首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. Gill tissue from eels adapted to fresh water or to sea water was disrupted in 0.32m-sucrose containing 0.1% (w/v) sodium deoxycholate and the subcellular distribution of (Na(+)+K(+))-dependent adenosine triphosphatase was determined. 2. About 70% of the recovered enzyme was in a fraction sedimenting between 225000g(av.)-min and 6000000g(av.)-min; the specific activities of enzymes from tissues of freshwater and seawater eels were 16 and 51 mumol of phosphate/h per mg of protein respectively. 3. The enzymes from gills of freshwater and seawater eels were indistinguishable on the basis of a number of parameters. These included phosphorylation by [gamma-(32)P]ATP, the binding of [(3)H]ouabain, the extent to which bound [(3)H]ouabain was displaced by increasing concentrations of KCl and pH optima. 4. Electrophoresis on polyacrylamide gels in sodium dodecyl sulphate showed that enzyme preparations from both sources had an identical number of protein components. 5. The higher specific activity of (Na(+)+K(+))-dependent adenosine triphosphatase from tissue of seawater eels was accompanied by increased amounts of two protein components. One of these proteins retained (32)P after treatment of the enzyme with [gamma-(32)P]ATP and had mol.wt. 97000; the other component was a glycoprotein with mol.wt. approx. 46000. 6. The results are discussed in terms of the nature of the transepithelial NaCl pumps in the gills of freshwater and seawater fish.  相似文献   

2.
1. Microsomes prepared from guinea-pig and ox brain were incubated for periods of a few seconds with low concentrations of Mg-[(32)P]ATP, the reaction was stopped with trichloroacetic acid and determinations were made of the phosphate bound to the acid-washed, and in some cases solvent-extracted, residue. 2. At 20 mum-ATP, at 37 degrees and in the presence of Na(+) ions, 30-50 mumumoles of phosphate/mg. of microsomal protein were bound by the preparation within 1 sec. of starting the reaction; little further change in level occurred until hydrolysis of ATP exceeded 50%, when the bound phosphate began to decline fairly rapidly to the zero-time value. 3. At 20mum-ATP without Na(+) ions present or in the presence of K(+) ions, the level of bound phosphate increased gradually and did not decline as ATP hydrolysis approached completion. 4. Potassium ions either inhibited the formation of Na(+)-dependent bound phosphate or, when added during the course of the reaction, rapidly reduced its level. 5. At 200 mum-ATP the bound phosphate formed in the presence of Na(+) ions appeared to consist of a mixture of the unstable Na(+)-dependent type and the stable type requiring only Mg(2+) ions for its formation. 6. Non-radioactive ATP added during the course of the reaction at 20 mum-ATP with Na(+)ions present rapidly discharged virtually all the bound (32)P counts; at 200 mum-ATP only a proportion of the label was similarly discharged. The Na(+)-dependent bound phosphate is therefore turning over, in contrast with that formed in the absence of Na(+)ions, which proved more stable. 7. The Na(+)-dependent bound phosphate was not in the form of ATP; experiments with [(14)C]ATP instead of [(32)P]ATP showed a small and invariable binding of ATP by the preparation unaffected by Na(+) ions or time of incubation. 8. Under the usual conditions employed in this work ouabain stimulated formation of Na(+)-dependent bound phosphate when Na(+) ions were suboptimum and inhibited it when optimum Na(+) ions were present. 9. The Na(+)-dependent binding reaction under present conditions did not involve incorporation into phosphorylserine groups. 10. The relation of the findings to the (Na(+),K(+))-ATPase of the preparation, and to observations in brain slices appearing to implicate phosphorylserine groups in cation transport, is discussed.  相似文献   

3.
1. Chopped tissue from guinea-pig cerebral cortex carried out an energy-dependent accumulation of l-[(14)C]valine. 2. The uptake was dependent on the extracellular concentration of Na(+) and was markedly inhibited by ouabain (20mum). The extent of the inhibition of uptake by ouabain was also Na(+)-dependent. 3. The accumulation of labelled valine was not directly dependent on the ATP and creatine phosphate contents of the slices. 4. Electrical stimulation increased the rate of [(14)C]valine uptake at first but ultimately led to a net loss of the label so that the amount of label present in the tissue was lower than in the controls. 5. The rate of loss of label during prolonged stimulation was dependent on the extracellular concentration of Na(+). 6. The efflux of labelled valine from slices preloaded at 164mm-Na(+) was studied at 164, 80 and 40mm-Na(+) with and without electrical stimulation or ouabain. 7. Lowering the Na(+) concentration or adding ouabain increased the rate of efflux. 8. Electrical stimulation had little effect on the rate of efflux at first but ultimately led to a more complete loss of label from the tissue than occurred in the control. A kinetic analysis of the efflux curves was attempted.  相似文献   

4.
1. Microsomes from guinea-pig brain grey matter were incubated with [(32)P]ATP at 3mm concentration and the phosphate bound to the acid-washed, lipid-free residue was determined. 2. The binding process was Mg(2+)-dependent and resulted in the transfer of about 1-2 mmumoles of phosphate/mg. of protein/min. Under the conditions used univalent cations (Na(+),K(+) and Li(+)) inhibited the binding. 3. An unspecified proportion of this bound phosphate could be recovered in protein-derived phosphorylserine. The yield of labelled phosphorylserine was also decreased by univalent cations. 4. The bound phosphate formed with 3mm-MgATP was stable; addition of Na(+) or K(+) ions to the already labelled preparation had no effect on the bound phosphate level. 5. Bound phosphate was also formed when a solubilized fraction of the microsomes was incubated with ATP; univalent cations also inhibited this process. 6. p-Chloromercuribenzoate reduced the binding by about 25%; the inhibition was restored by cysteine.  相似文献   

5.
The esterase activity of guinea-pig serum was investigated. A 3-fold purification was achieved by removing the serum albumin by Blue Sepharose CL-6B affinity chromatography. The partially purified enzyme preparation had carboxylesterase and cholinesterase activities of 1.0 and 0.22 mumol of substrate/min per mg of protein respectively. The esterases were labelled with [3H]di-isopropyl phosphorofluoridate (DiPF) and separated electrophoretically on sodium dodecyl sulphate/polyacrylamide gels. Two main labelled bands were detected: band I had Mr 80 000 and bound 18-19 pmol of [3H]DiPF/mg of protein, and band II had Mr 58 000 and bound 7 pmol of [3H]DiPF/mg of protein. Bis-p-nitrophenyl phosphate (a selective inhibitor of carboxylesterase) inhibited most of the labelling of bands I and II. The residual labelling (8%) of band I but not band II (4%) was removed by preincubation of partially purified enzyme preparation with neostigmine (a selective inhibitor of cholinesterase). Paraoxon totally prevented the [3H]DiPF labelling of the partially purified enzyme preparation. Isoelectrofocusing of [3H]DiPF-labelled and uninhibited partially purified enzyme preparation revealed that there were at least two separate carboxylesterases, which had pI3.9 and pI6.2, a cholinesterase enzyme (pI4.3) and an unidentified protein that reacts with [3H]DiPF and has a pI5.0. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of these enzymes showed that the carboxylesterase enzymes at pI3.9 and pI6.2 corresponded to the 80 000-Mr subunit (band I) and 58 000-Mr subunit (band II). The cholinesterase enzyme was also composed of 80 000-Mr subunits (i.e. the residual labelling in band I after bis-p-nitrophenyl phosphate treatment). The unidentified protein at pI5.0 corresponded to the residual labelling in band II (Mr 58 000), which was insensitive to neostigmine and bis-p-nitrophenyl phosphate. These studies show that the carboxylesterase activity of guinea-pig serum is the result of at least two separate and distinct enzymes.  相似文献   

6.
1. Supernatant proteins from rat brain were separated into two fractions containing phosphatidylinositol phosphodiesterase activity by chromatography on DEAE-Sephadex A-50. 2. The first fraction sediments in linear sucrose density gradients in two bands corresponding to molecular weights of 66000 and 36000. There was presumptive evidence that the lighter protein constituted the monomeric form of the enzyme. The second fraction sediments predominantly as a single protein of molecular weight 86000. 3. Treatment of rat brain supernatant with [(3)H]colchicine abolished the second DEAE-Sephadex peak and removed the lighter protein from the first peak. These proteins emerged in the same position as the protein binding [(3)H]colchicine at high salt concentration; phospholipase activity was recovered from linear sucrose density gradients in positions corresponding to molecular weights 88000 and 43000, together with an aggregate of molecular weight 140000. Electrophoresis on sodium dodecyl sulphate-urea-polyacrylamide gels of this fraction revealed only three proteins: the alpha and beta-subunits of microtubular protein, of molecular weights 56000 and 52000 respectively, and a protein of molecular weight 38000. 4. A sample of microtubular protein from mouse, labelled in vivo with [(3)H]proline and (32)P(i), was added to rat brain supernatant together with an equal amount of the same microtubular protein treated with cyclic AMP and [gamma-(32)P]ATP and the mixture subsequently characterized by ion-exchange chromatography. Some phospholipase activity characteristic of the second peak from DEAE-Sephadex was associated with one fraction of added microtubular protein. This fraction was identified on the basis of the (3)H:(32)P ratio as the beta subunit of the protein treated with ATP and cyclic AMP. The subunit of added microtubular protein untreated with nucleotides was not associated with phospholipase activity.  相似文献   

7.
Subunit KtrA of the bacterial Na(+)-dependent K(+)-translocating KtrAB systems belongs to the KTN/RCK family of regulatory proteins and protein domains. They are located at the cytoplasmic side of the cell membrane. By binding ligands they regulate the activity of a number of K(+) transporters and K(+) channels. To investigate the function of KtrA from the bacterium Vibrio alginolyticus (VaKtrA), the protein was overproduced in His-tagged form (His(10)-VaKtrA) and isolated by affinity chromatography. VaKtrA contains a G-rich, ADP-moiety binding beta-alpha-beta-fold ("Rossman fold"). Photocross-linking and flow dialysis were used to determine the binding of [(32)P]ATP and [(32)P]NAD(+) to His(10)-VaKtrA. Binding of other nucleotides was estimated from the competition by these compounds of the binding of the (32)P-labeled nucleotides to the protein. [gamma-(32)P]ATP bound with high affinity to His(10)-VaKtrA (K(D) of 9 microm). All other nucleotides tested exhibited K(D) (K(i)) values of 30 microm or higher. Limited proteolysis with trypsin showed that ATP was the only nucleotide that changed the conformation of VaKtrA. ATP specifically promoted complex formation of VaKtrA with the His-tagged form of its K(+)-translocating partner, VaKtrB-His(6), as detected both in an overlay experiment and in an experiment in which VaKtrA was added to VaKtrB-His(6) bound to Ni(2+)-agarose. In intact cells of Escherichia coli both a high of membrane potential and a high cytoplasmic ATP concentration were required for VaKtrAB activity. C-terminal deletions in VaKtrA showed that for in vivo activity at least 169 N-terminal amino acid residues of its total of 220 are required and that its 40 C-terminal residues are dispensable.  相似文献   

8.
After labelling of mouse liver nuclei with [gamma-32P]ATP in vitro, 10-20% of the radioactivity incorporated into the saline-soluble nuclear and HAP2 chromatin fractions was located in a low-molecular-weight component (component 10) with pI near 4.5 in urea. By using combinations of ion-exchange chromatography, preparative thin-layer isoelectric focusing and gel filtration, this component was isolated from both nuclear fractions. Recovery from the saline-soluble fraction was poor under conditions that allow endogenous phosphatases to be active. Component 10 was shown to be a phosphoprotein on the basis of enzyme-digestion experiments and the detection of phosphoserine and phosphothreonine. The 32P radioactivity did not appear to be associated with phosphorylated basic amino acids. Its molecular weight was determined by gel chromatography and electrophoresis in sodium dodecyl sulphate/polyacrylamide gels as approx. 10000, and tryptic digestion of the reduced carboxymethylated protein in urea yielded two 32P-labelled peptides. It has not been possible as yet to assign a function to component 10, though its similarity to other low-molecular-weight acidic proteins is discussed.  相似文献   

9.
Rye embryo ribosomes were dissociated into subunits and the large subunit fraction was treated with formamide. A low molecular weight complex of RNA and protein (RNP) was released. Electrophoresis of the RNP in polyacrylamide gels containing sodium dodecyl sulphate yielded an RNA band and a single protein band. The protein had a molecular weight of approximately 41 000 and the RNA of the complex was shown to be 5S ribosomal RNA. Embryos were germinated in the presence of [32P]orthophosphate and the labelled RNP was isolated from their ribosomes. The RNA component was partially digested with pancreatic A ribonuclease and the parts protected from degradation by the protein were determined by sequence analysis. Although the whole 5S RNA molecule was shielded to some extent, the portion most protected was between nucleotides 68 and 108. This is, therefore, probably the part of plant cytosol 5S RNA which is primarily involved in the interaction with protein in the complex and possibly in the ribosome as well.  相似文献   

10.
1. The effect of chemical agents on the turnover of the Na(+)-dependent bound phosphate and the simultaneous Na(+)-dependent hydrolysis of ATP by a membrane preparation from ox brain was studied at an ATP/protein ratio of 12.5pmol/mug. 2. The agents were added immediately after phosphorylation of the preparation in a medium containing 50mm-sodium chloride and 2.5mum-[gamma-(32)P]ATP. 3. Concentrations of sodium chloride above 150mm, calcium chloride to 20mm and suramin to 1.4mm inhibited both phosphorylation and dephosphorylation and concomitantly slowed ATP hydrolysis. At 125mm-sodium chloride dephosphorylation and hydrolysis were slightly slowed without affecting phosphorylation. 4. Ethanol to 1.6m concentration inhibited dephosphorylation without affecting phosphorylation; the bound phosphate was increased and ATP hydrolysis slowed. 5. Ouabain to 4mm concentration partially inhibited ATP hydrolysis and caused a transient (1-2s) rise in bound phosphate followed by a rapid fall to a lower plateau value, which eventually declined to zero by the time ATP hydrolysis was complete. 6. Of the detergents examined Lubrol W, Triton X-100 and sodium deoxycholate had no significant effect on turnover. Sodium dodecyl sulphate and sodium decyl sulphate to 3.5mm and 20mm respectively completely inhibited turnover and ATP hydrolysis and stabilized the bound phosphate.  相似文献   

11.
The biphasic effect of anions on the activity of isolated bovine heart cytochrome c oxidase is paralleled by changes in the visible oxidized spectra, indicating the different conformational changes in the enzyme induced by bromide, chloride, sulphate, phosphate, ADP and ATP. Photoaffinity-labelling of most subunits of the isolated enzyme by low concentrations of 8-azido-[gamma-32P]ATP is strongly increased by ATP, ADP and unlabelled 8-azido-ATP in an unspecific manner. With the reconstituted enzyme less subunits are labelled and this labelling is only little affected by nucleotides. The data suggest a highly dynamic structure for isolated bovine heart cytochrome c oxidase.  相似文献   

12.
Phospholipid exchange reactions within the liver cell   总被引:45,自引:32,他引:13  
1. Isolated rat liver mitochondria do not synthesize labelled phosphatidylcholine from CDP-[(14)C]choline or any phospholipid other than phosphatidic acid from [(32)P]phosphate. The minimal labelling of phosphatidylcholine and other phosphoglycerides can be attributed to microsomal contamination. However, when mitochondria and microsomes are incubated together with [(32)P]phosphate, the phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine of the reisolated mitochondria become labelled, suggesting a transfer of phospholipids between the two fractions. 2. When liver microsomes or mitochondria containing labelled phosphatidylcholine are independently incubated with the opposite un-labelled fraction, there is a substantial and rapid exchange of the phospholipid between the two membranes. Exchange of phosphatidylinositol also occurs rapidly, whereas phosphatidylethanolamine and phosphatidic acid exchange only slowly. There is no corresponding transfer of marker enzymes. The transfer of phosphatidylcholine does not occur at 0 degrees , and there is no requirement for added substrate, ATP or Mg(2+), but the omission of a heat-labile supernatant fraction markedly decreases the exchange. 3. After intravenous injection of [(32)P]phosphate, short-period labelling experiments of the individual phospholipids of rat liver microsomes and mitochondria in vivo give no evidence for a similar exchange process. However, the incubation of isolated microsomes and mitochondria with [(32)P]phosphate also fails on reisolation of the fractions to demonstrate a precursor-product relationship between the individual phospholipids of the two membranes. 4. The intraperitoneal injection of [(32)P]phosphate results in a far greater proportion of the dose entering the liver than does intravenous administration. After intraperitoneal administration of [(32)P]phosphate the specific radioactivities of the individual phospholipids are in the order microsomes > outer mitochondrial membrane > inner mitochondrial membrane. 5. The incorporation of (32)P into cardiolipin is very slow both in vivo and in vitro. After labelling in vivo the radioactivity in the cardiolipin persists compared with that of the other phospholipids, whose specific radioactivities in the microsomes and mitochondrial fragments decay at a similar rate to that of the acid-soluble phosphate pool. 6. The possibility of phospholipid exchange processes occurring in the liver cell in vivo is discussed, and it is suggested that only a small but highly labelled part of the endoplasmic-reticulum lipoprotein pool is involved in the transfer.  相似文献   

13.
1. The composition of a vesicular cell-membrane fraction from leucocytes has been studied. The bulk of the mass is accounted for as protein and lipid. A small amount of carbohydrate, including some N-acetylneuraminic acid, is present. The phospholipid/cholesterol molar ratio is 1.4 and differs from that for the whole cell. 2. Labile phosphorus groups are present in the membrane but the analysis is complicated by the presence of phosphorus occluded in the membrane vesicles. 3. Leucocidin does not change the gross composition of the membranes or alter the amount or reactivity of the phosphorus compounds. 4. The cell-membrane fraction has considerable avidity for an impurity present in commercial [(32)P]orthophosphate. When this is removed [(32)P]orthophosphate or [(32)P]ATP does not label the membrane. 5. The presence of an NADH(2)-cytochrome c oxidoreductase and an alkaline phosphatase is described. The adenosine-triphosphatase activity of the membrane has not been found to depend on the presence of Na(+) or K(+).  相似文献   

14.
The photoaffinity label 8-azido[32P]adenosine 3':5'-monophosphate (8-azido-cyclic [32P]AMP) was used to analyze both the cAMP-binding component of the purified cAMP-dependent protein kinase, and the cAMP-binding proteins present in crude tissue extracts of bovine cardiac muscle. 8-Azido-cyclic [32P]AMP reacted specifically and in stoichiometric amounts with the cAMP-binding proteins of bovine cardiac muscle. Upon phosphorylation, the purified cAMP-binding protein from bovine cardiac muscle changed its electrophoretic mobility on sodium dodecyl sulfate-polyacrylamide gels from an apparent molecular weight of 54,000 to an apparent molecular weight of 56,000. In tissue extracts of bovine cardiac muscle, most of the 8-azido-cyclic [32P]AMP was incorporated into a protein band with an apparent molecular weight of 56,000 which shifted to 54,000 upon treatment with a phosphoprotein phosphatase. Thus a substantial amount of the cAMP-binding protein appeared to be in the phosphorylated form. Autoradiograms following sodium dodecyl sulfate-polyacrylamide gel electrophoresis of both the pure and impure cAMP-binding proteins labeled with 8-azido-cyclic [32P]AMP revealed another binding component with a molecular weight of 52,000 which incorporated 32P from [gamma-32P]ATP without changing its electrophoretic mobility. Limited proteolysis of the 56,000- and 52,000-dalton proteins labeled with 32P from either [gamma-32P]ATP.Mg2+ or 8-azido-cyclic [32P]AMP showed patterns indicating homology. On the other hand, peptide maps of the major 8-azido-cyclic [32P]AMP-labeled proteins from tissue extracts of bovine cardiac muscle (Mr = 56,000) and rabbit skeletal muscle (Mr = 48,000) displayed completely different patterns as expected for the cAMP-binding components of types II and I protein kinases. Both phospho- and dephospho-cAMP-binding components from the purified bovine cardiac muscle protein kinase were also resolved by isoelectric focusing on polyacrylamide slab gels containing 8 M urea. The phosphorylated forms labeled with 32P from either [gamma-32P]ATP or 8-azido-cyclic [32P]AMP migrated as a doublet with a pI of 5.35. The 8-azido-cyclic [32P]AMP-labeled dephosphorylated form also migrated as a doublet with a pI of 5.40. The phosphorylated and dephosphorylated cAMP-binding proteins migrated with molecular weights of 56,000 and 54,000, respectively, following a second dimension electrophoresis in sodium dodecyl sulfate. The lower molecular weight cAMP-binding component (Mr = 52,000) was also apparent in these gels. Similar experiments with the cAMP-binding proteins present in tissue extracts of bovine cardiac muscle indicate that they are predominantly in the phosphorylated form.  相似文献   

15.
16.
The abilities of proteins endogenous to normal and neoplastic tissues to serve as substrates in a protein-phosphorylation reaction in vitro were compared. After the tissue extracts were incubated with [gamma-32P]ATP, the phosphorylated proteins were separated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and the dried gels were subjected to radioautography. Considerable incorporation of 32P into a protein of mol.wt. 135000 was observed with extracts from foetal tissues and tumours, but only minimal incorporation into this protein occurred when extracts from adult tissues were used. The ability of this protein to become phosphorylated in vitro may be related to cell proliferation. When ascites cells were incubated with [32P]Pi, one of the major phosphoproteins migrated on sodium dodecyl suphate/polyacrylamide gels at mol.wt. 135000, suggesting that this protein can be phosphorylated both in intact cells and broken-cell preparations. A protein of mol.wt. 87000 was highly phosphorylatable in extracts from solid tumours, but was not phosphorylated in extracts from ascites tumours, foetal or adult tissues. The phosphorylation pattern of these two proteins can thus distinguish solid neoplasms and normal adult tissues from ascites tumours and from foetal tissues. A protein of mol.wt. 49000, which was the most labelled protein in adult tissues, was also one of the major phosphoproteins in foetal and neoplastic tissues. Numerous mechanisms are postulated to explain how the extent of 32P incorporation into a protein could vary as a function of biological state.  相似文献   

17.
1. Addition of the bivalent ionophore A23187 to synaptosomes isolated from guinea-pig brain cortex and labelled with [(32)P]phosphate in vitro or in vivo caused a marked loss of radioactivity from phosphatidyl-myo-inositol 4-phosphate (diphosphoinositide) and phosphatidyl-myo-inositol 4,5-bisphosphate (triphosphoinositide) and stimulated labelling of phosphatidate. No change occurred in the labelling of other phospholipids. 2. In conditions that minimized changes in internal Mg(2+) concentrations, the effect of ionophore A23187 on labelling of synaptosomal di- and tri-phosphoinositide was dependent on Ca(2+) and was apparent at Ca(2+) concentrations in the medium as low as 10(-5)m. 3. An increase in internal Mg(2+) concentration stimulated incorporation of [(32)P]phosphate into di- and tri-phosphoinositide, whereas lowering internal Mg(2+) decreased labelling. 4. Increased labelling of phosphatidate was independent of medium Mg(2+) concentration and apparently only partly dependent on medium Ca(2+) concentration. 5. The loss of label from di- and tri-phosphoinositide caused by ionophore A23187 was accompanied by losses in the amounts of both lipids. 6. Addition of excess of EGTA to synaptosomes treated with ionophore A23187 in the presence of Ca(2+) caused a rapid resynthesis of di- and tri-phosphoinositide and a further stimulation of phosphatidate labelling. 7. Addition of ionophore A23187 to synaptosomes labelled in vivo with [(3)H]inositol caused a significant loss of label from di- and tri-phosphoinositide, but not from phosphatidylinositol. There was a considerable rise in labelling of inositol diphosphate, a small increase in that of inositol phosphate, but no significant production of inositol triphosphate. 8. (32)P-labelled di- and tri-phosphoinositides appeared to be located in the synaptosomal plasma membrane. 9. The results indicate that increased Ca(2+) influx into synaptosomes markedly activates triphosphoinositide phosphatase and diphosphoinositide phosphodiesterase, but has little or no effect on phosphatidylinositol phosphodiesterase.  相似文献   

18.
Cyclic AMP-dependent protein kinases from several mammalian sources inhibit Na+-dependent alpha-aminoisobutyric acid transport by membrane vesicles isolated from 3T3 cells. Evidence is provided that phosphorylation of membrane proteins by the enzyme is responsible for the inhibition. Lysis of the vesicles, or a reduction in the intravesicular volume is not the cause of reduced transport. The cyclic AMP-dependent protein kinase and its catalytic subunit phosphorylate a number of membrane proteins. Most of these proteins are phosphorylated, but to a lesser extent in the absence of protein kinase or cyclic AMP. The phosphorylated proteins remain associated with the membranes during hypotonic lysis treatments, which would be expected to release intravesicular contents and loosely associated membrane proteins. 32P-labeled bands detected on sodium dodecyl sulfate polyacrylamide gels after phosphorylation of membranes by the catalytic subunit of the cyclic AMP-dependent kinase are eliminated by treatment with either pronase or 1 N NaOH, but not by ribonuclease nor by phospholipase C. The stability of the incorporated radioactivity to hot acid and hydroxylamine relative to hot base suggests that most of the 32P from [gamma-32P]ATP is incorporated into protein phosphomonoester linkages.  相似文献   

19.
Concentrative uptake of 32Pi induced by the dissipation of a Na+ gradient (overshoot) was demonstrated in brush border membrane vesicles obtained from isolated perfused canine kidneys. Na+-dependent 32Pi transport was decreased in brush border vesicles from isolated kidneys perfused with parathyroid hormone (PTH) for 2 h compared to uptake measured in vesicles from kidneys perfused without PTH. Cyclic AMP-dependent 32P phosphorylation of a 62,000 Mr protein band was demonstrable on autoradiograms of sodium dodecyl sulfate-polyacrylamide gels of membrane suspensions from kidneys perfused +/- PTH. Evidence that perfusion with PTH resulted in cAMP-dependent phosphorylation in isolated kidneys from parathyroidectomized dogs (decreased cAMP-dependent 32P phosphorylation of the 62,000-Mr band in brush border vesicles) was obtained after 2-h perfusion with PTH. Decreased 32P phosphorylation was not observed if membranes were allowed to dephosphorylate prior to 32P phosphorylation in vitro. We conclude that brush border vesicles from isolated perfused canine kidneys can be used to study the action of PTH on Na+-Pi cotransport in brush border membranes and on cAMP-dependent phosphorylation of the membrane. It is strongly suggested that PTH effects changes in Na+-dependent 32Pi transport in isolated brush border vesicles and changes in 32P phosphorylation of vesicles via a direct action on the renal cortical cell rather than as a consequence of extrarenal actions of the hormone.  相似文献   

20.
A protein kinase was isolated from spinach thylakoid membranes by solubilization with octyl glucoside and cholate. The enzyme was purified to apparent homogeneity by ammonium sulfate precipitation, gel filtration, and sucrose density centrifugation, followed by affinity chromatography on either Affi-Gel blue (yielding denatured enzyme) or on histone cross-linked to Sepharose (yielding active enzyme). Electrophoresis on denaturing polyacrylamide gels, followed by staining with silver, revealed the kinase as a single band corresponding to an apparent molecular mass of 64 kDa. The active enzyme underwent autophosphorylation and could be detected by autoradiography following incubation with [gamma-32P]ATP and Mg2+ ion. The specific phosphotransferase activity of purified kinase was approximately 30 nmol of phosphate min-1 (mg protein)-1 with lysine-rich histone (III-S or V-S) as substrate; casein was phosphorylated at approximately 30% of this rate. The physiological substrate for the kinase is presumed to be light-harvesting chlorophyll a/b protein complex. In solubilized form, this was phosphorylated at approximately 10% of the rate observed with histone III-S as substrate, or 10-100 times slower than the estimated rate of phosphorylation of the light-harvesting complex in situ. Possible reasons for this shortfall are considered. The kinase is proposed as the principal effector of thylakoid protein phosphorylation and associated State transition phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号