首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methods commonly used for the characterization of receptors on cell surfaces may be subject to adsorption artifacts that mimic the action of receptors even when no receptors are present. Traditional techniques such as incubation in the presence of an unrelated protein to minimize adsorption or extensive washing to eliminate nonspecific binding may be inadequate to ensure that the observed binding is due to a cell membrane--ligand interaction. In this paper three serum proteins, albumin, transferrin, and immunoglobulin G, are shown to exhibit behavior suggestive of receptor-mediated binding even in the absence of cells. Two types of control studies are suggested to establish that observed binding is attributable to interaction with cells.  相似文献   

2.
Thallium binding to native and radiation-inactivated Na+/K+-ATPase   总被引:1,自引:0,他引:1  
The number of high-affinity K+-binding sites on purified Na+/K+-ATPase from pig kidney outer medulla has been assessed by measurement of equilibrium binding of thallous thallium, Tl+, under conditions (low ionic strength, absence of Na+ and Tris+) where the enzyme is in the E2-form. Na+/K+-ATPase has two identical Tl+ sites per ADP site, and the dissociation constant varies between 2 and 9 microM. These values are identical to those for Tl+ occlusion found previously by us, indicating that all high-affinity binding leads to occlusion. The specific binding was obtained after subtraction of a separately characterized unspecific adsorption of Tl+ to the enzyme preparations. Radiation inactivation leads to formation of modified peptides having two Tl+-binding sites with positive cooperativity, the second site-dissociation constant approximating that for the native sites. The radiation inactivation size (RIS) for total, specific Tl+ binding is 71 kDa, and the RIS for Tl+ binding with original affinity is approx. 190 kDa, equal to that of Na+/K+-ATPase activity and to that for Tl+ occlusion with native affinity. This latter RIS value confirms our recent theory that in situ the two catalytic peptides of Na+/K+-ATPase are closely associated. The 71 kDa value obtained for total Tl+ sites is equal to that for total binding of ATP and ADP and it is clearly smaller than the molecular mass of one catalytic subunit (112 kDa). The Tl+-binding experiments reported thus supports the notion that radiation inactivation of Na+/K+-ATPase is a stepwise rather than an all or none process.  相似文献   

3.
The binding of ligands with DNA is a key moment in a whole range of cellular processes that provide not only the normal cell vital activity but also the development of some pathological processes. Depending on ligand type, structure of DNA adsorption centers, and physical–chemical conditions of the surrounding, the ligand may bind to DNA by several modes [1]. Particularly, adsorption isotherm of multimodal ligands binding to DNA in Scatchard’s coordinates has a concave shape with two brightly expressed linear areas in the region of small fillings. The analysis of such type of adsorption isotherm for determining of important binding parameters such as binding constant and number of adsorption centers (the part of DNA polymer with which one ligand molecule binds) presents difficulties. Practically in all cases, the analysis of such adsorption isotherm is carried out by linear parts of curves. Such analysis mode of experimental points is approximate method, since all registered of experimental points are roughly divided into two groups and they are treated by linear binding isotherm and therefore the binding parameters are determined. In the present work, the non-linear adsorption isotherm in Scatchard‘s coordinates is obtained which allowed, provided, the more precise treatment of all experimental points by unique curve which includes linear regions as well. Such mode of treatment of experimental points makes more precise the determination of not only binding constant and number of adsorption centers that correspond to the one ligand molecule binding, but also additional binding parameter – a proportion of adsorption centers of each binding to DNA type of multimodal ligand.  相似文献   

4.
The binding of phosphorylase kinase to calmodulin-Sepharose 4B was studied by column and batch methods. It was found that the Ca2+ dependence of the interaction strongly depended strongly depended on the degree of substitution of agarose with calmodulin. Equilibrium adsorption isotherms (i.e., bulk ligand binding functions and lattice site binding functions) of phosphorylase kinase were measured on calmodulin-Sepharose. Sigmoidal bulk ligand binding functions (bulk adsorption coefficients: 1.5–5.8) were found which indicate intermolecular attraction during binding. Hyperbolic lattice site binding functions (lattice adsorption coefficients: 1.0) were obtained thus excluding the existence of a critical surface concentration of immobilized calmodulin and indicating single independent binding sites on the gel surface and on phosphorylase kinase. These findings were combined to optimize the adsorption of phosphorylase kinase on calmodulin-Sepharose, for purification procedures at low Ca2+ concentrations (5–10 μM ) minimizing proteolysis by calpains. With this novel method phosphorylase kinase from rabbit and frog skeletal muscle could be purified ca 100- and 200-fold, respectively, in two steps.  相似文献   

5.
Binding processes of any kind can be characterized as an association of a given ligand with some binding factor. This includes macromolecules as well as supramolecular aggregates such as micelles or membranes. The underlying molecular binding mechanism may be more or less complicated due to various intermediate steps (involving for instance conformational changes, aggregation, cooperativity, etc.). A sensible discussion of possible binding models naturally calls for a model-independent access to basic thermodynamic properties. The present contribution will demonstrate how this can quite generally be accomplished by a pertinent processing of properly selected experimental data. The method requires a series of titration measurements comprising the use of variable amounts of both the ligand and the binding factor. It leads to a linear mass conservation plot (i.e. amount of the ligand vs. a matching amount of the binding factor) whose slope and ordinate intercept are equal to the binding ratio (i.e. bound ligand per binding factor) and the free ligand concentration, respectively. This establishes the specific binding isotherm. The approach also reveals latent structurally determined features of the applied physical measuring signal. A number of examples including specific binding, unspecific adsorption and insertion in two-dimensional molecular films will illustrate the methodology.  相似文献   

6.
The Lactobacillus amylovorus alpha-amylase starch binding domain (SBD) is a functional domain responsible for binding to insoluble starch. Structurally, this domain is dissimilar from other reported SBDs because it is composed of five identical tandem modules of 91 amino acids each. To understand adsorption phenomena specific to this SBD, the importance of their modular arrangement in relationship to binding ability was investigated. Peptides corresponding to one, two, three, four, or five modules were expressed as His-tagged proteins. Protein binding assays showed an increased capacity of adsorption as a function of the number of modules, suggesting that each unit of the SBD may act in an additive or synergic way to optimize binding to raw starch.  相似文献   

7.
Spectrophotometric method was used for study the binding of bromthymol blue dye (BTB) with bovine methemoglobin in 15% solutions of ethanol, glycerol and polyethylene glycol with molecular mass of 1.5 kDa (PEG-1500). It was shown, that adsorption of BTB by methemoglobin decreased in the sequence: glycerol > ethanol > PEG-1500. It is supposed that adsorption of the alcohols on the BTS sites of binding on methemolglobin led to the decrease of the amount of binding sites accessible for the dye.  相似文献   

8.
Surface pressure measurements, external reflection-Fourier transform infrared spectroscopy, and neutron reflectivity have been used to investigate the lipid-binding behavior of three antimicrobial peptides: melittin, magainin II, and cecropin P1. As expected, all three cationic peptides were shown to interact more strongly with the anionic lipid, 1,2 dihexadecanoyl-sn-glycerol-3-(phosphor-rac-(1-glycerol)) (DPPG), compared to the zwitterionic lipid, 1,2 dihexadecanoyl-sn-glycerol-3-phosphocholine (DPPC). All three peptides have been shown to penetrate DPPC lipid layers by surface pressure, and this was confirmed for the melittin-DPPC interaction by neutron reflectivity measurements. Adsorption of peptide was, however, minimal, with a maximum of 0.4 mg m(-2) seen for melittin adsorption compared to 2.1 mg m(-2) for adsorption to DPPG (from 0.7 microM solution). The mode of binding to DPPG was shown to depend on the distribution of basic residues within the peptide alpha-helix, although in all cases adsorption below the lipid layer was shown to dominate over insertion within the layer. Melittin adsorption to DPPG altered the lipid layer structure observed through changes in the external reflection-Fourier transform infrared lipid spectra and neutron reflectivity. This lipid disruption was not observed for magainin or cecropin. In addition, melittin binding to both lipids was shown to be 50% greater than for either magainin or cecropin. Adsorption to the bare air-water interface was also investigated and surface activity followed the trend melittin>magainin>cecropin. External reflection-Fourier transform infrared amide spectra revealed that melittin adopted a helical structure only in the presence of lipid, whereas magainin and cecropin adopted helical structure also at an air-water interface. This behavior has been related to the different charge distributions on the peptide amino acid sequences.  相似文献   

9.
Studies carried out using engineered proteins clearly demonstrate that adsorption to derivatized surfaces involves multiple interactions between functional groups on the protein and complementary sites distributed on the surface. The fact that adsorption involves multipoint interactions has important implications for the design of separations processes and for the interpretation of heterogeneity in biological recognition phenomena. Increasing the density of surface metal sites (immobilized copper ions) is found to be functionally equivalent to increasing the number of metal-coordinating groups on the protein (histidines and deporotonated amines), m in that both processes increase the likelihood of simultaneous interactions between the protein and the surface. A consequence of multiple-site interactions is a significant in crease in protein binding affinity that depends on the arrangement of surface sites. A protein will show the highest affinity for arrangements of surface sites which best match its own pattern of functioal groups and will show lower affinity for less optimal arrangements, resulting in binding that is inherently heterogeneous. We have found that reversible protein adsorption in immobilized metal affinity chromatography (IMAC) is described by the Temikin model, which characterizes binding heterogeneity by a uniform distribution of binding energies over the population of surface binding sites. (c) 1995 John Wiley & Sons, Inc.  相似文献   

10.
Sodium and potassium binding by rat liver cell microsomes   总被引:3,自引:0,他引:3       下载免费PDF全文
The effects of ion concentration, pH, and presence of competing ions on the sodium and potassium binding properties of rat liver cell microsomes were studied. Typical adsorption isotherms were obtained in the concentration dependence studies, with saturation being reached when 1.2 to 1.4 m.eq. cations were retained per gm. of microsome Kjeldahl nitrogen. The retention was shown to be due to a binding to specific sites rather than to a trapping of the cations. The binding showed a sharp pH dependence in the range 6.0 to 7.5. The presence of one cation depressed the binding of the other, indicating that Na+ and K+ as well as H+ ions compete for the same sites. Potassium was bound slightly more strongly than sodium, while hydrogen was bound about 105 times more strongly than either. Calculations show that the binding follows the simple mass law. Similarities between adsorption by microsomes and adsorption by synthetic cation exchange resins are discussed and compared to some of the characteristics of electrolyte behavior in living systems. A possible ion exchange elution, active cation transport mechanism is suggested, involving the preferential elution of Na+ out of the cell by H+ ions produced by metabolism.  相似文献   

11.
A previous study reported that the uptake and release kinetics of ouabain by human erythrocytes in suspension could well be explained by a physical model which involves the slow Langmuir binding of the drug to the erythrocyte membrane. The purpose of the present investigation was to assess quantitatively the thermodynamics of this drug-membrane receptor interaction in order to evaluate the consistency of these parameters with the proposed kinetics model.Cellular drug uptake and release experiments were conducted at 20, 30 and 40°C, and the Langmuir adsorption and desorption rate constants as well as the Langmuir adsorption isotherms determined from the rate data. With the knowledge of these Langmuir parameters, it was possible to estimate the magnitude of all relevant thermodynamic properties by the use of established physicochemical theories.The activation energies and entropies for the ouabain adsorption and desorption processes were computed as 105 kJ/mol, 231 J/K per mol, 180 kJ/mol and 245 J/K per mol, respectively. The kinetic and isosteric heats of adsorption were found to be ?75.0 and ?72.4 kJ/mol, respectively. These findings suggest that the ouabain-erythrocyte membrane interaction represents a case of activated chemisorption which follows the Langmuir isotherm, thus, further underscoring the appropriateness of the Langmuir binding kinetics model.  相似文献   

12.
Simple diffusion experiments indicated that oestriol was retained by human pregnancy plasma more effectively than by albumin solutions of a corresponding concentration. Oestriol bound (Ka = 6 X 10(6) l/mol at 4 degrees C) to a glycoprotein which had been isolated from plasma by adsorption to Concanavalin A. The free energy of binding at 37 degrees C was -38 kJ/mol. Competition experiments indicated that the oestriol binding glycoprotein had properties expected of sex hormone binding globulin. The distribution of oestriol among the protein fractions of human pregnancy plasma--glycoprotein bound 7.8%, albumin bound 78.6%, unbound 13.6%--suggests that this glycoprotein plays little part in the transport of oestriol.  相似文献   

13.
Antiphospholipid antibodies interact with phospholipid membranes via lipid binding plasma proteins, mostly, prothrombin and beta(2)-glycoprotein I. Using ellipsometry, we characterized prothrombin-mediated binding of lupus anticoagulant (LA) positive IgG, isolated from patients with antiphospholipid syndrome, to phosphatidylserine (PS)-containing membranes. LA IgG did not bind to membranes in the absence of prothrombin, but addition of prothrombin resulted in high-affinity binding of prothrombin-LA IgG complexes; half-maximal binding was attained at IgG and prothrombin concentrations of 10 microg/mL and 4 nM, respectively. Adsorption to membranes containing 10-40 mol % PS revealed that membrane-bound rather than solution-phase prothrombin determines the adsorption kinetics. Depletion of prothrombin and LA IgG from the solution results in rapid desorption which is strongly inhibited by addition of prothrombin but not of LA IgG. Prothrombin-mediated adsorption of monovalent Fab1 fragments prepared from patient LA IgG was negligible, indicating that monovalent interaction between prothrombin and LA IgG is weak. The kinetics of adsorption and desorption indicate that divalent binding of LA IgG to prothrombin at the lipid membrane occurs.  相似文献   

14.
1. Binding of 3H-cortisol by serum proteins by means of competitive adsorption was relatively high by serum of the gerbil, human, rabbit, sheep, tree shrew, hamster, rhesus monkey and horse. 2. A somewhat lower binding was observed by serum proteins of the baboon, cattle, dog, rat and cat. 3. Serum taken from either the mouse, guinea pig or pig gave very flat binding curves, specific binding not exceeding 5% of added 3H-cortisol. 4. It is concluded that the measurement of protein-binding of 3H-cortisol by means of competitive adsorption is a reliable method for serum of most eutherian species but is unsuited if serum of the mouse, guinea pig or pig is used.  相似文献   

15.
In chromatography, macromolecules do not adsorb in the traditional sense of the word but bind to ligands that are covalently bonded to the surface of the porous bead. Therefore, the adsorption must be modelled as a process where protein molecules bind to the immobilised ligands. The paper discusses the general thermodynamic principles of ligand binding. Models of the multi-component adsorption in ion-exchange and hydrophobic chromatography, HIC and RPLC, are developed. The parameters in the models have a well-defined physical significance. The models are compared to the Langmuir model. In the traditional adsorption models, the standard state Gibbs energy change of adsorption does not depend level of occupancy, but when it depends on the level of occupancy it gives rise to an adsorptive behaviour known as cooperativity. The binding of oxygen to haemoglobin is a well-known example from biology but it is also observed in chromatography due to protein-protein interactions. Retention measurements on beta-lactoglobulin A demonstrate this. A discussion of salt effects on hydrophobic interactions in precipitation and chromatography of proteins concludes the paper.  相似文献   

16.
Laminin, a glycoprotein of basement membranes, agglutinates aldehyde-fixed erythrocytes. Laminin-mediated hemagglutination is strongly inhibited by some gangliosides and anionic phospholipids. Laminin, however, binds only to sulfatides among the lipids extracted from erythrocytes. We now report that gangliosides are remarkably potent inhibitors of laminin binding to sulfatides when both lipids are adsorbed on plastic. A 50% inhibition of laminin binding to 100 ng of sulfatides is obtained with 10 ng of GM3 and 8 ng of GM1, respectively. Mixing of sulfatides with neutral glycolipids, phosphatidyl choline, or cholesterol does not inhibit laminin binding, whereas mixing with sulfatide-depleted erythrocyte lipids enhances binding. Inhibition of binding by gangliosides is not due to competition for adsorption to the plastic, as preincubation of the adsorbed lipids with neuraminidase reverses inhibition by GM3, but not by GM1 which is not a substrate for the enzyme. These results are consistent with the observations that treatment of fixed erythrocytes with neuraminidase increases their agglutinability by laminin and that pretreatment of erythrocytes with gangliosides followed by washing gives similar inhibition as seen when gangliosides are present as competitive inhibitors. Thus, inhibition of laminin-mediated agglutination by gangliosides probably results from masking of erythrocyte sulfatides due to adsorption of gangliosides onto the membrane rather than from a direct competition for laminin binding sites.  相似文献   

17.
1. Ca(2+) ions decreased the surface charge of isolated adrenal-medullary chromaffin granules whether the granules were untreated or previously incubated with neuraminidase. 2. Ca(2+) binding in both cases followed a Langmuir adsorption isotherm. 3. The chromaffin-granule surface was essentially polyanionic with about 10800 anionic sites per granule, of which 4200 sites are capable of binding Ca(2+) ions with an electrochemical free energy of adsorption of -1.32kJ.mol(-1). 4. The surface region of the chromaffin granule was calculated to bind 1306 Ca(2+) ions at 2.2mm-Ca(2+) (ionic strength 0.16mol.litre(-1)). 5. The importance of Ca(2+) binding to the chromaffin-granule surface is discussed in relation to the hypothesis of secretion by exocytosis.  相似文献   

18.
19.
It has been postulated that myristoylation of peripheral proteins would facilitate their binding to membranes. However, the exact involvement of this lipid modification in membrane binding is still a matter of debate. Proteins containing a Ca(2+)-myristoyl switch where the extrusion of their myristoyl group is dependent on calcium binding is best illustrated by the Ca(2+)-binding recoverin, which is present in retinal rod cells. The parameters responsible for the modulation of the membrane binding of recoverin are still largely unknown. This study was thus performed to determine the involvement of different parameters on recoverin membrane binding. We have used surface pressure measurements and PM-IRRAS spectroscopy to monitor the adsorption of myristoylated and nonmyristoylated recoverin onto phospholipid monolayers in the presence and absence of calcium. The adsorption curves have shown that the myristoyl group and hydrophobic residues of myristoylated recoverin strongly accelerate membrane binding in the presence of calcium. In the case of nonmyristoylated recoverin in the presence of calcium, hydrophobic residues alone are responsible for its much faster monolayer binding than myristoylated and nonmyristoylated recoverin in the absence of calcium. The infrared spectra revealed that myristoylated and nonmyristoylated recoverin behave very different upon adsorption onto phospholipid monolayers. Indeed, PM-IRRAS spectra indicated that the myristoyl group allows a proper orientation and organization as well as faster and stronger binding of myristoylated recoverin to lipid monolayers compared to nonmyristoylated recoverin. Simulations of the spectra have allowed us to postulate that nonmyristoylated recoverin changes conformation and becomes hydrated at large extents of adsorption as well as to estimate the orientation of myristoylated recoverin with respect to the monolayer plane. In addition, adsorption measurements and electrophoresis of trypsin-treated myristoylated recoverin in the presence of zinc or calcium demonstrated that recoverin has a different conformation but a similar extent of monolayer binding in the presence of such ions.  相似文献   

20.
Kaolin is widely used in diagnostic virology, mainly to remove serum lipoproteins that may interfere with antibody assaying. The binding kinetics of antibody to kaolin at different pH values and with varying amounts of kaolin indicated a uniform and characteristic binding pattern for IgG with maximum adsorption at pH 5 and no adsorption at pH above 9. To avoid loss of IgG antibody adsorption with kaolin should therefore be performed at pH greater than or equal to 9. The amount adsorbed increased with the amount of kaolin used. The IgM pattern was less uniform with maximum adsorption of total IgM at about 7.0, the amount adsorbed being highly dependent on kaolin concentration. Serum lipoproteins were rapidly and strongly adsorbed independent of pH from 7 to 11 and independent of the lipoprotein content of the serum. The amount of kaolin used was, however, critical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号