首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ligation of the TCR on Jurkat T lymphoblastoid cells causes an 1,4,5-inositol trisphosphate-dependent rise in intracellular cytoplasmic calcium that is inhibited by PMA, a potent activator of protein kinase C. Consequently, protein kinase C is widely believed to mediate feedback inhibition of TCR-activated phospholipase C. We have now extended these studies to normal unblasted human CD4+ T lymphocytes, examining the PMA sensitivity of both the TCR complex-mediated release of total inositol-phosphates and the resynthesis of the parent phosphoinositides. In contrast to Jurkat, in which PMA inhibited release of 1,4,5-inositol trisphosphate by 60% and total inositolphosphates by 40% (50% inhibitory concentration, 5.6 nM), normal cells displayed a marked increase in anti-CD3-induced phosphatidylinositol (PI) cycling in the presence of PMA. Both total inositolphosphate release and PI resynthesis were maximally elevated (88% and 342%, respectively) by a PMA concentration that also optimally supported a subsequent proliferative response; the ED50 was at least 11.7-fold lower than that for the inhibitory effect of PMA on breakdown of total Jurkat PI. A PKC nonactivating phorbol ester had no effect. If anti-CD3 was replaced by the mitogenic lectin PHA, PI resynthesis was similarly up-regulated by PMA in these highly purified cells. The PMA up-regulatory phenomenon was not a simple consequence of cell blastogenesis, inasmuch as there was no early effect on the non-signaling-associated phosphatidylethanolamine compartment after CD3 stimulation. Thus, PKC activation appears to accelerate TCR-linked PI metabolism in normal Th cells, in contrast to the feedback inhibitor paradigm observed in Jurkat and other tumor cell systems.  相似文献   

2.
Ag-experienced or memory T cells have increased reactivity to recall Ag, and can be distinguished from naive T cells by altered expression of surface markers such as CD44. Memory T cells have a high turnover rate, and CD8(+) memory T cells proliferate upon viral infection, in the presence of IFN-alphabeta and/or IL-15. In this study, we extend these findings by showing that activated NKT cells and superantigen-activated T cells induce extensive bystander proliferation of both CD8(+) and CD4(+) memory T cells. Moreover, proliferation of memory T cells can be induced by an IFN-alphabeta-independent, but IFN-gamma- or IL-12-dependent pathway. In these conditions of bystander activation, proliferating memory (CD44(high)) T cells do not derive from activation of naive (CD44(low)) T cells, but rather from bona fide memory CD44(high) T cells. Together, these data demonstrate that distinct pathways can induce bystander proliferation of memory T cells.  相似文献   

3.
In order to clarify the differential activation of CD4+ and CD8+ HSV-specific CTL, we compared the characteristics of CTL generated by different methods of in vitro HSV stimulation by treatment of effectors with anti-CD4 and anti-CD8 mAb and C after the elimination of nonspecific cytotoxic effector cells. Cell-free HSV mainly activated CD4+ CTL precursors, whereas HSV-infected fibroblasts were more effective in activating CD8+ CTL precursors than CD4+ CTL precursors. In addition, limiting dilution analyses with enriched T cells from two HSV-seropositive donors revealed that the frequency of HSV-specific CD4+ CTL precursors responsive to stimulation with free HSV was approximately 1/4,000 to 6,000 CD4+ T cells, whereas that of precursors responsive to stimulation with HSV-infected fibroblasts was approximately 1/19,000 to 22,000 CD4+ T cells. Conversely, the frequency of CD8+ CTL precursors in peripheral blood responsive to stimulation with free HSV was approximately 1/28,000 to 30,000 CD8+ T cells, whereas that of precursors responsive to stimulation with HSV-infected fibroblasts was approximately 1/10,000 to 11,000 CD8+ T cells. The present data suggest that generalized viral infection due to cell-free viruses is fought mainly by CD4+ CTL, which have previously been reported to possess both cytotoxicity and helper function, and that localized viral infection on HLA class II-negative fibroblasts is prevented from spreading to adjacent cells mainly by CD8+ CTL. Such differential activation of CD4+ and CD8+ CTL seems probable when considering the protective mechanisms against viral infection.  相似文献   

4.
Neonatal T cells are phenotypically similar to "naive" T cells from adult donors in the CD45 isoform expression. Despite the phenotypic similarity, large differences were found between neonatal and adult T cells when T cells were activated. After activation with PHA, adult CD45RA+ T cells began to express CD45RO and no loss of CD45RA expression had yet occurred at Day 3 post-stimulation. Three days after activation, CD45RA+ neonatal T cells also coexpressed CD45RO; however, in contrast to adult T cells, a marked loss of CD45RA was observed. We analyzed the rapid loss of CD45RA found in neonatal T cells. The de novo synthesis of CD45 isoforms in neonatal T cells was essentially the same as that in the adult T cells. Turnover of the CD45RA was very rapid in both resting adult and neonatal T cells. After activation with PHA, the turnover of CD45RA on adult T cells was decreased significantly, while the turnover of CD45RA on neonatal T cells was not changed after activation. Therefore, the regulation of CD45 isoform expression not only involves switches in alternative splicing, but also involves different regulation of turnover of these isoforms from the cell membrane.  相似文献   

5.
Plasmacytoid dendritic cells (pDC) are the body's main source of IFN-alpha, but, unlike classical myeloid DC (myDC), they lack phagocytic activity and are generally perceived as playing only a minor role in Ag processing and presentation. We show that murine pDC, as well as myDC, express Fcgamma receptors (CD16/CD32) and can use these receptors to acquire Ag from immune complexes (IC), resulting in the induction of robust Ag-specific CD4(+) and CD8(+) T cell responses. IC-loaded pDC stimulate CD4(+) T cells to proliferate and secrete a mixture of IL-4 and IFN-gamma, and they induce CD8(+) T cells to secrete IL-10 as well as IFN-gamma. In contrast, IC-loaded myDC induce both CD4(+) and CD8(+) T cells to secrete mainly IFN-gamma. These results indicate that pDC can shape an immune response by acquiring and processing opsonized Ag, leading to a predominantly Th2 response.  相似文献   

6.
Activation of peripheral blood T cells, and the leukemic T cell line Jurkat, as measured by mobilization of intracellular calcium, by an anti-TCR antibody is blocked by mAb (T191) to the leukocyte common Ag (CD45). T191 also blocked down-regulation of the CD3-TCR complex induced by an anti-CD3 mAb. Vanadate, a phosphotyrosine phosphatase inhibitor, partially blocks the effect of T191 and restored mobilization of intracellular calcium. Assays of the immunoprecipitates of T191 and CD45 from both Jurkat-BM1 and peripheral T cells showed that the immune complexes had intrinsic phosphatase activity. A parallel immunoprecipitate using a mAb (4-10) against HLA class I showed no such activity. Further analysis of the T191 immunocomplex revealed activity against phosphotyrosine, p-nitrophenylphosphate, and [32P-poly-glu-tyr, but not against phosphoserine. Phosphatase activity was inhibited by Vanadate, but not by Zn2+ or F-. These results show that CD45 is a phosphotyrosine phosphatase, and strongly suggest that tyrosine phosphorylation/dephosphorylation is critically involved in activation of T cells through the TCR-CD3 complex.  相似文献   

7.
Both CD4+ and CD8+ T cells express either CD45RA or CD45R0 isoform of CD45R in an exclusive way. Recent reports have shown that CD45RA+ T cells lose CD45RA and gain CD45R0 upon activation. This switching has been suggested to be irreversible although more recently, examples of reversal of CD45R isotype switching in CD4+ T cells have been reported. We report here that freshly isolated unprimed CD8+ T cells, when activated with PHA, temporarily lose CD45RA but reexpress an intermediate level of CD45RA 2-3 weeks after activation with PHA. This reversal seems to take place much more slowly in unprimed CD4+ T cells: the majority of CD4+ T cells that had lost CD45RA and gained CD45R0 remained CD45RA-CD45R0+ in 3 weeks after the stimulation. Also, long-term CD8+ CD45RA+ T cell lines stimulated with PHA or OKT3 showed even more rapid recovery of CD45RA while PPD-specific CD4+ T cell clones retained the original CD45R0 phenotype 3 weeks after stimulation with PPD or PHA.  相似文献   

8.
9.
Glucocorticoid-induced tumor necrosis factor receptor (TNFR) (GITR) family-related gene is a member of the TNFR super family. GITR works as one of the immunoregulatory molecule on CD4(+) regulatory T cells and has an important role on cell survival or cell death in CD4(+) T cells. Little is known about the expression of GITR on human CD8(+) T cells on antigen-specific and non-specific activation. Here, we report that expression of GITR on human CD8(+) T cells on T-cell receptor (TCR) (anti-CD3)-mediated stimulation is dependent on the JNK pathway. The activation of CD8(+) T cells was measured by the expression of IL-2 receptor-α (CD25), GITR and by IFN-γ production upon re-stimulation with anti-CD3 antibody. We studied the signaling pathway of such inducible expression of GITR on CD8(+) T cells. We found that a known JNK-specific inhibitor, SP600125, significantly down-regulates GITR expression on anti-CD3 antibody-mediated activated CD8(+) T cells by limiting JNK phosphorylation. Subsequently, after stimulation of the CD8(+) cells, we tested for the production of IFN-γ by the activated cells following restimulation with the same stimulus. It appears that the expression of GITR on activated human CD8(+) T cells might also be regulated through the JNK pathway when the activation is through TCR stimulation. Therefore, GITR serves as an activation marker on activated CD8(+) cells and interference with JNK phosphorylation, partially or completely, by varying the doses of SP600125 might have implications in CD8(+) cytotoxic T cell response in translational research.  相似文献   

10.
Persistent viral infections and inflammatory syndromes induce the accumulation of T cells with characteristics of terminal differentiation or senescence. However, the mechanism that regulates the end-stage differentiation of these cells is unclear. Human CD4(+) effector memory (EM) T cells (CD27(-)CD45RA(-)) and also EM T cells that re-express CD45RA (CD27(-)CD45RA(+); EMRA) have many characteristics of end-stage differentiation. These include the expression of surface KLRG1 and CD57, reduced replicative capacity, decreased survival, and high expression of nuclear γH2AX after TCR activation. A paradoxical observation was that although CD4(+) EMRA T cells exhibit defective telomerase activity after activation, they have significantly longer telomeres than central memory (CM)-like (CD27(+)CD45RA(-)) and EM (CD27(-)CD45RA(-)) CD4(+) T cells. This suggested that telomerase activity was actively inhibited in this population. Because proinflammatory cytokines such as TNF-α inhibited telomerase activity in T cells via a p38 MAPK pathway, we investigated the involvement of p38 signaling in CD4(+) EMRA T cells. We found that the expression of both total and phosphorylated p38 was highest in the EM and EMRA compared with that of other CD4(+) T cell subsets. Furthermore, the inhibition of p38 signaling, especially in CD4(+) EMRA T cells, significantly enhanced their telomerase activity and survival after TCR activation. Thus, activation of the p38 MAPK pathway is directly involved in certain senescence characteristics of highly differentiated CD4(+) T cells. In particular, CD4(+) EMRA T cells have features of telomere-independent senescence that are regulated by active cell signaling pathways that are reversible.  相似文献   

11.
It has been generally believed that human CD8+ memory cells are principally found within the CD45ROhigh population. There are high frequencies of CD8+ memory CTL specific for the human CMV tegument phosphoprotein pp65 in PBMC of long-term virus carriers; the large population of memory CTL specific for a given pp65 peptide contains individual CTL clones that have greatly expanded. In this study, we found high frequencies of pp65 peptide-specific memory CTL precursors in the CD45ROhighCD45RA- population, but also appreciable frequencies in the CD45RAhigh subpopulation. Because the majority of CD8+ T cells in PBMC are CD45RAhigh, more of the total pp65-specific memory CTL pool is within the CD45RAhigh than in the CD45ROhigh compartment. Using clonotypic oligonucleotide probes to quantify the size of individual pp65-specific CTL clones in vivo, we found the CD45RAhigh population contributed 6- to 10-fold more than the CD45ROhigh population to the total virus-specific clone size in CD8+ cells. During primary CMV infection, an individual virus-specific CTL clone was initially CD45ROhigh, but after resolution of infection this clone was detected in both the CD45ROhigh and the CD45RAhigh populations. We conclude that CD45RA+ human CD8+ T cells do not solely comprise naive cells, but contain a very significant proportion of memory cells, which can revert from the CD45ROhigh to CD45RAhigh phenotype in vivo.  相似文献   

12.
We have previously shown that Con A-induced suppressor T cells belong to the CD45RA+ subset. After unseparated T cells are activated with Con A, CD45RA expression increases to a maximum (Day 2), and then decreases significantly, but does not disappear entirely (Day 9), while CD29 expression increases steadily. In the present study, we examined the fate of these cell surface molecules on isolated CD4+CD45RA+ and CD4+CD45RA- cells following activation with Con A, and their relationship to the regulatory functions of these subsets. After activation of CD4+CD45RA+ cells with Con A, CD45RO and CD29 antigen expression rapidly increases (greater than 90%). While CD45RA expression is downregulated, approximately 40% of the cells continue to express low-density CD45RA in a stable fashion through Day 21. Despite these phenotypic changes, cells originally CD45RA+ continue to suppress IgG synthesis and provide only minimal B cell help. Furthermore, when cells originally CD45RA+ were sorted on the basis of continued presence, or loss of CD45RA antigen 14 days after activation, both populations demonstrated potent suppression and minimal help. In contrast, after activation with Con A, CD4+CD45A- cells maintain stable phenotype and provide significant help and minimal suppression. Immunoprecipitation of the CD45RA antigen from Day 14 activated CD4+CD45RA+ cells confirms the continued presence of the 205-kDa isoform, but reveals a significant decrease in the 220-kDa isoform. These results suggest that after activation with Con A, cells originally CD45RA+ remain functionally distinct from cells originally CD45RA-, and that CD45RA antigen persists on a subpopulation of CD45RA+ cells after activation with Con A.  相似文献   

13.
CD45RO+ T cells are referred to as memory or helper-inducer while CD45RA+ T cells are regarded as naive or suppressor-inducer T cells. The former population predominates in the peripheral blood and even more in the synovial fluid of patients with rheumatoid arthritis, to the expense of the latter population. Within the CD45RB+ compartment, there appears to be more of the fully-differentiated than of the early-differentiated CD4+ T cells. In spite of the fact that these lymphocytes are close to undergoing apoptosis, this programmed cell death is inhibited in the rheumatoid synovium.  相似文献   

14.
The functional distinction between CD45RA+ and CD45RO+ cells within the human CD4+ T cell subset is well established. This study was undertaken to investigate whether a similar division can be made within the CD8+ T cell population. A quantitative comparison was made of the requirements for activation and differentiation of CD8+CD45RA+ and CD8+CD45RO+ cells. Stimulation of T lymphocytes with anti-CD3 mAb immobilized at high-density induced strong proliferation and CTL activity in both CD45RA+ and CD45RO+ cells. Suboptimal TCR/CD3 triggering, in contrast, induced substantially higher levels of proliferation and CTL activity in CD8+CD45RO+ cells compared with their CD45RA+ counterparts. Lymphokine secretion (i.e., Il-2 and TNF-alpha) was under any condition more readily induced in CD8+CD45RO+ cells. Markedly, proliferation of both CD8+CD45RA+ and CD8+CD45RO+ T cells initiated by anti-CD3 mAb immobilized at high densities was not inhibited by addition of anti-CD25 mAb, in contrast to proliferation induced by suboptimal anti-CD3 mAb concentrations. These findings show that a functional division between CD45RA+ and CD45RO+ T cells with distinct requirements for activation and differentiation may also be made in the CD8+ subset.  相似文献   

15.
Due to their potent immunostimulatory capacity, dendritic cells (DC) have become the centerpiece of many vaccine regimens. Immature DC (DCimm) capture, process, and present Ags to CD4(+) lymphocytes, which reciprocally activate DCimm through CD40, and the resulting mature DC (DCmat) loose phagocytic capacity, but acquire the ability to efficiently stimulate CD8(+) lymphocytes. Recombinant vaccinia viruses (rVV) provide a rapid, easy, and efficient method to introduce Ags into DC, but we observed that rVV infection of DCimm results in blockade of DC maturation in response to all activation signals, including CD40L, monocyte-conditioned medium, LPS, TNF-alpha, and poly(I:C), and failure to induce a CD8(+) response. By contrast, DCmat can be infected with rVV and induce a CD8(+) response, but, having lost phagocytic activity, fail to process the Ag via the exogenous class II pathway. To overcome these limitations, we used the CMV protein pp65 as a model Ag and designed a gene containing the lysosomal-associated membrane protein 1 targeting sequence (Sig-pp65-LAMP1) to target pp65 to the class II compartment. DCmat infected with rVV-Sig-pp65-LAMP1 induced proliferation of pp65-specific CD4(+) clones and efficiently induced a pp65-specific CD4(+) response, suggesting that after DC maturation the intracellular processing machinery for class II remains intact for at least 16 h. Moreover, infection of DCmat with rVV-Sig-pp65-LAMP1 resulted in at least equivalent presentation to CD8(+) cells as infection with rVV-pp65. These results demonstrate that despite rVV interference with DCimm maturation, a single targeting vector can deliver Ags to DCmat for the effective simultaneous stimulation of both CD4(+) and CD8(+) cells.  相似文献   

16.
Mouse spleen contains three distinct mature dendritic cell (DC) populations (CD4(+)8(-), CD4(-)8(-), and CD4(-)8(+)) which retain a capacity to take up particulate and soluble AGS: Although the three splenic DC subtypes showed similar uptake of injected soluble OVA, they differed markedly in their capacity to present this Ag and activate proliferation in OVA-specific CD4 or CD8 T cells. For class II MHC-restricted presentation to CD4 T cells, the CD8(-) DC subtypes were more efficient, but for class I MHC-restricted presentation to CD8 T cells, the CD8(+) DC subtype was far more effective. This differential persisted when the DC were activated with LPS. The CD8(+) DC are therefore specialized for in vivo cross-presentation of exogenous soluble Ags into the class I MHC presentation pathway.  相似文献   

17.
The level of CD45RC expression differentiates rat CD4 T cells in two subpopulations, CD45RC(high) and CD45RC(low), that have different cytokine profiles and functions. Interestingly, Lewis (LEW) and Brown Norway (BN) rats, two strains that differ in their ability to mount type 1 and type 2 immune responses and in their susceptibility to autoimmune diseases, exhibit distinct CD45RC(high)/CD45RC(low) CD4 T cell ratios. The CD45RC(high) subpopulation predominates in LEW rats, and the CD45RC(low) subpopulation in BN rats. In this study, we found that the antiinflammatory cytokines, IL-4, IL-10, and IL-13, are exclusively produced by the CD45RC(low) CD4 T cells. Using bone marrow chimeras, we showed that the difference in the CD45RC(high)/CD45RC(low) CD4 T cell ratio between naive LEW and BN rats is intrinsic to hemopoietic cells. Furthermore, a genome-wide search for loci controlling the balance between T cell subpopulations was conducted in a (LEW x BN) F(2) intercross. Genome scanning identified one quantitative trait locus on chromosome 9 (approximately 17 centiMorgan (cM); log of the odds ratio (LOD) score 3.9). In addition, two regions on chromosomes 10 (approximately 28 cM; LOD score 3.1) and 20 (approximately 40 cM; LOD ratio score 3) that contain, respectively, a cytokine gene cluster and the MHC region were suggestive for linkage. Interestingly, overlapping regions on these chromosomes have been implicated in the susceptibility to various immune-mediated disorders. The identification and functional characterization of genes in these regions controlling the CD45RC(high)/CD45RC(low) Th cell subpopulations may shed light on key regulatory mechanisms of pathogenic immune responses.  相似文献   

18.
In the present study we have analyzed the in vitro activation requirements of freshly isolated CD4-CD8- "double-negative" (DN) human peripheral blood T cells. DN cells were isolated from E+ cells by removal of CD4+, CD8+, and CD16+ cells through consecutive steps of C'-mediated lysis and panning. While the majority (79.0 +/- 12.0%) of DN cells were TCR gamma delta+ as shown by staining with mAb TCR delta-1, a minor fraction (6.7 +/- 4.7%) expressed TCR alpha beta as revealed by staining with mAb BMA031. Within the gamma delta+ DN fraction, most cells reacted with mAb Ti gamma A which delineates a V gamma 9JPC gamma 1 epitope, whereas a minor fraction stained with mAb delta TCS-1 which identifies a V delta 1J delta 1 epitope. Functional studies performed at low cell number (1000) per microculture indicated that DN cells can be activated by anti-CD3 mAb, PHA and allogeneic stimulator cells, provided that exogenous growth factors are supplied. Both rIl-2 and rIl-4 acted as efficient growth factors for DN cells, and a synergistic stimulatory effect of rIl-2 and rIl-4 was observed when DN cells were cocultured with allogeneic LCL stimulator cells. As compared to unseparated E+ cells, isolated DN responder cells had a reduced capacity to secrete Il-2 upon PHA stimulation in the presence of LCL feeder cells. The majority of DN cells maintained their CD3+ CD4-CD8- phenotype upon coculture with allogeneic LCL stimulator cells. These data demonstrate that CD3+ DN cells in human peripheral blood are heterogeneous with respect to TCR expression. In addition, they show that freshly isolated DN cells are deficient in Il-2 production but may be normally stimulated by anti-CD3, PHA, or alloantigen if exogenous growth factors (rIL-2 and/or rIl-4) are provided.  相似文献   

19.
In this report we describe a novel pathway of human T cell activation and proliferation involving the CD5 surface Ag. The CD5-specific Cris1 mAb induces by itself monocyte-dependent proliferation of PBMC. Among a panel of CD5-specific mAb (Leu1, OKT1, LO-CD5a, F101-1C5, and F145GF3), only the F145GF3 mAb shared this property with Cris1. The analysis of the biochemical pathway involved in this activation showed the lack of detectable hydrolysis of inositol phosphates or early increments in the intracellular cytosolic calcium concentration, after triggering cells with the mitogenic CD5 mAb. However, stimulation with CD5 induces activation of protein kinase C, as measured by phosphorylation of a specific peptide substrate (peptide GS), which can be inhibited by a pseudosubstrate peptide inhibitor. Stimulation with CD5 mAb induces also tyrosine kinase activity, with a substrate pattern that differs from that induced after triggering lymphocytes through the TCR-CD3 complex. On the other hand the IL-2/IL-2R pathway seems involved in the CD5-mediated proliferation of PBMC because anti-IL-2R-specific mAb inhibits CD5-induced proliferation, and stimulation with mitogenic CD5 mAb induces production of IL-2 and expression of IL-2R alpha and beta chains. Therefore, the triggering of the CD5 Ag can induce IL-2- and monocyte-dependent human T cell proliferation by a biochemical pathway that differs, at least in the first stages, from the one that mediates TCR-CD3 complex-induced T cell activation.  相似文献   

20.
Lymphotactin is a potent chemotactic cytokine (chemokine) that is produced by and also attracts T and natural killer (NK) cells. We are studying whether chemokines that affect mainly T cells might also regulate immune responses by preferentially recruiting individual subsets or by affecting cytokine or other chemokine responses. In order to pursue these questions, we need to learn more about the mechanisms regulating lymphotactin production and the cell types capable of releasing this factor. We used new monoclonal antibodies against human lymphotactin to develop a sensitive antigen-capture enzyme linked immunoabsorbent assay (ELISA) that measures chemokine levels in culture fluids. Using this capture ELISA, we showed that lymphotactin could be produced by CD4+ and CD8+ T cells, but only after T cell-receptor-dependent stimulation using bacterial superantigens and not after treatment by inflammatory cytokines or lipopolysaccharide (LPS). Our data show that lymphotactin production responds mainly to T cell-receptor signals in CD4+ and CD8+ T cells, and suggests a mechanism whereby this chemokine could help to regulate T cell immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号