首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Free radical research》2013,47(9):1076-1081
Abstract

Binge alcohol consumption in adolescents is increasing, and it has been proposed that immature brain deals poorly with oxidative stress. The aim of our work was to study the effect of an acute dose of ethanol on glutathione (GSH) metabolism in frontal cortex, hippocampus and striatum of juvenile and adult rats. We have observed no change in levels of glutathione produced by acute alcohol in the three brain areas studied of juvenile and adult rats. Only in the frontal cortex the ratio of GSH/GSSG was increased in the ethanol-treated adult rats. GSH levels in the hippocampus and striatum were significantly higher in adult animals compared to young ones. Higher glutathione peroxidase (GPx) activity in adult rats was observed in frontal cortex and in striatum. Our data show an increased GSH concentration and GPx activity in different cerebral regions of the adult rat, compared to the young ones, suggesting that age-related variations of total antioxidant defences in brain may predispose young brain structures to ethanol-induced, oxidative stress-mediated tissue damage.  相似文献   

2.
The effect ofin utero zinc deficiency on fetal development in rats is reviewed. Attention is paid to the primary biochemical lesion associated with zinc-related teratogenesis and special consideration is given to the central nervous system. Evidence is presented that the thymidine kinase salvage pathway, used for the synthesis of thymidine monophosphate in DNA synthesis, is depressed more in fetal brain tissue than in the liver. In addition, greater reliance appears to be placed on this pathway than onde novo synthesis in the fetal brain than in other tissues. Some consideration is given to the use of in vitro embryo culture in studies relating to neurogenesis, but evidence is presented of a greater capacity of explanted rat embryos to obtain zinc from maternal serum than occurs in vivo. The rapid onset of a teratogenic zinc deficiency following dietary zinc restriction is again highlighted and further studies are described which demonstrate the critical impact of a single feeding cycle, of 4 d duration, on maternal plasma zinc levels and on the extent and nature of the observed fetal abnormalities. Evidence is presented that by shifting the timing of the high dietary intake/low plasma zinc peak to coincide with a particular 48 h period between days 6 and 10 of pregnancy, the pattern of malformations thus obtained reflected the coincidence of the high dietary intake of zinc-deficient diet and the critical time of morphogenesis of several organ systems. Whereas diminished plasma zinc levels at term in zinc-deficient animals are generally well correlated with reduced growth and dysmorphogenesis of the offspring, the same is not always found in human studies. In some cases, elevated plasma zinc levels at parturition are found in mothers with growth-retarded children, or vice versa. Experimental studies with rats are reported that suggest that maternal zinc status at term may be higher in dams bearing pups stunted by exposure to a transient zinc deficiency early in pregnancy, which in turn may have reduced the demand for maternal zinc in the later stages of gestation. The protective effect of zinc on cadmium-induced teratogenesis is discussed, particularly in relation to findings concerning an interaction of these metals in the embryonic yolk sac and thus on preplacental embryonic nutrition. Possible interactions between alcohol and zinc deficiency are also considered and data are presented pointing to increased fetotoxicity and teratogenesis in the presence of both treatments and to a more specific interaction with respect to reduced cell numbers in the developing rat hippocampus. Malondialdehyde levels, which reflect the extent of lipid peroxidation in tissue, are reported to be substantially higher in microsomes from fetal rat livers whenin utero deficiency and gestational alcoholism are combined. The suggestion is made that alcohol and zinc deficiency act independently in the body, but overlap to some extent at the common biochemical locus of membrane lipid peroxidation.  相似文献   

3.
Essentiality of selenium (Se) for Japanese quail,Coturnix coturnix japonica, was confirmed using a formulated semipurified low-Se diet (basal) (0.05 ppm). Selenium-deficiency symptoms appeared in quails on this diet within 15 d, which corresponded to low levels of hemolysate glutathione peroxidase (GSH-Px) activity. Selenium administration at 0.05 and 2.0 ppm levels resulted in an increase of hemolysate GSH-Px activity by 64 and 116%, respectively, in both short- and long-term experiments. Growth over a 2-mo period increased the hemolysate GSH-Px activity by 120% at each level of dietary Se. A differential response was exhibited by hepatic mitochondrial and soluble GSH-Px activity to Se supplementation, the former increasing progressively with increments of Se at 0.05, 2.0, and 4.0 ppm by 45, 70 and 150%, respectively. The soluble GSH-Px activities of tissues, such as liver, kidney, and testis, and RBC membrane-bound activity remained unchanged in long-term studies at different levels of Se. Replenishment of Se to quails maintained on low-Se diets reflected no change in RBC membrane-bound and liver-soluble GSH-Px activities, although the activity in hemolysate increased consistently with Se. The GSH-Px activity in hemolysate was restored to the levels comparable to those of long-term studies only at Se administration at the 2.0-ppm level. The differential response of mitochondrial and soluble GSH-Px activities to Se and other related observations on mitochondrial functions suggest an additional role for Se in mitochondrial membrane processes and glutathione-related metabolic regulations.  相似文献   

4.
The incorporation of3H-thymidine into DNA in the brains of the 17-day and 20-day old rat fetuses was significantly reduced by maternal zinc restriction during pregnancy. The activity of the enzyme thymidine kinase (EC 2.7.1.21) was similarly reduced in the zine-deprived fetal brains on days 14 and 20 of gestation, but not on day 17. Fetal brain alkaline phosphatase (EC 3.1.3.1) was significantly depressed by maternal zinc deprivation on days 17 and 20 of pregnancy. The data suggest an association between thymidine kinase and the reduced incorporation of3H-thymidine into DNA in the brains of 20-day old fetuses but not in animals on day 17. Alkaline phosphatase was however depressed at this stage. The suggestion is made that because of the complexity of brain development, future biochemical studies in this area should concern specific structures in the brain at particular critical stages during neurogenesis.  相似文献   

5.
In view of the antioxidant properties of melatonin, the effects of melatonin on the oxidative-antioxidative status of tissues affected by diabetes, e.g. liver, heart and kidneys, were investigated in streptozotocin (STZ)-induced diabetic rats in the present study. Concentrations of malondialdehyde (MDA) and reduced glutathione (GSH), and activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the tissues were compared in three groups of 10 rats each (control non-diabetic rats (group I), untreated diabetic rats (group II) and diabetic rats treated with melatonin (group III)). In the study groups, diabetes developed 3 days after intraperitoneal (i.p.) administration of a single 60 mg kg(-1) dose of STZ. Thereafter, while the rats in group II received no treatment, the rats in group III began to receive a 10 mg kg(-1) i.p. dose of melatonin per day. After 6 weeks, the rats in groups II and III had significantly lower body weights and higher blood glucose levels than the rats in group I (p < 0.001 and p < 0.001, respectively). MDA levels in the liver, kidney and heart of group II rats were higher than that of the control group (p < 0.01, p < 0.05, p < 0.01, respectively) and diabetic rats treated with melatonin (p < 0.05). The GSH, GSH-Px and SOD levels increased in diabetic rats. Treatment with melatonin changed them to near control values. Our results confirm that diabetes increases oxidative stress in many organs such as liver, kidney and heart and indicate the role of melatonin in combating the oxidative stress via its free radical-scavenging and antioxidant properties.  相似文献   

6.
This study determined the effect of in utero hypoxia on fetal heart and brain pro- and antioxidant trace metals. Dunkin-Hartley guinea pigs (50–60 days gestation) were exposed to 1 h hypoxia (7% O2/93% N2) followed by 4 h reoxygenation in room air. Fetal hearts and brains were harvested and analyzed for copper, iron, magnesium and zinc. Fetal brain iron was significantly increased 28% after hypoxia and 35% by 1 h posthypoxia. Fetal brain magnesium demonstrated progressive decreases of 18% by 4 h posthypoxia. No significant effects of hypoxia were observed on heart trace metals. These results indicate that prooxidant metals may be increased and antioxidant metals may be decreased in posthypoxic fetal brain during a time when these tissues may be vulnerable to oxidative injury.  相似文献   

7.
The equilibrium between antioxidant function and oxidative stress is implicated in brain pathology. However, human studies on oxidant and antioxidant markers rely on postmortem tissue that might be affected by pre and postmortem factors. To evaluate the effect of these variables, we tested whether antioxidant enzymes [superoxide dismutase (SOD), catalase] glutathione (GSH) and related enzymes [gamma glutamylcysteine ligase (GCL), GSH peroxidase (GPx), GSH reductase (GR), GSH-S-transferase (GST)] and malondialdehyde (MDA, marker of lipid peroxidation) are affected in postmortem human brains (n = 50) by increase in postmortem interval (2.5–26 h), gender difference and agonal state [based on Glasgow coma scale (GCS): range: 3–15] in different anatomical regions-frontal cortex (FC), cerebellum (CB) medulla oblongata (MO), substantia nigra (SN) and hippocampus (HC). While SOD and catalase activities were relatively unaltered, GR and GPx activities were affected by agonal state (GR in CB, p < 0.05; GPx in MO, p < 0.05) indicating altered GSH dynamics during the secondary events following neuronal injury. MO, SN and HC displayed low GSH compared to FC and CB. Total GSH level was decreased with PMI (MO, p = 0.02) which could be partly attributed to increase in MDA levels with increasing PMI in MO (p < 0.05). Total GSH level was higher in CB (p < 0.017) and MO (p < 0.04) in female brains compared to males. Interestingly, HC and SN regions showed significant stability in most of the markers tested. We suggest that while SOD and catalase were relatively unaffected by the pre and postmortem factors, GSH and its metabolic enzymes were significantly altered and this was more pronounced in MO of postmortem human brains. These data highlight the influence of pre and postmortem factors on GSH dynamics and the inherent differences in brain regions, with implications for studies on brain pathophysiology employing human samples.  相似文献   

8.
The antioxidant activity of some compounds buffer the free radicals generated either endogenously or exogenously, thus decreasing the potential damage mediated by oxidation. Recent studies documented that raloxifene has antioxidant properties in vitro. However, there are limited animal studies available to show raloxifene's antioxidant properties. We aimed to investigate the effects of raloxifene on antioxidant enzymes such as SOD, CAT and GPX, TrxR and the levels of GSH and MDA in heart, liver and brain cortex of ovariectomized female rats. Female Sprague Dawley rats weighing 300-350 g (n=24) were divided into three groups: (I) Eight non-ovariectomized rats were used as naive controls without any treatment (non-ovariectomized group, n=8). Five weeks after ovariectomy, (II) Ovariectomized placebo group (n=8) was given physiological saline, and (III) Raloxifene group (n=8) was given raloxifene 1 mg/kg sc. daily for 12 days. Ovariectomy induced significant increases on SOD, GPX, CAT activity and MDA levels in brain, heart and liver tissues compared to non-ovariectomized rats ( p<0.05). Raloxifene treatment led to decreased levels of SOD activity in heart, GPX activity in brain and CAT activity in liver tissue when compared to ovariectomized group ( p<0.05) but there was no change in activity of TrxR in all groups. The levels of MDA in brain, heart and liver tissues increased in ovariectomized group when compared to non-ovariectomized rats ( p<0.05). Raloxifene had a significant attenuating effect on the levels of MDA in brain and heart tissues. Our results also indicate that the levels of GSH in brain, heart and liver tissue decreased when compared to non-ovariectomized rats. Raloxifene treatment was observed to significantly increase the levels of GSH in brain and heart tissues ( p<0.05). However, there were insignificant differences for the GSH levels in liver tissues of ovariectomized placebo or raloxifene groups. In conclusion, our results demonstrate that raloxifene may be more effective against oxidative stress in heart and brain than in liver tissue.  相似文献   

9.
The present study aimed to determine the effect of estradiol-progesterone supplementation and pinealectomy on lipid peroxidation of liver tissue in ovariectomized rats. The study was carried out on 36 adult Sprague-Dawley female rats, which weighed 200-250 g. The rats were divided into 6 groups: Group 1: Sham Ovariectomy (Sham-Ovx), Group 2: Ovariectomy (Ovx), Group 3: Ovx + Estradiol-Progesterone supplementation (Ovx + H), Group 4: Sham Pinealectomy and Ovx (Sham Pnx -Ovx), Group 5: Ovx -Pnx, Group 6: Ovx -Pnx + H. Malondialdehyde (MDA), reduced form of glutathione (GSH) and glutathione peroxidase (GSH-Px) levels were determined in liver tissue of rats. The highest MDA levels and the lowest GSH-Px levels were determined in the ovariectomized-pinealectomized group, whereas the lowest MDA was in the Sham-Ovx group, and the highest GSH-Px levels were found in the Sham-Ovx and Ovx + Hormone supplemented group. Furthermore, the highest GSH levels were in group 1 and lowest levels were in group 5. The findings of this study demonstrate that ovariectomy led to lipid peroxidation in liver tissues of rats. Pinealectomy in addition to ovariectomy, increases lipid peroxidation, but, estradiol and progesterone supplementations to the ovariectomized-pinealectomized rats protect against lipid peroxidation to a significant extent.  相似文献   

10.
Rats were subjected to bilateral carotid artery occlusion for 30 min, followed by reperfusion for varying time periods. The concentration of reduced and oxidized glutathione, glutathione peroxidase and glutathione reductase were determined in whole brain after varying periods of reperfusion. Lipid peroxidation was also assessed by determining the levels of malondialdehyde (MDA) in the brain. Reperfusion for 1 hr following bilateral carotid artery occlusion resulted in significant decrease in total glutathione (GSH) concentration along with small but significant increase in oxidized glutathione (GSSG) levels. After 4 hr of reperfusion, GSH levels recovered, although GSSG levels remained elevated up to 12 hr of reperfusion. Increase in malondialdehyde levels was also detected in the brain up to 12 hr of reperfusion. Glutathione reductase activity remained significantly low up to 144 hr of reperfusion, while glutathione peroxidase activity remained unaffected. These results demonstrate that oxidative stress is generated in the brain during reperfusion following partial ischemia due to bilateral carotid artery occlusion.  相似文献   

11.
We investigated the possible protective effects of ellagic acid on rat kidneys exposed to nicotine during the fetal period. Twenty pregnant female rats were divided randomly into four groups: control (C), nicotine (N), ellagic acid (EA) and nicotine + ellagic acid (N + EA). Nicotine and ellagic acid treatments were continued throughout the pregnancies and for 15 days after delivery. On day 15, all neonatal pups were sacrificed and their kidneys were removed for biochemical and histopathological examination. The nicotine treatment significantly decreased body weight, total glutathione (GSH), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities, and increased malondialdehyde (MDA) and nitric oxide (NO) levels in the N group compared to controls. EA treatment ameliorated decreased body weight, GSH, GSH-Px and SOD activities, and increased MDA and NO levels in group N + EA compared to group N (p < 0.05). Nicotine caused kidney damage as shown by incomplete development of glomeruli and Bowman's capsules. Nicotine also caused greater apoptosis in group N compared to group C. Ellagic acid treatment produced histological kidney structure that was closer to normal and it exerted an anti-apoptotic effect in the N + EA group compared to the N group. EA played a protective role against nicotine-induced nephrotoxicity and oxidative stress in rats owing to its antioxidant, radical scavenging and anti-apoptotic effects.  相似文献   

12.
13.
The aim of this study was to estimate the activity of glutathione peroxidase (GPx), glutathione reductase (GR), and malondialdehyde (MDA) in erythrocytes in healthy male employees of zinc and lead steelworks who were occupationally exposed to lead over a long period of time (about 15 yr). Workers were divided into two subgroups: the first included employees with low exposure to lead (LL) (n=75) with blood lead level PbB=25–40 μg/dL and the second with high exposure to lead (HL) (n=62) with PbB over 40 μg/dL. Administration workers (n=35) with normal levels of PbB and zinc protoporphyrin in blood (ZPP) in blood were the control group. The activity of GPx significantly increased in LL when compared to the control group (p<0.001) and decreased when compared to the HL group (p=0.036). There were no significant changes in activity of GR in the study population. MDA erythrocyte concentration significantly increased in the HL group compared to the control (p=0.014) and to the LL group (p=0.024). For the people with low exposure to lead (PbB=25–40 μg/dL), the increase of activity of GPx by about 79% in erythrocytes prevented lipid peroxidation and it appears to be the adaptive mechanism against the toxic effect of lead. People with high exposure to lead (with PbB over 40 μg/dL) have shown an increase in MDA concentration in erythrocytes by about 91%, which seems to have resulted from reduced activity of GPx and the lack of increase in activity of GR in blood red cells.  相似文献   

14.
The aim of this study was to investigate the difference in the serum malondialdehyde (MDA), glutathione (GSH), and nitric oxide (NO) levels between normal and T. gondii-infected patients. To this end, MDA, GSH, and NO levels in the sera of 37 seropositive patients and 40 participants in the control group were evaluated. In Toxoplasma ELISA, IgG results of the patient group were 1,013.0 ± 543.8 in optical density (mean ± SD). A statistically significant difference was found between patients and the control group in terms of MDA, GSH, and NO levels. A decrease in GSH activity was detected, while MDA and NO levels increased significantly. Consequently, it is suggested that the use of antioxidant vitamins in addition to a parasite treatment shall prove useful. The high infection vs control ratio of MDA and NO levels probably suggests the occurrence as a mechanism of tissue damage in cases of chronic toxoplasmosis. Moreover, it is recommended that the patient levels of MDA, GSH, and NO should be evaluated in toxoplasmosis.  相似文献   

15.
Diazinon is one of the most widely used organophosphate insecticides (OPIs) in agriculture and public health programs. Reactive oxygen species (ROS) caused by OPIs may be involved in the toxicity of various pesticides. The aim of this study was to investigate how diazinon affects lipid peroxidation (LPO) and the antioxidant defense system in vivo and the possible ameliorating role of vitamins E and C. For this purpose, experiments were done to study the effects of DI on LPO and the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in adult rat heart. Experimental groups were: (1) control group, (2) diazinon treated (DI) group, (3) DI+vitamins E and C-treated (DI+Vit) group. The levels of malondialdehyde (MDA) and the activities of SOD and CAT increased significantly in the DI group compared with the control group. The activity of SOD and the levels of MDA decreased significantly in the DI+Vit group compared with the DI group. The differences between the DI+Vit and control groups according to the MDA levels and the activities of both SOD and CAT were statistically significant. These results suggest that treating rats with a single dose of diazinon increases LPO and some antioxidant enzyme activities in the rat myocardium and, in addition, that single-dose treatment with a combination of vitamins E and C after the administration of diazinon can reduce LPO caused by diazinon, though this treatment was not sufficiently effective to reduce the values to those in control group.  相似文献   

16.
Effects of statins on oxidative stress   总被引:6,自引:0,他引:6  
Free oxygen radicals and insufficient antioxidant enzymes have been implicated in the pathogenesis of hypercholesterolemia (HC). Trace elements function as cofactors in antioxidant enzymes. Antioxidant system and trace elements were investigated in many different studies including HC, but these subjects have not been investigated as a whole in these patients. The aim of the present study was to investigate the antioxidative system and trace elements in hypercholesterolemic patients given fluvastatin therapy. We examined malondialdehyde (MDA), copper zinc-superoxide dismutase (CuZn-SOD), and glutathione peroxidase (GSH-Px) activities together with copper (Cu), iron (Fe), and zinc (Zn) levels in erythrocytes of 35 patients with HC and 27 healthy control subjects. It was found that in patients with HC, erythrocyte MDA was significantly higher than those of controls and erythrocyte CuZn-SOD and GSH-Px activities were significantly lower in patients with HC. Erythrocyte iron levels were significantly higher than those of controls, and erythrocyte copper and zinc levels were significantly lower in patients with HC. Plasma lipid levels and the oxidative state were analyzed in statin-treatment groups given fluvastatin therapy before and after a 3-mo treatment period. In conclusion, we found that fluvastatin has significant antioxidant properties and these effects might be very important in managing dyslipidemia by improving endothelial function.  相似文献   

17.
Ethanol is a major health concern, with neurotoxicity occurring after bothin utero exposure and adult alcohol abuse. Despite a large amount of research, the mechanism(s) underlying the neurotoxicity of ethanol remain unknown. One of the cellular aspects that has been investigated in relationship to the neuroteratogenicity and neurotoxicity of ethanol is the maintenance of calcium homeostasis. Studies in neuronal cells and other cells have shown that ethanol can alter intracellular calcium levels and affect voltage and receptor-operated calcium channels, as well as G protein-mediated calcium responses. Despite increasing evidence of the important roles of glial cells in the nervous systems, few studies exist on the potential effects of ethanol on calcium homeostasis in these cells. This brief review discusses a number of reported effects of alcohol on calcium responses that may be relevant to astrocytes' functions.  相似文献   

18.
Urinary tract infections are common in pregnant women and ciprofloxacin frequently is used as a broad spectrum antibiotic. It has been suggested that ciprofloxacin causes liver damage in fetuses. Quercetin is a flavonoid with antioxidant properties. We investigated the efficacy of quercetin treatment for preventing fetal liver damage caused by ciprofloxacin. Pregnant rats were divided into four groups: untreated control group (C), 20 mg/kg quercetin for 21 days group (Q), 20 mg/kg twice/day ciprofloxacin for 10 days group (CP), and 20 mg/kg, ciprofloxacin + quercetin for 21 days group (CP + Q). Fetal livers were removed on day 21 of gestation to measure antioxidants and for histological observation. Malondialdehyde (MDA) and glutathione (GSH) levels, and superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities were measured in tissue samples. GSH-Px, SOD and CAT activities were significantly lower in the CP group compared to group C. A significant increase in MDA was observed in the CP group compared to group C. There was no significant difference in GSH levels in any group. MDA levels were lower and CAT, SOD and GSH-Px enzyme activities were higher in the CP + Q group compared to group CP. Liver samples of the CP group exhibited central vein dilation, portal vein congestion, pyknotic nuclei and cytoplasmic vacuolization in some hepatocytes. Histological changes were less prominent in the rats treated with quercetin. Use of ciprofloxacin during pregnancy caused oxidative damage in fetal liver tissue. Oxidative stress was ameliorated by quercetin. Quercetin supports the antioxidant defense mechanism and it is beneficial for treating fetal liver damage caused by ciprofloxacin.  相似文献   

19.
Blood was obtained from 564 11-yr-old children who had participated since birth in a multidisciplinary health and development study. Serum zinc concentration did not differ between the boys and the girls (mean±SD: 91=17 μg/100 mL,n=453). Five-6% of serum zinc values were low; although there was a weak correlation with height, none of the boys with low values were below the 10th percentile for height for this group. Serum copper concentration (112±24 μg/100 mL,n=454) was unrelated to sex, height, weight, body mass index, socioeconomic status (SES), or iron status. Blood selenium concentration (49±10 ng/mL,n=564) was lower than previously reported for Dunedin children; it was higher in children in the lower SES categories. The data represent normal values for healthy, 11-yr-old NZ children.  相似文献   

20.
The sex-specific divergence of antioxidant pathways in fetal organs of opposite-sex twin is unknown and remains urgently in need of investigation. Such study faces many challenges, mainly the ethical impossibility of obtaining human fetal organs. Opposite-sex sheep twins represent a unique model for studying a sex dimorphism for antioxidant systems. The activity of total superoxide dismutase (SOD), SOD1, SOD2, glutathione peroxidase (GPX), glutathione reductase (GR) and catalase (CAT), the content of total glutathione, reduced glutathione (GSH), and oxidized glutathione (GSSG) were measured in brain, lung, liver, kidney, and skeletal muscles of female and male fetuses collected from sheep twin pregnancies at day 65 of gestation. Lipid peroxidation was assessed by measuring melondialdehyde (MDA) tissue content. Male brain has greater total SOD and SOD1 activities than female brain. Female liver has greater SOD2 activity than male liver. Male liver has greater GR activity than female liver. Male liver has higher total GSH and GSSG content than female liver. Male skeletal muscles have higher total GSH, GSH, and GSSG content than female skeletal muscles. Female brain and liver have higher MDA content than male brain and liver. This is the first report of a sex dimorphism for fetal organ antioxidative pathways. Brain, liver, and skeletal muscles of male and female fetuses display distinct antioxidant pathways. Such sexually dimorphic responses to early life oxidative stress might be involved in the sex-related difference in fetal development that may have a long-term effect on offspring. Our study urges researchers to take into consideration the importance of sex as a biologic variable in their investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号