首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The eukaryotic genome is partitioned into chromatin domains containing coding and intergenic regions. Insulators have been suggested to play a role in establishing and maintaining chromatin domains. Here we describe the identification and characterization of two separable enhancer blocking elements located in the 5′ flanking region of the chicken α-globin domain, 11–16 kb upstream of the embryonic α-type π gene in a DNA fragment harboring a MAR (matrix attachment region) element and three DNase I hypersensitive sites (HSs). The most upstream enhancer blocking element co-localizes with the MAR element and an erythroid-specific HS. The second enhancer blocking element roughly co-localizes with a constitutive HS. The third erythroid-specific HS present within the DNA fragment studied harbors a silencing, but not an enhancer blocking, activity. The 11 zinc-finger CCCTC-binding factor (CTCF), which plays an essential role in enhancer blocking activity in many previously characterized vertebrate insulators, is found to bind the two α-globin enhancer blocking elements. Detailed analysis has demonstrated that mutation of the CTCF binding site within the most upstream enhancer blocking element abolishes the enhancer blocking activity. The results are discussed with respect to special features of the tissue-specific α-globin gene domain located in a permanently open chromatin area.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
Alpha-spectrin is a membrane protein critical for the flexibility and stability of the erythrocyte. We are attempting to identify and characterize the molecular mechanisms controlling the erythroid-specific expression of the alpha-spectrin gene. Previously, we demonstrated that the core promoter of the human alpha-spectrin gene directed low levels of erythroid-specific expression only in the early stages of erythroid differentiation. We have now identified a region 3' of the core promoter that contains a DNase I hypersensitive site and directs high level, erythroid-specific expression in reporter gene/transfection assays. In vitro DNase I footprinting and electrophoretic mobility shift assays identified two functional GATA-1 sites in this region. Both GATA-1 sites were required for full activity, suggesting that elements binding to each site interact in a combinatorial manner. This region did not demonstrate enhancer activity in any orientation or position relative to either the alpha-spectrin core promoter or the thymidine kinase promoter in reporter gene assays. In vivo studies using chromatin immunoprecipitation assays demonstrated hyperacetylation of this region and occupancy by GATA-1 and CBP (cAMP-response element-binding protein (CREB)-binding protein). These results demonstrate that a region 3' of the alpha-spectrin core promoter contains a GATA-1-dependent positive regulatory element that is required in its proper genomic orientation. This is an excellent candidate region for mutations associated with decreased alpha-spectrin gene expression in patients with hereditary spherocytosis and hereditary pyropoikilocytosis.  相似文献   

15.
16.
17.
18.
Here, we show that in the chicken genome, the domain of alpha-globin genes is preceded by a CpG island of which the downstream part ( approximately 0.65 kbp) is heavily methylated in lymphoid cells; it is either non-methylated or undermethylated in erythroid cells. Recombinant plasmids were constructed with the corresponding DNA fragment (called "uCpG") placed upstream to a reporter CAT gene expressed from the promoter of the alpha(D) chicken globin gene. Selective methylation of CpG dinucleotides within the uCpG fragment suppressed fivefold the expression of the CAT gene, when neither this gene itself nor the alpha(D) promoter were methylated. Methylation of CpG dinucleotides within the alpha(D) gene promoter did not modify the suppression effect exerted by methylated uCpG. We interpret these results within the frame of the hypothesis postulating, that methylation of the upstream CpG island of the chicken alpha-globin gene domain may play an essential role in silencing the alpha-globin genes in non-erythroid cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号