首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to provide additional information on the biochemical events that interact to cause Schwann cells to proliferate, we have monitored the intracellular pH of Schwann cells that have been stimulated to divide with myelin-enriched fractions (MEF) or axolemma-enriched fractions (AEF). The intracellular pH of Schwann cells was monitored using 2',7'-bis(carboxymethyl)-5(6)-carboxyfluorescein (BCECF), which displays an increase in fluorescence upon alkalinization. Both AEF and MEF caused dose-dependent increases in the intracellular fluorescence of the Schwann cell cultures. At their maximum doses, AEF and MEF stimulation resulted in a 260 and 300% increase in intracellular fluorescence, respectively. The increase in intracellular fluorescence was abolished when cells were stimulated in Na+-free media, suggesting a role for the Na+/H+ exchanger. Mitotic stimulation required integrity of the Na+/H+ exchanger, as inhibition of the Na+/H+ exchanger for periods up to 1 h after addition of mitogen caused a significant inhibition of subsequent mitosis. Phorbol esters, which can potentiate AEF- and MEF-induced Schwann cell proliferation, increased intracellular fluorescence fivefold, an effect which was also dependent upon the presence of Na+ in the culture media. The specificity of the increase in intracellular pH for AEF and MEF was tested by incubating Schwann cells with liver microsomes and a biologically inactive phorbol alcohol, neither of which is significantly mitogenic for Schwann cells. Neither liver microsomes nor phorbol alcohol had a significant effect on intracellular pH. The implications of the increase in intracellular pH in Schwann cells with respect to inositol phospholipid metabolism, protein kinase C activation, and cellular proliferation are discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Inositol phospholipid metabolism during mitogen-induced Schwann cell proliferation has been examined. Addition of axolemma- and myelin-enriched membrane fractions (AXL and MYE, respectively) to cultured Schwann cells stimulated 32P incorporation into phosphatidylinositol 4-monophosphate [PtdIns(4)P] and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]. During the first 5 min of incubation with the mitogens, the amount of 32P incorporated into PtdIns(4)P and PtdIns(4,5)P2 was four- to fivefold above control values. The phosphorylation of the inositol phospholipids was dependent on the concentration of membrane mitogens and was maximal within 1 h. Schwann cells that were prelabeled with [3H]glycerol and then stimulated with AXL and MYE displayed a 30-70% increase in the amounts of [3H]PtdIns(4)P and [3H]PtdIns(4,5)P2 and a 60-80% increase in the amount of [3H]phosphatidic acid. A concomitant 20% decrease in the content of [3H]PtdIns was observed after stimulation. These results suggest that the increased metabolism of PtdIns, PtdIns(4)P, and PtdIns(4,5)P2 may be one of the initial molecular events in the transduction of the mitogenic signal across the Schwann cell plasma membrane.  相似文献   

3.
Schwann Cell Surface Proteins and Glycoproteins   总被引:3,自引:3,他引:0  
Abstract: To identify surface sialoglycoproteins of rat Schwann cells and to compare molecular weights of these sialoglycoproteins with those present in rat peripheral nervous system myelin, we prepared Schwann cells from sciatic nerves of 1–3-day-old rats and cultured them in monolayer. Surface sialoglycoproteins of the cultured cells were tritium-labeled by the periodateborohydride procedure and compared with sialoglycoproteins of adult rat peripheral nervous system myelin by fluorography following polyacrylamide slab gel electrophoresis in sodium dodecyl sulfate. Three radioactive bands with apparent molecular weights of 114,000–132,000, 105,000–115,000, and 44,000–56,000 were observed in both the Schwann cell and myelin preparations. Bands of similar apparent molecular weights were noted in Schwann cells metabolically radiolabeled with d -[1,6-3H]glucosamine. A band co-migrating with myelin P0 glycoprotein was the most intensely radiolabeled of all peptides in periodate-B3H4?treated myelin, but was present in only trace amounts in periodate-B3H4? or d -[1,6-3H]glucosamine radiolabeled Schwann cells. Many presumably non-myelin glycoproteins were identified in the cultured Schwann cells by the periodate-borohydride procedure and by incubation of the cells with d -[1,6-3H]glucosamine. An immunoprecipitation technique was used to detect radiolabeled peptides in a nonionic detergent extract of freshly prepared, surface-radioiodinated Schwann cells that were bound by a rabbit anti-Schwann cell serum preabsorbed with rat fibroblasts. Many radioactive peptides were detected in the immunoprecipitate, but the two most intensely radiolabeled had apparent molecular weights of 105,000–115,000 and 95,000–106,000. This study has identified a number of glycoproteins synthesized by cultured rat Schwann cells which resemble in apparent molecular weight the glycoproteins expressed in rat peripheral nervous system myelin and has defined Schwann cell surface proteins recognized by a specific anti-rat Schwann cell antiserum.  相似文献   

4.
Electrophysiology of mammalian Schwann cells   总被引:5,自引:0,他引:5  
Schwann cells are the satellite cell of the peripheral nervous system, and they surround axons and motor nerve terminals. The review summarises evidence for the ion channels expressed by mammalian Schwann cells, their molecular nature and known or speculated functions. In addition, the recent evidence for gap junctions and cytoplasmic diffusion pathways within the myelin and the functional consequences of a lower-resistance myelin sheath are discussed.

The main types of ion channel expressed by Schwann cells are K+ channels, Cl channels, Na+ channels and Ca2+ channels. Each is represented by a variety of sub-types. The molecular and biophysical characteristics of the cation channels expressed by Schwann cells are closely similar or identical to those of channels expressed in peripheral axons and elsewhere. In addition, Schwann cells express P2X ligand-gated ion channels. Possible in vivo roles for each ion channel type are discussed. Ion channel expression in culture could have a special function in driving or controlling cell proliferation and recent evidence indicates that some Ca2+ channel and Kir channel expression in culture is dependent upon the presence of neurones and local electrical activity.  相似文献   


5.
We studied the effects of agents that raise intracellular cyclic AMP on synthesis of myelin components by cultured neonatal rat sciatic nerve Schwann cells and by continuous PNS cell lines derived from the fusion of neonatal rat sciatic nerve Schwann cells with rat RN22 Schwannoma. Treatment with N6,2'-O-dibutyryl cyclic AMP (dibutyryl cyclic AMP) caused a fourfold increase in Schwann cell incorporation of 35SO4 into sulfogalactosylceramide (sulfatide), and elicited a 10- to 20-fold increase in such incorporation by the continuous PNS cell lines; a similar effect on PNS cell line sulfatide radiolabelling was obtained with forskolin. Cultured Schwann cells expressed barely detectable levels of myelin P0 glycoprotein (P0) mRNA and myelin basic protein (MBP) mRNA. Treatment of the Schwann cells with axolemmal fragments or with dibutyryl cyclic AMP did not elicit a detectable increase in the levels of these mRNAs. The PNS cell lines constitutively expressed much higher levels of P0 mRNA than did the Schwann cells, and synthesized immunochemically demonstrable P0 glycoprotein, but did not express MBP. Treatment of the PNS cell lines with dibutyryl cyclic AMP markedly reduced expression of P0 mRNA and also diminished immunoreactive P0 glycoprotein. These PNS cell lines should prove useful for further studies of the control of Schwann cell differentiation.  相似文献   

6.
The effects of 1-oleoyl-2-acetylglycerol (OAG) and the calcium ionophore A23187 on the proliferation of Schwann cells stimulated with either a myelin-enriched membrane fraction (MEF) or an axolemma-enriched membrane fraction (AEF) have been examined. Using incorporation of [3H]thymidine as an index of proliferation, 16% of the cells became labeled after incubation with MEF (20 micrograms protein/ml) and AEF (40 micrograms protein/ml) for 72 h. Only 0.5% of the cells became labeled in cultures which were not exposed to the membrane fractions. Addition of OAG (10-500 microM) or A23187 (1.9-190 nM) in the absence of the membrane mitogens had no effect on the proliferative response of quiescent cultures of Schwann cells. When added simultaneously, however, OAG and A23187 were able to induce proliferation of the cells, although the response was only 30% of the response achieved with maximal doses of either AEF or MEF. Both OAG and A23187 were able to potentiate the mitogenicity of AEF or MEF, but only when AEF and MEF were added at submaximal concentrations. When Schwann cells were prelabeled with [3H]glycerol and then stimulated to proliferate with AEF or MEF, the amount of [3H]diacylglycerol was increased two- to threefold above that in control cultures for time periods up to 1 h. These results suggest that the proliferation of Schwann cells induced by either AEF or MEF is partially mediated through the combined effects of diacylglycerol and an increase in intracellular calcium.  相似文献   

7.
Schwann cells, on receiving the correct signal, will encircle an axon and wrap it with a myelin sheath. To begin examining some of the mechanisms underlying the process of myelination in vitro, we isolated Schwann cells from the sciatic nerves of neonatal rats and generated large cell populations with cholera toxin. The immunological and biochemical properties of these secondary Schwann cells were characterized after five to seven passages in the absence of axonal contact. These cells continued to express antigens found in both myelinating (P0 and 2',3'-cyclic nucleotide phosphohydrolase) and nonmyelinating cells in vivo (A5E3 and glial fibrillary acidic protein) in addition to the markers common to both types of cells (Ran-1, 217c, S-100, and laminin). Biochemical analyses showed that these cells synthesize the very-long-chain fatty acids (22-26 carbon atoms) found in myelin membranes. Moreover, the enzymes required for the synthesis of myelin glycolipids (including sphingosine acyltransferase, UDP-galactose:ceramide galactosyltransferase, and cerebroside sulfotransferase) were still active, and metabolic labeling studies showed that galactocerebroside and sulfatide were synthesized even though the galactocerebroside pool was insufficient to be detected by immunostaining. Secondary Schwann cells also synthesized four species of myelin basic protein and the major structural glycoprotein in myelin, P0. The pathway necessary for glycosylation of P0 protein remained active, and an analysis of the oligosaccharide chain revealed that approximately 70% was processed to a complex form. In summary, we found that secondary Schwann cells still express most of the immunological markers of differentiated cells and continue to synthesize low levels of myelin components. Therefore, Schwann cells do not dedifferentiate in culture, as previously believed.  相似文献   

8.
Abstract: Myelin gene expression was investigated in the immortalized S16 Schwann cell line grown in the presence and absence of serum and at different densities. Protein expression was monitored by western blotting, and message levels were determined by RNase protection assays. To study cell proliferation rates at different cell densities and serum conditions. [3H]thymidine uptake assays and cell counts were performed. Although serum deprivation decreased cell proliferation as expected, the proliferation of S16 cells was unchanged or slightly increased at high density under the conditions of our experiments in either serum-containing or serum-free medium. This increased cell division at high density appeared to be due to greater release of an autocrine growth factor to the medium by dense cell populations. For both sparse and dense cells, substantially more P0 glycoprotein (P0) and myelin-associated glycoprotein (MAG) per milligram of total cellular protein were expressed when the cells were proliferating slowly in defined medium in comparison with more rapidly proliferating cells in serum-containing medium. Furthermore, in both serum-containing and defined media, dense cell populations expressed more MAG and P0 than sparse ones. P0 mRNA and MAG mRNA levels generally paralleled protein levels. The level of mRNA for peripheral myelin protein-22 (PMP-22) was also increased at high cell density but did not change much when proliferation was decreased by serum deprivation. PMP-22 protein was not detected under any of the growth conditions. The changes in expression of these genes with growth conditions may be specific for myelin proteins, because the expression of a nonmyelin glycoprotein, L1, remained constant. The level of cyclic AMP in the cells did not change with the different growth conditions tested. The results indicate that the S16 Schwann cell line mimics primary or secondary Schwann cells by down-regulating myelin gene expression when it proliferates more rapidly in the presence of serum. Furthermore, in both the presence and absence of serum, there was greater expression of myelin genes at high cell density that was not associated with a decreased proliferative rate. Because evidence for a role of secretory factors in affecting myelin gene expression was not obtained by treating sparse S16 cells with medium conditioned by dense S16 cells, the results suggest that the higher expression of myelin genes at high density may be mediated by cell-to-cell contact.  相似文献   

9.
Myelin basic protein (MBP) and two peptides derived from MBP (MBP1–44 and MBP152–167) stimulated Schwann cell (SC) proliferation in a cAMP-mediated process. The two mitogenic regions of MBP did not compete with one another for binding to SC suggesting a distinctive SC receptor for each mitogenic peptide. Neutralizing antibodies to the fibroblast growth factor receptor blocked the mitogenic effect of the myelin-related SC mitogen found in the supernatant of myelin-fed macrophages. The binding of 125I-MBP to Schwann cells was specifically inhibited by basic fibroblast growth factor (bFGF) and conversely the binding of 125I-bFGF was competitively inhibited by MBP. These data suggested that the mitogenic effect of one MBP peptide was mediated by a bFGF receptor. The binding of MBP to ganglioside GM1 and the ability of MBP peptides containing homology to the B subunit of cholera toxin (which binds ganglioside GM1) to compete for the binding of a mitogenic peptide (MBP1–44) to SC, identified ganglioside GM1 as a second SC receptor. Based on these results, we conclude that MBP1–44 and MBP152–167 associate with ganglioside GM1 and the bFGF receptor respectively to stimulate SC mitosis.  相似文献   

10.
Shettar A  Muttagi G 《Peptides》2012,36(1):46-53
In view of the observations that Schwann cells contain insulin receptors, in the present study, we have investigated the developmental regulation of insulin receptor gene in the sciatic nerves of different postnatal age group rats. We have also investigated the role of insulin in the expression of the major PNS myelin glycoprotein P zero (P0) in normal as well as high glucose conditions in primary rat Schwann cells. The expression of insulin receptor gene in sciatic nerves appeared to be differentially regulated. The steady-state levels of insulin receptor mRNA increased remarkably during development and after postnatal day 10, when the peak of myelin structural gene (P0) expression occur and slowly increased further until at least postnatal day 90 in parallel with the growth of the myelin sheath. By employing immunofluorescence and RT-PCR, we observed significant increase in the P0 protein and mRNA levels in Schwann cells in response to the insulin than in insulin deprived counterparts. The presence of insulin in the high glucose medium ameliorated the altered protein and mRNA of P0 in Schwann cells compared to the insulin deprived counterparts. These studies demonstrate the importance of insulin and its receptor as possible regulatory factors in the PNS and also emphasizes their novel therapeutic applications in demyelinating diseases, especially in diabetic poly-neuropathy.  相似文献   

11.
Synthesis of Sulfatide by Cultured Rat Schwann Cells   总被引:6,自引:4,他引:2  
Abstract: The 35S sulfolipids synthesized by purified cultures of rat Schwann cells, fibroblasts, and a rat cell line (RN2) were studied. Schwann cell 35S sulfolipids were almost entirely [35S]sulfatide, as shown by TLC in two different solvent systems with unlabeled authentic sulfatide run in the same track. RN2 and fibroblasts did not synthesize significant amounts of sulfatide, by the same criteria. Previous studies failed to detect any characteristic myelin components, including sulfatide, on Schwann cells after several days in culture (Brockes et al., 1980a; Mirsky et at., 1980). My results show that Schwann cells continue to synthesize some sulfatide in the absence of neurons.  相似文献   

12.
In this study, we investigated the expression of various G proteins in whole sciatic nerves, in myelin and nonmyelin fractions from these nerves, and in membranes of immortalized Schwann cells. In myelin, nonmyelin, and Schwann cell membranes we detected two 39-40-kDa pertussis toxin substrates that were resolved on separation on urea-gradient gels. Two cholera toxin substrates with apparent molecular masses of 42 and 47 kDa were present in nerve and brain myelin and in Schwann cell membranes. In these membranes, a third 45-kDa cholera toxin substrate, which displayed the highest labeling, was also present. Immunoblotting with specific antisera allowed the identification of G(o) alpha, Gi1 alpha, Gi2 alpha, Gi3 alpha, Gq/G11 alpha, and the two isoforms of Gs alpha in nerve homogenates, nerve, and brain myelin fractions. In Schwann cell membranes we identified G(o) alpha, Gi2 alpha, Gi3 alpha, and proteins from the Gq family, but no immunoreactivity toward anti-Gi1 alpha antiserum was detected. In these membranes, anti-Gs alpha antibody recognized the three cholera toxin substrates mentioned above, with the 45-kDa band displaying the highest immunoreactivity. Relative to sciatic nerve myelin, the Schwann cell membranes revealed a significantly higher expression of Gi3 alpha and the absence of Gi1 alpha. The different distribution of G proteins among the different nerve compartments might reflect the very specialized function of Schwann cells and myelin within the nerve.  相似文献   

13.
Myelin is the multi-layered glial sheath around axons in the vertebrate nervous system. Myelinating glia develop and function in intimate association with neurons and neuron-glial interactions control much of the life history of these cells. However, many of the factors that regulate key aspects of myelin development and maintenance remain unknown. To discover new molecules that are important for glial development and myelination, we undertook a screen of zebrafish mutants with previously characterized neural defects. We screened for myelin basic protein (mbp) mRNA by in situ hybridization and identified four mutants (neckless, motionless, iguana and doc) that lacked mbp expression in parts of the peripheral and central nervous systems (PNS or CNS), despite the presence of axons. In all four mutants electron microscopy revealed that myelin-forming glia were present and had formed loose wraps around axons but did not form compact myelin. We found that addition of exogenous retinoic acid (RA) rescued mbp expression in neckless mutant embryos, which lack endogenous RA synthesis. Timed application of the RA synthesis inhibitor DEAB to wild type embryos showed that RA signalling is required at least 48 h before the onset of myelin protein synthesis in both CNS and PNS.  相似文献   

14.
15.
The major components of crude brain synaptosomes (synaptic membranes, mitochondria, and myelin) have been separated and analyzed by polyacrylamide gel electrophoresis for the presence of proteins that serve as substrates for protein carboxyl methyltransferase. Of the three fractions, synaptic membranes contain the largest number of individual methyl acceptors (at least seven), while mitochondria contain no well-defined methyl acceptors. Undisrupted myelin contains a single major methyl acceptor with a very low apparent molecular weight. The patterns of protein methylation in synaptic membranes prepared from cerebral cortex, hippocampus, striatum, thalamus, and tectum showed marked differences; however, these differences could largely be explained by differential degrees of myelin contamination in synaptic membranes from the different regions. The effect of trypsin pretreatment on the carboxyl methylation of intact and lysed synaptosomes was studied to estimate the sidedness of the major methylation sites on synaptic membranes. One of the methyl acceptors (Mr 48K) appears to be facing the intracellular surface of the synaptosome, but most sites appear to be outward facing.  相似文献   

16.
低温保存许旺细胞对周围神经再生的作用   总被引:1,自引:0,他引:1  
目的:比较原代培养许旺细胞(Schwann cells,SCs)和冷冻保存的SCs移植对损伤后坐骨神经再生的作用。方法:原代培养和液氮保存的SCs分别移植到桥接缺损坐骨神经的硅胶管内。在移植后不同时间(第6和8周末),硅胶管远端神经干内注射HRP,逆行追踪背根神经节和脊髓前角的标记神经元数量;测量再生神经纤维的复合动作电位传导速度;电镜观察再生神经纤维的髓鞘形成。结果:原代培养和冷冻保存SCs在移植后不同时间其背根神经节和脊髓前角神经元HRP标记细胞数量、再生神经纤维的复合动作电位传导速度基本一致,再生神经纤维髓鞘的形成未见明显差别。结论:冷冻保存的SCs仍具有促进损伤后周围神经再生的能力。  相似文献   

17.
Peripheral nervous system (PNS) possess both classical (e.g. progesterone receptor, PR, androgen receptor, AR) and non-classical (e.g. GABAA receptor) steroid receptors and consequently may represent a target for the action of neuroactive steroids. Our data have indicated that neuroactive steroids, like for instance, progesterone, dihydroprogesterone, tetrahydroprogesterone, dihydrotestosterone and 3-diol, stimulate both in vivo and in vitro (Schwann cell cultures), the expression of two important proteins of the myelin of peripheral nerves, the glycoprotein Po (Po) and the peripheral myelin protein 22 (PMP22). It is important to highlight that the mechanisms by which neuroactive steroids exert their effects on the expression of Po and PMP22 involve different kind of receptors depending on the steroid and on the myelin protein considered. In particular, at least in culture of Schwann cells, the expression of Po seems to be under the control of PR, while that of PMP22 needs the GABAA receptor.

Because Po and PMP22 play an important physiological role for the maintenance of the multilamellar structure of the myelin of the PNS, the present observations might suggest the utilization of neuroactive steroids as new therapeutically approaches for the rebuilding of the peripheral myelin.  相似文献   


18.
19.
Neonatal rat Schwann cells, cultured with agents which increase intracellular cyclic AMP, were prompted to resume synthesis of a 170,000 Mr glycoprotein which is specific to peripheral nervous system myelin and is herein referred to as P170K. We have shown previously that similar treatment induces the synthesis by Schwann cells of the myelin lipid, galactocerebroside. In contrast to P170K and galactocerebroside, syntheses of P0 and myelin basic protein were not induced. Intracellular cyclic AMP is thus likely to be a participant in the complex system regulating myelination.  相似文献   

20.
Clonal cell line D6P2T, subcloned from an ethylnitrosourea-induced tumor line D6 of the rat peripheral nervous system, has been characterized with particular attention to galactolipid metabolism. Galactosylcerebroside and sulfatide synthesis and expression on the cell surface are highly regulated in D6P2T cells by mechanisms involving serum- and cyclic AMP-mediated pathways. These cells also express 2',3'-cyclic nucleotide 3'-phosphohydrolase (Wolfgram protein W1a) and laminin. In contrast, myelin basic protein and antigen HNK-1 were not detected. Line D6P2T appears to be a semi-differentiated Schwann cell model, which offers interesting possibilities for studies of galactolipid synthesis, transport, and sorting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号