
Summary This study was conducted to determine the effect of short term application of NH4NO3 on nodule function and to determine whether the rhizobial isolate used was a significant factor in this effect. Pea plants were inoculated with 10 differentRhizobium leguminosarum isolates and grown for 3 weeks in N-free medium before addition of 0, 1, 2 or 5 mM NH4NO3 for 2 to 7 days. Acetylene reduction and leghemoglobin content decreased with increasing exposure time to NH4NO3 and with increasing concentration of NH4NO3. NH 4 + and NO 3 depletion from the nutrient medium were assayed in plants exposed to 5 mM NH4NO3 and mean uptake rates were similar for each ion. There were significant differences among isolates in the rate of decrease of C2H2 reduction with increasing NH4NO3 concentration (C2H2 reduction responsiveness to NH4NO3) 4 and 7 days after addition of NH4NO3 but no differences after 2 days of exposure to NH4NO3. There were significant differences among isolates in NH 4 + depletion from the nutrient medium but these differences were not correlated with the differences observed in C2H2 reduction. Ranking of the isolates for C2H2 reduction responsiveness to NH4NO3 applied to plants with nodules was different from that obtained when NH4NO3 was applied at seeding. Isolates with varying sensitivity to NH4NO3 may be useful tools for determining the mechanisms responsible for inhibition of symbiotic N2 fixation by combined nitrogen. NRCC paper no. 25863.  相似文献   

13.
Nitrogen (N) is a major factor for plant development and productivity. However, the application of nitrogenous fertilizers generates environmental and economic problems. To cope with the increasing global food demand, the development of rice varieties with high nitrogen use efficiency (NUE) is indispensable for reducing environmental issues and achieving sustainable agriculture. Here, we report that the concomitant activation of the rice (Oryza sativa) Ammonium transporter 1;2 (OsAMT1;2) and Glutamate synthetase 1 (OsGOGAT1) genes leads to increased tolerance to nitrogen limitation and to better ammonium uptake and N remobilization at the whole plant level. We show that the double activation of OsAMT1;2 and OsGOGAT1 increases plant performance in agriculture, providing better N grain filling without yield penalty under paddy field conditions, as well as better grain yield and N content when plants are grown under N llimitations in field conditions. Combining OsAMT1;2 and OsGOGAT1 activation provides a good breeding strategy for improving plant growth, nitrogen use efficiency and grain productivity, especially under nitrogen limitation, through the enhancement of both nitrogen uptake and assimilation.  相似文献   

14.
康希睿  张涵丹  王小明  陈光才 《生态学报》2020,40(19):6958-6968
森林群落在净化空气、截留沉降污染物、改善地表水质等方面具有重要作用。本研究以北亚热带地区3种典型森林群落(毛竹林、杉木林、青冈阔叶林)为研究对象,通过分析沉降污染物(NH4+-N、NO3--N、NO2--N、TP和SO42-)在大气降水、林内穿透雨、树干茎流、枯透水和地表径流中的浓度和通量变化特征,探讨不同森林群落对氮、磷、硫的截留净化作用和分配特征。结果表明,该区域大气降水中NH4+-N、NO3--N、NO2--N、TP和SO42-年均浓度分别为1.06、0.61、0.04、0.07、1.84 mg/L,其年均pH为5.88;各森林群落林冠层能够调升降雨的pH且全年稳定,对TP和NH4+-N均有吸附作用,截留率分别为79.09%-84.68%和30.88%-69.36%;而枯落物层则是林下氮、磷、硫的主要释放源,对NH4+-N、NO3--N、TP和SO42-均具有淋溶作用;此外,由地表径流(输出)与大气降水(输入)的对比分析可知,各林地对沉降污染物中氮、磷、硫的截留率均超过98%;3种森林群落对沉降污染物中氮、磷、硫的截留能力依次为:青冈阔叶林 > 毛竹林 > 杉木林,阔叶林对沉降污染物的净化能力要高于毛竹林及针叶的杉木林。  相似文献   

15.
Growth, chemical composition, and nitrate reductase activity (NRA) of hydroponically cultured Rumex crispus, R. palustris, R. acetosa, and R. maritimus were studied in relation to form (NH4 +, NO3 -, or both) and level of N supply (4 mM N, and zero-N following a period of 4mM N). A distinct preference for either NH4 + or NO3 - could not be established. All species were characterized by a very efficient uptake and utilization of N, irrespective of N source, as evident from high concentrations of organic N in the tissues and concurrent excessive accumulations of free NO3 - and free NH4 +. Especially the accumulation of free NH4 + was unusually large. Generally, relative growth rate (RGR) was highest with a combination of NH4 + and NO3 -. Compared to mixed N supply, RGR of NO3 -- and NH4 +-grown plants declined on average 3% and 9%, respectively. Lowest RGR with NH4 + supply probably resulted from direct or indirect toxicity effects associated with high NH4 + and/or low Ca2+ contents of tissues. NRA in NO3 - and NH4NO3 plants was very similar with maxima in the leaves of ca 40 μmol NO2 - g-1 DW h-1. ‘Basal’ NRA levels in shoot tissues of NH4 + plants appeared relatively high with maxima in the leaves of ca 20 μmol NO2 - g-1 DW h-1. Carboxylate to organic N ratios, (C-A)/Norg, on a whole plant basis varied from 0.2 in NH4 + plants to 0.9 in NO3 - plants. After withdrawal of N, all accumulated NO3 - and NH4 + was assimilated into organic N and the organic N redistributed on a large scale. NRA rapidly declined to similar low levels, irrespective of previous N source. Shoot/root ratios of -N plants were 50–80% lower than those from +N plants. In comparison with +N, RGR of -N plants did not decline to a large extent, decreasing by only 15% in -NH4 + plants due to very high initial organic-N contents. N-deprived plants all exhibited an excess cation over anion uptake (net proton efflux), and whole-plant (C-A)/Norg ratios increased to values around unity. Possible difficulties in interpreting the (C-A)/Norg ratio and NRA of plants in their natural habitats are briefly discussed.  相似文献   

16.
The aim of this research was to test whether NH4 + and NO3 affect the growth, P demand, cell composition and N2 fixation of Cylindrospermopsis raciborskii under P limitation. Experiments were carried out in P-limited (200 μg l−1 PO4-P) chemostat cultures of C. raciborskii using an inflowing medium containing either 4,000 μg l−1 NH4-N, 4,000 μg l−1 NO3-N or no combined N. The results showed the cellular N:P and C:P ratios of C. raciborskii decreased towards the Redfield ratio with increasing dilution rate (D) due to the alleviation of P limitation. The cellular C:N and carotenoids:chlorophyll-a ratios also decreased with D, predominantly as a result of an increase in the chlorophyll-a and N content. The NH4 + and NO3 supply reduced the P maintenance cell quota of C. raciborskii. Consequently, the biomass yield of the N2-grown culture was significantly lower. The maximum specific growth rate of N2-grown culture was also the lowest observed. It is suggested that these differences in growth parameters were caused by the P and energy requirement for heterocyte formation, nitrogenase synthesis and N2 fixation. N2 fixation was partially inhibited by NO3 and completely inhibited by NH4 +. It was probably repressed through the high N content of cells at high dissolved N concentrations. These results indicate that C. raciborskii is able to grow faster and maintain a higher biomass under P limitation where a sufficient supply of NH4 + or NO3 is maintained. Information gained about the species-specific nutrient and pigment stoichiometry of C. raciborskii could help to access the degree of nutrient limitation in water bodies. Handling editor: Luigi Naselli-Flores  相似文献   

17.
A study was conducted to elucidate the effect of N form, either NH4 + or NO3 , on growth and solute composition of the salt-tolerant kallar grass [Leptochloa fusca (L.) Kunth] grown under 10 mM or 100 mM NaCl in hydroponics. Shoot biomass was not affected by N form, whereas NH4 + compared to NO3 nutrition caused an almost 4-fold reduction in the root biomass at both salinity levels. Under NH4 + nutrition, salinity had no effect on the biomass yield, whereas under NO3 nutrition, increasing salinity from 10 mM to 100 mM caused 23% and 36% reduction in the root and shoot biomass, respectively. The reduced root growth under NH4 + nutrition was not attributable to impaired shoot to root C allocation since N form did not affect the overall root sugar concentration and the starch concentration was even higher under NH4 + compared to NO3 nutrition. The low NH4 + (2 mM) and generally higher amino-N concentrations in NH4 +- compared to NO3 -fed plants indicated that the grass was able to effectively detoxify NH4 +. Salinity had no effect on Ca2+ and Mg2+ levels, whereas their concentration in shoots was lower under NH4 + compared to NO3 nutrition (over 66% reduction in Ca2+; over 20% reduction in Mg2+), but without showing deficiency symptoms. Ammonium compared to NO3 nutrition did not inhibit K+ uptake, and the K+-Na+ selectivity either remained unaffected or it was higher under NH4 + than under NO3 nutrition. Results suggested that while NH4 + versus NO3 nutrition substantially reduced root growth, and also strongly modified anion concentrations and to a minor extent concentrations of divalent cations in shoots, it did not influence salt tolerance of kallar grass.  相似文献   

18.
Al stress and ammonium–nitrogen nutrition often coexist in acidic soils due to their low pH and weak nitrification ability. Rice is the most Al-resistant species among small grain cereal crops and prefers NH4 + as its major inorganic nitrogen source. This study investigates the effects of NH4 + and NO3 ? on Al toxicity and Al accumulation in rice, and thereby associates rice Al resistance with its NH4 + preference. Two rice subspecies, indica cv. Yangdao6 and japonica cv. Wuyunjing7, were used in this study. After treatment with or without Al under conditions of varying NH4 + and NO3 ? supply, rice seedlings were harvested for the determination of root elongation, callose content, biomass, Al concentration and medium pH. The results indicated that Wuyunjing7 was more Al-resistant and NH4 +-preferring than Yangdao6. NH4 + alleviated Al toxicity in two cultivars compared with NO3 ?. Both NH4 +-Al supply and pretreatment with NH4 + reduced Al accumulation in roots and root tips compared with NO3 ?. NH4 + decreased but NO3 ? increased the medium pH, and root tips accumulated more Al with a pH increase from 3.5 to 5.5. Increasing the NO3 ? concentration enhanced Al accumulation in root tips but increasing the NH4 + concentration had the opposite effect. These results show NH4 + alleviates Al toxicity for rice and reduces Al accumulation in roots compared with NO3 ?, possibly through medium pH changes and ionic competitive effects. Making use of the protective effect of NH4 +, in which the Al resistance increases, is advised for acidic soils, and the hypothesis that rice Al resistance is associated with the preferred utilization of NH4 + is suggested.  相似文献   

19.
The role of H2O2 in abscisic acid (ABA)-induced NH4+ accumulation in rice leaves was investigated. ABA treatment resulted in an accumulation of NH4+ in rice leaves, which was preceded by a decrease in the activity of glutamine synthetase (GS) and an increase in the specific activities of protease and phenylalanine ammonia-lyase (PAL). GS, PAL, and protease seem to be the enzymes responsible for the accumulation of NH4+ in ABA-treated rice leaves. Dimethylthiourea (DMTU), a chemical trap for H2O2, was observed to be effective in inhibiting ABA-induced accumulation of NH4+ in rice leaves. Inhibitors of NADPH oxidase, diphenyleneiodonium chloride (DPI) and imidazole (IMD), and nitric oxide donor (N-tert-butyl-α-phenylnitrone, PBN), which have previously been shown to prevent ABA-induced increase in H2O2 contents in rice leaves, inhibited ABA-induced increase in the content of NH4+. Similarly, the changes of enzymes responsible for NH4+ accumulation induced by ABA were observed to be inhibited by DMTU, DPI, IMD, and PBN. Exogenous application of H2O2 was found to increase NH4+ content, decrease GS activity, and increase protease and PAL-specific activities in rice leaves. Our results suggest that H2O2 is involved in ABA-induced NH4+ accumulation in rice leaves.  相似文献   

20.
Ammonia-oxidizing bacteria (AOB) populations were studied on the root surface of different rice cultivars by PCR coupled with denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH). PCR-DGGE of the ammonium monooxygenase gene (amoA) showed a generally greater diversity on root samples compared to rhizosphere and unplanted soil. Sequences affiliated with Nitrosomonas spp. tended to be associated with modern rice hybrid lines. Root-associated AOB observed by FISH were found within a discrete biofilm coating the root surface. Although the total abundance of AOB on root biofilms of different rice cultivars did not differ significantly, there were marked contrasts in their population structure, indicating selection of Nitrosomonas spp. on roots of a hybrid cultivar. Observations by FISH on the total bacterial community also suggested that different rice cultivars support different bacterial populations even under identical environmental conditions. The presence of active AOB in the root environment predicts that a significant proportion of the N taken up by certain rice cultivars is in the form of NO3 -N produced by the AOB. Measurement of plant growth of hydroponically grown plants showed a stronger response of hybrid cultivars to the co-provision of NH4 + and NO3 . In soil-grown plants, N use efficiency in the hybrid was improved during ammonium fertilization compared to nitrate fertilization. Since ammonium-fertilized plants actually receive a mixture of NH4 + and NO3 with ratios depending on root-associated nitrification activity, these results support the advantage of co-provision of ammonium and nitrate for the hybrid cultivar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号