首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The interpretation of the effects of mixtures of inhibitors on enzymes is considered. 2. The effects of inhibitor mixtures on caeruloplasmin were determined. 3. Fluoride, chloride and cyanate inhibit at one type of site (alpha), whereas bromide and iodide inhibit at another type (beta) present in the same enzyme intermediate. 4. Effects of inhibitor mixtures containing azide or cyanide are consistent with previous indications (Speyer & Curzon, 1968) that these ligands form inhibited complexes with different enzyme intermediates. 5. Isobols of halides or of cyanate with azide indicate that azide inhibits caeruloplasmin by bridging two alpha sites, these being reduced copper atoms. 6. Iodide and cyanate give hyperbolic plots of 1/v against [I]. 7. It is suggested that in the cyanate-inhibited complex the inhibitor binds to a reduced copper atom (alpha site) but that binding of cyanate at another copper atom is sterically prevented. It is suggested that the less bulky alpha-site inhibitors, fluoride and chloride, cause complete inhibition by binding to both of these copper atoms, which can also be bridged by a single azide group. 8. Each halide shows a pattern of effects on caeruloplasmin that is qualitatively distinct from that of other halides.  相似文献   

2.
The inhibition of caeruloplasmin by azide   总被引:6,自引:6,他引:0  
1. The inhibition of the oxidase activity of caeruloplasmin by azide was investigated at 25 degrees and 7.5 degrees . 2. The inhibition is reversible on dilution or Sephadex treatment, indicating a caeruloplasmin-azide complex. 3. The enzyme is protected against azide inhibition by chloride, acetate or EDTA, the last-named acting not by chelation but by a non-specific effect similar to that of acetate. 4. Lineweaver-Burk plots with different concentrations of azide are parallel. This may occur either when the enzyme-substrate complex or when a subsequent intermediate structure of the enzyme forms the inhibited complex. 5. At 7.5 degrees inhibition may be shown not to occur until after the initial reaction of enzyme with substrate. 6. At 7.5 degrees , the inhibition is of the mutual-depletion type, inhibitory concentrations of azide being comparable with the concentration of caeruloplasmin. It is shown that the binding of a single azide group completely inhibits a caeruloplasmin molecule. 7. An arrangement of the four valence-changing copper atoms of caeruloplasmin is proposed in which they are so close together in the cuprous form that reoxidation may occur by the simultaneous transfer of four electrons from the copper atoms to a single oxygen molecule.  相似文献   

3.
The effects of sodium azide, potassium cyanide (cytochrome oxidaseinhibitors), and salicylhydroxamic acid (SHAM; an alternativerespiration inhibitor) on germination and respiration of Avenafatua L. seeds were studied. Azide and cyanide released seeddormancy at similar concentrations and treatment durations.Cyanide, however, stimulated germination of seeds with littleafter-ripening, whereas azide had no effect under similar conditionsunless the seeds were after-ripened for several months; theduration of after-ripening required for seeds to respond toazide varied with seed batch. There was also a greater lag priorto germination in the case of azide, compared to cyanide treatedseeds. SHAM inhibited the stimulation of germination and respirationby azide, but not by cyanide. Furthermore, respiration induced by azide or cyanide could notbe inhibited by the subsequent application of SHAM. These findingssuggest that the respiration stimulated by azide and cyanideis not alternative (SHAM-sensitive) and, therefore, this respiratorypathway cannot be involved in the stimulation of germinationby cytochrome oxidase inhibitors. While embryos excised fromcontrol, azide or cyanide pretreated seeds had the capacityto perform alternative respiration, the actual contributionof this pathway was negligible. A large proportion of respirationof embryos excised from azide or cyanide pretreated seeds wasresidual, i.e. insensitive to both SHAM and cyanide. Alternative respiration, azide, cyanide, dormancy, salicylhydroxamic acid, wild oats  相似文献   

4.
1. Cell-free extracts of the marine bacterium Beneckea natriegens, derived by sonication, were separated into particulate and supernatant fractions by centrifugation at 150 000 × g.2. NADH, succinate, d(?)- and l(+)-lactate oxidase and dehydrogenase activities were located in the particles, with 2- to 3-fold increases in specific activity over the cell free extract. The d(?)- and l(+)-lactate dehydrogenases were NAD+ and NADP+ independent. Ascorbate-N,N,N′,N′-tetramethylphenylenediamine (TMPD) oxidase was also present in the particulate fraction; it was 7–12 times more active than the physiological substrate oxidases.3. Ascorbate-TMPD oxidase was completely inhibited by 10 μM cyanide. Succinate, NADH, d(?)-lactate and l(+)-lactate oxidases were inhibited in a biphasic manner, with 10 μM cyanide causing only 10–50 % inhibition; further inhibition required more than 0.5 mM cyanide, and 10 mM cyanide caused over 90 % inhibition. Low sulphide (5 μM) and azide (2 mM) concentrations also totally inhibited ascorbate-TMPD oxidase, but only partially inhibited the other oxidases. High concentrations of sulphide but not azide caused a second phase inhibition of NADH, succinate, d(?)-lactate and l(+)-lactate oxidases.4. Low oxidase activities of the physiological substrates, obtained by using non-saturating substrate concentrations, were more inhibited by 10 μM cyanide and 2 mM azide than high oxidase rates, yet ascorbate-TMPD oxidase was completely inhibited by 10 μM cyanide over a wide range of rates of oxidation.5. These results indicate terminal branching of the respiratory system. Ascorbate-TMPD is oxidised by one pathway only, whilst NADH, succinate, d(?)-lactate and l(+)-lactate are oxidised via both pathways. Respiration of the latter substrates occurs preferentially by the pathway associated with ascorbate-TMPD oxidase and which is sensitive to low concentrations of cyanide, azide and sulphide.6. The apparent Km for O2 for each of the two pathways was detected using ascorbate-TMPD and NADH or succinate plus 10 μM cyanide respectively. The former pathway had an apparent Km of 8–17 (average 10.6) μM and the latter 2.2–4.0 (average 3.0) μM O2.  相似文献   

5.
6.
Powerful antioxidant activity of human plasma was demonstrated by measuring the thiobarbituric acid reaction and Fe+2-induced chemiluminescence. Inhibition of lipid peroxidation was shown both for plasma lipids and for the suspension of egg lipoproteins, which was taken as a model system. The inhibitory effect of plasma peroxidation was removed by azide Na taken in the concentration of 0.5 mg/ml, but caeroplasmin activity in the plasma was completely suppressed at NaN3 concentration equal to 0.1 mg/ml. A low correlation (r = 0.75) between caeruloplasmin activity in the blood plasma and extent of chemiluminescence activation obtained in the presence of NaN3 was found. The presented data led to an assumption that only a part of lipid peroxidation inhibitors in the plasma can be attributed with caeruloplasmin.  相似文献   

7.
Effects of respiratory inhibitors on the circadian clock, respiratory activity, and ATP content were examined in Neurospora crassa. All inhibitors, potassium cyanide, sodium azide, antimycin A, and carbonyl cyanide m-chlorophenyl hydrazone (CCCP), shifted the phase of the conidiation rhythm. All the phase response curves were similar and resembled that for cycloheximide, but were different from the phase response curve for light. Phase shifting by azide and CCCP was proportional to the lowering of respiratory activity and ATP content, but such a correlation was not observed for cyanide and antimycin A. In particular, cyanide at a concentration of 0.5 millimolar completely depleted ATP of the cultures but did not significantly shift their phase. Their results suggest that large shifts caused by these inhibitors are not due to a decrease in energy from respiratory activity.  相似文献   

8.
Fisher K  Dilworth MJ  Newton WE 《Biochemistry》2006,45(13):4190-4198
The Mo-nitrogenase-catalyzed reduction of both cyanide and azide results in the production of excess NH3, which is an amount of NH3 over and above that expected to be formed from the well-recognized reactions. Several suggestions about the possible sources of excess NH3 have been made, but previous attempts to characterize these reactions have met with either limited (or no) success or controversy. Because V-nitrogenase has a propensity to release partially reduced intermediates, e.g., N2H4 during N2 reduction, it was selected to probe the reduction of cyanide and azide. Sensitive assay procedures were developed and employed to monitor the production of either HCHO or CH3OH (its further two-electron-reduced product) from HCN. Like Mo-nitrogenase, V-nitrogenase suffered electron-flux inhibition by CN- (but was much less sensitive than Mo-nitrogenase), but unlike the case for Mo-nitrogenase, MgATP hydrolysis was also inhibited by CN-. V-Nitrogenase also released more of the four-electron-reduced intermediate, CH3NH2, than did Mo-nitrogenase. At high NaCN concentrations, V-nitrogenase directed a significant percentage of electron flux into excess NH3, and under these conditions, substantial amounts of HCHO, but no CH3OH, were detected for the first time. With azide, in contrast to the case for Mo-nitrogenase, both total electron flux and MgATP hydrolysis with V-nitrogenase were inhibited. V-Nitrogenase, unlike Mo-nitrogenase, showed no preference between the two-electron reduction to N2-plus-NH3 and the six-electron reduction to N2H4-plus-NH3. V-Nitrogenase formed more excess NH3, but reduction of the N2 produced by the two-electron reduction of N3(-) was not its source. Rather, it was formed directly by the eight-electron reduction of N3(-). Unlike Mo-nitrogenase, CO could not completely eliminate either cyanide or azide reduction by V-nitrogenase. CO did, however, eliminate the inhibition of both electron flux and MgATP hydrolysis by CN-, but not that caused by azide. These different responses to CO suggest different sites or modes of interaction for these two substrates with V-nitrogenase.  相似文献   

9.
Strain inl-89601 of Neurospora crassa respires exclusively by means of the mitochondrial cytochrome chain. The respiration of this strain is entirely inhibited by cyanide or antimycin A, the classical inhibitors of cytochrome chain respiration. When this strain was grown in the presence of chloramphenicol, however, two additional terminal oxidases were detected. One of these oxidases is inhibited by substituted hydroxamic acids and has been described previously. The second oxidase was not inhibited by cyanide or hydroxamic acid but was inhibited by azide in the presence of both cyanide and hydroxamic acid. This azide-sensitive respiration was due to a single respiratory pathway with a Ki for azide of 200 micrometer. A small amount of azide-sensitive respiration was detected in mitochondrial fractions obtained from chloramphenicol-treated cells, and it is likely that the azide-sensitive oxidase is localized in the mitochondrion. The determinants for the azide-sensitive and hydroxamate-sensitive oxidases segregate in a Mendelian manner in crosses and are either unlinked or not closely linked to each other.  相似文献   

10.
Using pulse-chase experiments with radioactive proline, it is possible to study the rapid transfer from the cytoplasm to the cell wall of the hydroxyproline-rich protein found in the cell walls of higher plants. The secretion of this protein is not obligatorily coupled to protein synthesis. Secretion is completely inhibited by uncouplers of oxidative phosphorylation and strongly inhibited by the inhibitors of electron transport, cyanide and azide. It is concluded that the transfer of proteins from the cytoplasm to the cell wall is an energy-requiring step.  相似文献   

11.
Formate dehydrogenase (EC 1.2.1.2) prepared from peas (Pisum sativum) was a two-subunit enzyme. The enzyme accelerated the formation of an NAD+-cyanide compound having an adsorption band at 330 nm. The enzyme was able to bind one NAD+ molecule per each subunit but only 1 mole of NAD+-cyanide compound was formed per two subunits. The complex of NAD+, cyanide, and the enzyme was very stable and had no catalytic activity. Azide inhibited the formate dehydrogenase reaction in two different ways. By incubation of the enzyme with azide in the presence of NAD+, half of its catalytic activity was lost. The remaining activity was also inhibited by azide but this inhibition was removed competively by formate. Contrary to the case of cyanide the inhibition by azide could be removed by dialysis and no spectral species due to the addition compound of NAD+ and azide could be observed. The data from double recipricol plots of the initial velocity and the formate concentration led to a conclusion that formate dehydrogenase has two sites with about equal catalytic activity. The Km for formate was different for the two catalytic sites (1.67 and 6.25 mM) but the difference was not noticeable in the case of the Km for NAD+.  相似文献   

12.
13.
The response of MnO2 reduction by uninduced and induced whole cells and cell extracts of Bacillus 29 to several electron transport inhibitors was compared. MnO2 reduction with glucose by uninduced whole cells and cell extracts was strongly inhibited at 0.1 mM dicumarol, 100 mM azide, and 8 mM cyanide but not by atebrine or carbon monoxide, suggesting the involvement of a vitamin K--type quinone and a metalloenzyme in the electron transport chain. MnO2 reduction with ferrocyanide by uninduced cell extracts was inhibited by 5 mM cyanide and 100 mM azide but not by atebrine, dicumarol, or carbon monoxide, suggesting that the metalloenzyme was associated with the terminal oxidase activity. MnO2 reduction with glucose by induced whole cells and cell extracts, was inhibited by 1 mM atebrine, 0.1 mM dicumarol, and 10 mM cyanide but not by antimycin A, 2n-nonyl-4-hydroxyguinoline-N-oxide) (NOQNO), 4,4,4-trifluoro-1-(2-thienyl),1,3-butanedione, or carbon monoxide. Induced cell extract was also inhibited by 100 mM azide, but stimulated by 1 mM and 10 mM azide. Induced whole cells were stimulated by 10 mM and 100 mM azide. These results suggested that electron transport from glucose to MnO2 in induced cells involved such components as flavoprotein, a vitamin K-type quinone, and metalloenzyme. The stimulatory effect of azide on induced cells was explained on the basis of a branching in the terminal part of the electron transport chain, one branch involving a metalloenzyme for the reduction of MnO2 and the other involving a metalloenzyme for the reduction of oxygen. The latter was assumed to be the more azide sensitive. Spectral studies showed the presence of a-, b-, and c-type cytochromes in membrane but not in soluble fractions. Of these cytochromes, only the c type may be involved in electron transport of MnO2, owing to the lack of inhibition by antimycin A or 2n-nonyl-4-hydroxyquinoline-N-oxide. The terminal MnO2 reductase appears to be loosely attached to the cell membrane of Bacillus 29 because of cell fractionation it is found associated with both particulate and soluble fractions. Electron photomicrographs of bacilli attached to synthetic Fe-Mn oxide revealed an intimate contact of the cell walls with the oxide particles.  相似文献   

14.
The response of MnO2 reduction by uninduced and induced whole cells and cell extracts of Bacillus 29 to several electron transport inhibitors was compared. MnO2 reduction with glucose by uninduced whole cells and cell extracts was strongly inhibited at 0.1 mM dicumarol, 100 mM azide, and 8 mM cyanide but not by atebrine or carbon monoxide, suggesting the involvement of a vitamin K--type quinone and a metalloenzyme in the electron transport chain. MnO2 reduction with ferrocyanide by uninduced cell extracts was inhibited by 5 mM cyanide and 100 mM azide but not by atebrine, dicumarol, or carbon monoxide, suggesting that the metalloenzyme was associated with the terminal oxidase activity. MnO2 reduction with glucose by induced whole cells and cell extracts, was inhibited by 1 mM atebrine, 0.1 mM dicumarol, and 10 mM cyanide but not by antimycin A, 2n-nonyl-4-hydroxyguinoline-N-oxide) (NOQNO), 4,4,4-trifluoro-1-(2-thienyl),1,3-butanedione, or carbon monoxide. Induced cell extract was also inhibited by 100 mM azide, but stimulated by 1 mM and 10 mM azide. Induced whole cells were stimulated by 10 mM and 100 mM azide. These results suggested that electron transport from glucose to MnO2 in induced cells involved such components as flavoprotein, a vitamin K-type quinone, and metalloenzyme. The stimulatory effect of azide on induced cells was explained on the basis of a branching in the terminal part of the electron transport chain, one branch involving a metalloenzyme for the reduction of MnO2 and the other involving a metalloenzyme for the reduction of oxygen. The latter was assumed to be the more azide sensitive. Spectral studies showed the presence of a-, b-, and c-type cytochromes in membrane but not in soluble fractions. Of these cytochromes, only the c type may be involved in electron transport of MnO2, owing to the lack of inhibition by antimycin A or 2n-nonyl-4-hydroxyquinoline-N-oxide. The terminal MnO2 reductase appears to be loosely attached to the cell membrane of Bacillus 29 because of cell fractionation it is found associated with both particulate and soluble fractions. Electron photomicrographs of bacilli attached to synthetic Fe-Mn oxide revealed an intimate contact of the cell walls with the oxide particles.  相似文献   

15.
Characterization of hog thyroid peroxidase   总被引:2,自引:0,他引:2  
Several fundamental properties of purified hog thyroid peroxidase (A413 nm/A280 nm = 0.55) were investigated in comparison with bovine lactoperoxidase. The Mr of thyroid peroxidase was 71,000. The prosthetic group of thyroid peroxidase was identified spectrophotometrically as protoheme IX after the enzyme was hydrolyzed with Pronase. Optical spectra of oxidized and reduced thyroid peroxidases and their complexes with azide and cyanide were very similar to lactoperoxidase, except that lactoperoxidase had two reduced forms with the Soret band either at 446 or 435 nm, and thyroid peroxidase lacked a reduced form having the 446-nm band. From comparison of their pyridine hemochrome spectra, epsilon mM at 413 nm of thyroid peroxidase was estimated to be 114, being the same as that of lactoperoxidase. The cyanide inhibition for the reaction of thyroid peroxidase was competitive with hydrogen peroxide and the inhibition constant was in rough accord with the dissociation constant of its cyanide complex measured from spectrophotometric titration. Azide inhibited the reaction with an inhibition constant which was about one one-thousandth of the dissociation constant for its spectrally discernible complex. The azide inhibition was not competitive with hydrogen peroxide and decreased as the reaction proceeded. Aminotriazole inhibited the reaction strongly, and the inhibition was augmented during the reaction. These inhibition patterns of azide and aminotriazole were more or less observed in the reaction of lactoperoxidase, but not in the case of horseradish peroxidase. Characteristics of animal peroxidases are discussed.  相似文献   

16.
The branched respiratory chain of Pseudomonas aeruginosa contains at least two terminal oxidases which are active under normal physiological conditions. One of these, cytochrome co, is a cytochrome c oxidase which is completely inhibited by concentrations of the respiratory inhibitor potassium cyanide as low as 100 microM. The second oxidase, the cyanide-insensitive oxidase, is resistant to cyanide concentrations in excess of 1 mM as well as to sodium azide. In this work, we describe the isolation and characterization of a mutant of P. aeruginosa defective in cyanide-insensitive respiration. This insertion mutant was isolated with mini-D171 (a replication-defective derivative of the P. aeruginosa phage D3112) as a mutagen and by screening the resulting tetracycline-resistant transductants for the loss of ability to grow in the presence of 1 mM sodium azide. Polarographic studies on the NADH-mediated respiration rate of the mutant indicated an approximate 50% loss of activity, and titration of this activity against increasing cyanide concentrations gave a monophasic curve clearly showing the complete loss of cyanide-insensitive respiration. The mutated gene for a mutant affected in the cyanide-insensitive, oxidase-terminated respiratory pathway has been designated cio. We have complemented the azide-sensitive phenotype of this mutant with a wild-type copy of the gene by in vivo cloning with another mini-D element, mini-D386, carried on plasmid pADD386. The complemented cio mutant regained the ability to grow on medium containing 1 mM azide, titration of its NADH oxidase activity with cyanide gave a biphasic curve similar to that of the wild-type organism, and the respiration rate returned to normal levels. Spectral analysis of the cytochrome contents of the membranes of the wild type, the cio mutant, and the complemented mutant suggests that the cio mutant is not defective in any membrane-bound cytochromes and that the complementing gene does not encode a heme protein.  相似文献   

17.
Cytochemical Localization of Catalase Activity in Yeast Peroxisomes   总被引:6,自引:3,他引:3       下载免费PDF全文
Diaminobenzidine oxidation product occurred in peroxisomes and in the intracristate spaces of mitochondria. The reaction was inhibited only in peroxisomes when 3-amino-1,2,4-triazole was present, but cyanide and azide inhibited deposition in both kinds of organelles.  相似文献   

18.
Various yeasts have been investigated for their ability to grow on N-acetylglucosamine as the sole carbon source and only those which are associated with the disease, candidiasis, gave positive results. The yeasts unable to grow on N-acetylglucosamine lacked the capacity to transport the aminosugar across the cell membrane. In pathogenic yeasts, two systems of different affinity for substrate were found to operate in the uptake of N-acetylglucosamine. In glucose-grown cells a constitutive, low affinity uptake system was present, but upon addition of inducer, a specific high affinity uptake system was synthesized. Experiments with the inhibitors of macromolecule synthesis suggested that the synthesis of RNA and protein is necessary for induction whereas the synthesis of DNA is not. In glucose-grown Candida albicans cells which are devoid of N-acetylglucosamine enters into the cells as phosphorylated form using a constitutive uptake system. Uranyl acetate (0.01 mM) which binds to cell membrane-associated polyphosphates, inhibited completely the inducible uptake of N-acetylglucosamine. Labelling experiments, designed to determine the temporal sequence of appearance of N-acetylglucosamine in intracellular free sugar and sugar-phosphate pools, indicated that N-acetylglucosamine first appeared in the cells as pohosphorylated form. Similar results were obtained with Saccharomyces phosphorylated form. Similar results were obtained with Saccharomyces cerevisiae 3059 and some other yeasts which are devoid of N-acetylglucosamine kinase in both uninduced and induced conditions. These results are consistent with the model of van Steveninck that involves phosphorylation during transpost. Furthermore, inhibitors of energy metabolism (arsenate, azide and cyanide), proton conductor (m-chlorocarbonylcyanide phenylhydrazine) and dibenzyl diammonium ion (membrane permeable cation) inhibited the inducible N-acetylglucosamine uptake in C. albicans.  相似文献   

19.
The antifungal activity of substances interfering with the function and biogenesis of mitochondria was studied. Strict anaerobiosis, cyanide, azide, oligomycin, bongkrekic acid and ethidium bromide were found to prevent spore germination ofAspergillus niger andPenicillium italicum in liquid germination medium. The effect of azide, oligomycin and ethidium bromide was fungicidal. Cyanide and azide completely inhibited the incorporation of14C-leucine and14C-uracil into germinating conidia ofA. niger. Oligomycin and ethidium bromide reduced the extent of incorporation of both precursors in the first few hours of conidial germination and at later stages stopped it completely. The inhibition of both spore germination and macromolecules synthesis during the germination ofA. niger conidia were in relation to the specific inhibitory effect of the agents on respiratory activity of dormant conidia and mycelial cells. The results indicate that both the function of mitochondrial genetic and protein synthesizing systems and the function of oxidative phosphorylation are essential for normal spore germination and fungal growth.  相似文献   

20.
The finding of Lilly and Thoday that potassium cyanide produces structural chromosome changes in root tips of Vicia faba was confirmed. Like mustards, diepoxides, and maleic hydrazide, potassium cyanide seems to act on cells at early interphase. A tendency of cyanide breaks to be concentrated in heterochromatic segments of the chromosomes was evident. The production of chromosome aberrations by cyanide proved to be practically unaffected by the temperature during treatment. In agreement with Lilly and Thoday, the effect of potassium cyanide was found to be dependent on oxygen tension during treatment. The effect of potassium cyanide increases with increasing oxygen concentration up to 100 per cent oxygen. In the absence of oxygen, potassium cyanide was not completely inactive, but produced a low, though significant frequency of aberrations. Pretreatments with 2.4-dinitrophenol did not influence the effect of potassium cyanide. When bean roots were treated with potassium cyanide before a treatment with 8-ethoxycaffeine, or at the same time as they were treated with 8-ethoxycaffeine, the effect of 8-ethoxycaffeine was almost completely suppressed. The effects of a number of other heavy metal complexing agents were also tested. Sodium fluoride, potassium thiocyanate, carbon monoxide, o-phenanthroline, 2.2-bipyridine, and sodium azide were without radiomimetic effect under the conditions employed, and so was a mixture of sodium azide and sodium fluoride. A low, but quite significant, radiomimetic effect was obtained after treatments with sodium diethyldithiocarbamate, cupferron, and 8-hydroxyquinoline. Under anaerobic conditions, the effects of cyanide and cupferron were both quantitatively and qualitatively indistinguishable. Unlike the effect of cyanide, the effect of cupferron was not enhanced by the presence of oxygen. The effects of the same heavy metal complexing agents were tested on the activities of the enzymes catalase and peroxidase. The activities of both of these enzymes were found to be totally inhibited only by potassium cyanide. In the other cases, little correlation was found between ability to inhibit the activities of these enzymes and ability to produce chromosome aberrations. In a number of experiments, hydrogen peroxide was found to be without radiomimetic effect, whether alone or in combination with potassium cyanide. t-Butyl hydroperoxide proved to be active. The effect of t-butyl hydroperoxide was substantially increased by pretreatments with 2.4.-dinitrophenol. The results are discussed, and it is concluded that the observations made do not support the hypothesis that hydrogen peroxide is involved in the production of chromosome aberrations by potassium cyanide. The possibility that organic peroxides are involved cannot be excluded on the bases of the experimental results. As an alternative hypothesis, it is suggested that iron or other heavy metals are present in the chromosomes and that cyanide and other heavy metal complexing agents produce chromosome aberrations by reacting with these metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号