共查询到20条相似文献,搜索用时 15 毫秒
1.
Wall teichoic acids are anionic phosphate-rich polymers that are part of the complex meshwork of carbohydrates that make up the gram-positive cell wall. These polymers are essential to the proper rod-shaped morphology of Bacillus subtilis and have been shown to be an important virulence determinant in the nosocomial opportunistic pathogen Staphylococcus aureus. Together, sequence-based studies, in vitro experiments with biosynthetic proteins, and analyses of the chemical structure of wall teichoic acid have begun to shed considerable light on our understanding of the biogenesis of this polymer. Nevertheless, some paradoxes remain unresolved. One of these involves a putative duplication of genes linked to CDP-ribitol synthesis (tarI′J′ and tarIJ) as well as poly(ribitol phosphate) polymerization (tarK and tarL) in S. aureus. In the work reported here, we performed careful studies of the dispensability of each gene and discovered a functional redundancy in the duplicated gene clusters. We were able to create mutants in either of the putative ribitol phosphate polymerases (encoded by tarK and tarL) without affecting teichoic acid levels in the S. aureus cell wall. Although genes linked to CDP-ribitol synthesis are also duplicated, a null mutant in only one of these (tarI′J′) could be obtained, while tarIJ remained essential. Suppression analysis of the tarIJ null mutant indicated that the mechanism of dysfunction in tarI′J′ is due to poor translation of the TarJ′ enzyme, which catalyzes the rate-limiting step in CDP-ribitol formation. This work provides new insights into understanding the complex synthetic steps of the ribitol phosphate polymer in S. aureus and has implications on specifically targeting enzymes involved in polymer biosynthesis for antimicrobial design. 相似文献
2.
Phosphatidylglycerol as biosynthetic precursor for the poly(glycerol phosphate) backbone of bifidobacterial lipoteichoic acid. 总被引:3,自引:0,他引:3 下载免费PDF全文
Phosphatidylglycerol functions as donor of the sn-glycerol 1-phosphate units in the synthesis in vitro of the 1,2-phosphodiester-linked glycerol phosphate backbone of the lipoteichoic acids of Bifidobacterium bifidum subsp. pennsylvanicum. The incorporation was catalysed by a membrane-bound enzyme system. After addition of chloroform/methanol the product formed coprecipitated with protein. The material was phenol-extractable and was co-eluted with purified lipoteichoic acid on Sepharose 6B. The reaction was stimulated by Triton X-100, UDP-glucose and UDP-galactose, but Mg2+ ions had no effect. The apparent values for Km and Vmax. of the phosphatidylglycerol incorporation were 1.4 mM and 3.1 nmol/h per mg of membrane protein, respectively. Labelled UDP-glucose and UDP-galactose were not incorporated into the lipoteichoic acid fraction by the particulate membrane preparation. 相似文献
3.
Andrew N. Lane Teresa W. -M. Fan 《Metabolomics : Official journal of the Metabolomic Society》2007,3(2):79-86
Isotopomer analysis is a very powerful technique for determining site enrichment with stable isotopes. Such information helps
determine the relative flux through metabolic pathways. We have developed 1H NMR detection methods to isotopomer analysis of human rhabdomyosarcoma cells grown in the presence of uniformly 13C-labeled glucose. We show that TOCSY can be used both to identify the isotopomer distributions in a substantial number of
key compounds and to determine the site-specific enrichment with good precision. Effects of differential relaxation have been
specifically addressed. We have identified and quantified isotopomer distributions in Ala, Lactate, (glycolysis markers),
nucleotide riboses (pentose phosphate markers), Asp, Glu and Gln (citric acid cycle and anaplerosis markers) as well as in
nucleotide pyrimidine rings. Due to the high sensitivity of proton experiments, a reasonable throughput was achieved using
a cold probe on only 3–5 mg dry cell weight. This methodology can be applied to biological system using different labeled
precursors to examine their metabolic phenotypes and their response to external perturbations.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
4.
5.
Poly(glucosylglycerol phosphate) teichoic acid in the walls of Bacillus stearothermophilus B65. 下载免费PDF全文
1. Walls of Bacillus stearothermophilus B65 contain a glycerol teichoic acid in which repeating structures consisting of 1-O-alpha-D-glucopyranosylglycerol phosphate are held together by phosphodiester linkage between the glycerol and glucose moieties of adjacent units. 2. The walls are not agglutinated on incubation with concanavalin A, nor does the isolated teichoic acid form a precipitate with this lectin. 3. No evidence was obtained of the presence of the glucosylated (1 leads to 2)-poly(glycerol phosphate) teichoic acid which has previously been reported to occur in walls of this bacterium. 相似文献
6.
2-Acetamido-3,4,6-tri-O-acetyl-1-N-[N-(benzyloxycarbonyl)-L-aspart-1-oyl-(L-leucyl-L-threonyl-N2-tosyl-L-lysine p-nitrobenzyl ester)-4-oyl]-2-deoxy-β-D-glucopyranosylamine (21) and 2-acetamido-3,4,6-tri-O-acetyl-1-N-[N-(benzyloxycarbonyl)-L-aspart-1-oyl-(L-leucyl-L-threonyl-N2-tosyl-L-lysine p-nitrobenzyl ester)-4-oyl]-2-deoxy-β-D-glucopyranosylamine (22), 2-acetamido-3,4,6-tri-O-acetyl-1-N-[N-(benzyloxycarbonyl)-L-aspart-1-oyl-(glycine ethyl ester)-4-oyl]-2-deoxy-β-D-glucopyranosylamine, and 2-acetamido-3,4,6-tri-O-acetyl-1-N-[N-(benzyloxycarbonyl)-L-aspart-1-oyl-(phenylalanine methyl ester)-4-oyl]-2-deoxy-β-D-glucopyranosylamine were synthesized by condensation of 2-acetamido-3,4,6-tri-O-acetyl-1-N-[N-(benzyloxycarbonyl)-L-aspart-4-oyl]-2-deoxy-β-D-glucopyranosylamine with the appropriate protected amino acids and tri- and tetra-peptides. The amino acid sequences of 21 and 22 correspond to the protected amino acid sequences 34–37 and 34–38 of ribonuclease B that are adjacent to the carbohydrate-protein linkage. 相似文献
7.
The ability of complex formation of poly-(formycin phosphate), poly(F), and poly(laurusin phosphate), poly(L), with the polymers of natural polynucleotides was examined mainly by mixing experiments in 0.1 M NaCl-0.05 M sodium cascodylate buffer (pH 7.0) at 2 degrees. Poly(F) formed complexes with poly(U) and poly(I) in the ratio of 1:1 and 1:2, respectively. Poly(L) formed complexes with poly(A) in 2:1 ration and poly(C) in 1:2 and 2:1 ratios in addition to a self-complex. Poly(F) and poly(L) also formed a 1:2 complex between them. Some of these complexes were assumed to contain novel types of base pairings using the 7-NH group. Thus it was concluded that poly(L) could form complexes with both, the oligomer of cycloadenylic acid (?cn-120 degrees) and polymers of natural nucleotides (?cn0degrees), showing flexibility of the torsion angle of the laurusin residue. 相似文献
8.
9.
Complexes of polyribocytidylic acid and polyriboadenylic acid with poly(L -lysine) and poly(L -arginine) were studied by Raman spectroscopy. The backbones of both polynucleotides are distorted by poly(L -arginine). On the other hand, poly(L -lysine) could distort the backbone of polyriboadenylic acid but not that of polyribocytidylic acid. In general, poly(L -arginine) can increase the order of the base stacking, while poly(L -lysine) causes disordering in the base stacking. 相似文献
10.
【目的】解决前期研究中所构建的以甘油为底物合成聚3-羟基丙酸(P3HP)的代谢途径中存在两个主要的问题——细胞内还原力不平衡和质粒丢失,以提高P3HP的产量。【方法】克隆来源于肺炎克雷伯氏菌的1,3-丙二醇(1,3-PDO)氧化还原酶基因,构建P3HP和1,3-PDO联产的菌株,解决细胞内还原力不平衡的问题。利用自杀性载体系统介导的同源重组技术,将甘油脱水酶及其激活因子的基因整合到大肠杆菌基因组中,提高质粒的稳定性。同时,对发酵条件进行优化。【结果】菌种改造和发酵条件优化显著提高了P3HP产量,在摇瓶条件下到达2.7 g/L,比以前的报道提高2倍,并可同时得到2.4 g/L 1,3-PDO。【结论】该重组大肠杆菌合成P3HP的产量得到提高,具有较好的工业化生产前景。 相似文献
11.
The previous report that poly(L -glutamic acid) exhibits doubled resonances in the helix–coil transition region by either proton or carbon-13 nmr resolves the question of whether or not this behavior is limited to uncharged polypeptides in organic solvents, as had been previously thought. In the present work, we show that the underlying principle causing this anomalous double-peak behavior is due to molecular-weight polydispersity of the sample. The molecular-weight range in which this phenomenon is observed is largely dependent on the values of σ, the nucleation or cooperativity factor. The principles developed are shown to encompass all classes of polypeptides in a very natural way and to explain the key experimental data in the literature. 相似文献
12.
Sodium counterion association with partially neutralized poly(D -glutamic acid) or poly(DL -glutamic acid) was measured by use of Wall's transference method with radioactive sodium. In the region where both polyacids are in completely random coil form, fractions of association were considerably less than that with poly(acrylic acid) in the same region of degree of neutralization. Even in the region where poly (D -glutamic acid) is in the helical form, the fraction of association was less than that with poly(acrylic acid) in the same region. No pronounced characteristics attributable to counterion association corresponding to the helix–coil transition could be found. The association phenomena were discussed on the basis of a rodlike model of polyelectrolyte. 相似文献
13.
Purified recombinant poly(hydroxyalkanoic acid) (PHA) synthase from Chromatium vinosum (PhaECCv) was used to examine in vitro the specific synthase activity, turnover of R-(−)-3-hydroxybutyryl coenzyme A (3HB-CoA) and poly(3-hydroxybutyric acid) formation under various conditions. The 3HB-CoA
consumption was terminated by a reaction-dependent inactivation of the PHA synthase. Salts (MgCl2, CaCl2, NaCl), proteins (bovine serum albumin, lysozyme, phasine) or detergent (Tween 20) increased the 3HB-CoA turnover to 2.5-fold.
Specific PHA synthase activity was only partially affected by the added components. In general, a higher concentration of
salt often inhibited the activity of PhaECCv without affecting the yield according to 3HB-CoA turnover. NAD+ and NADP+ (2 mM) inhibited PhaECCv completely, where-as NADH and NADPH did not. Macroscopic poly(3HB) granules were formed in vitro if PhaECCv was incubated in the presence of sufficient amounts of 3HB-CoA and if MgCl2 was present. The form and size of the granules synthesized in vitro were affected by the concentration of the PHA synthase protein as well as by bovine serum albumin and the GA24 protein, a
poly(3HB)-granule-associated protein of Alcaligenes eutrophus. Scanning electron micrographs from the synthesized granules were obtained. The granules consisted of poly(3HB) that had
a molar mass in the range (1–2) × 106 g/mol.
Received: 12 September 1997 / Received revision: 24 October 1997 / Accepted: 31 October 1997 相似文献
14.
M V Rao M Atreyi V S Chauhan S Kumar 《International journal of peptide and protein research》1984,24(1):48-54
Solution conformation of poly(L-lysyl-L-glutamic acid) (PLGU) and poly(L-lysyl-L-glutamine) (PLGN) was studied in water as a function of pH, added salt, detergents, methanol and trifluoroethanol (TFE). Both the polypeptides exhibit no ordered conformation in the pH range 1.5-12.5; salts and detergents did not have any marked effect. Replacement of side chain carboxyl by an amide group did not help in inducing PLGN to adopt a helical conformation even at pH as high as 12.0, unlike poly(L-lysine). The helicogenic solvents, methanol and TFE, induce formation of weak helices in PLGU as well as in PLGN. It is not unlikely that H-bonding between the side chains leads to stabilizing an unordered conformations. 相似文献
15.
N-acetylmannosaminyl(1----4)N-acetylglucosamine, a linkage unit between glycerol teichoic acid and peptidoglycan in cell walls of several Bacillus strains. 下载免费PDF全文
The structure of teichoic acid-glycopeptide complexes isolated from lysozyme digests of cell walls of Bacillus subtilis (four strains) and Bacillus licheniformis (one strain) was studied to obtain information on the structural relationship between glycerol teichoic acids and their linkage saccharides. Each preparation of the complexes contained equimolar amounts of muramic acid 6-phosphate and mannosamine in addition to glycopeptide components and glycerol teichoic acid components characteristic of the strain. Upon treatment with 47% hydrogen fluoride, these preparations gave, in common, a hexosamine-containing disaccharide, which was identified as N- acetylmannosaminyl (1----4) N-acetylglucosamine, along with large amounts of glycosylglycerols presumed to be the dephosphorylated repeating units of teichoic acid chains. The glycosylglycerol obtained from each bacterial strain was identified as follows: B. subtilis AHU 1392, glucosyl alpha (1----2)glycerol; B. subtilis AHU 1235, glucosyl beta(1----2) glycerol; B. subtilis AHU 1035 and AHU 1037, glucosyl alpha (1----6)galactosyl alpha (1----1 or 3)glycerol; B. licheniformis AHU 1371, galactosyl alpha (1----2)glycerol. By means of Smith degradation, the galactose residues in the teichoic acid-glycopeptide complexes from B. subtilis AHU 1035 and AHU 1037 and B. licheniformis AHU 1371 were shown to be involved in the backbone chains of the teichoic acid moieties. Thus, the glycerol teichoic acids in the cell walls of five bacterial strains seem to be joined to peptidoglycan through a common linkage disaccharide, N- acetylmannosaminyl (1----4)N-acetylglucosamine, irrespective of the structural diversity in the glycosidic branches and backbone chains. 相似文献
16.
17.
A rapid and selective purification procedure for microtubule-associated protein (MAP) 1 and MAP 2 has been established. This procedure is based upon the fact that poly(L-aspartic acid) (PLAA) can specifically remove MAP 1 from microtubules polymerized by taxol (Nakamura et al., 1989, J. Biochem. 106, 93-97). MAP 1 released by PLAA was further purified by column chromatography on phosphocellulose and Bio-Gel A-15m. The purified MAP 1 contained MAPs 1A and 1 B. From microtubules devoid of MAP 1, MAP 2, consisting of MAPs 2A and 2B, could also be isolated by exposure to high ionic strength solutions in the presence of taxol without heat treatment. Both MAPs 1 and 2 cosedimented with microtubules consisting of purified tubulin. 相似文献
18.
IGPS is a 51 kDa heterodimeric enzyme comprised of two proteins, HisH and HisF, that catalyze the hydrolysis of glutamine to produce NH3 in the HisH active site and the cyclization of ammonia with N′-[(5′-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) in HisF to produce imidazole glycerol phosphate (IGP) and 5-aminoimidazole-4-carboxamide ribotide (AICAR). Binding of PRFAR and IGP stimulates glutaminase activity in the HisH enzyme over 5,000 and 100-fold, respectively, despite the active sites being >25 Å apart. The details of this long-range protein communication process were investigated by solution NMR spectroscopy and CPMG relaxation dispersion experiments. Formation of the heterodimer enzyme results in a reduction in millisecond motions in HisF that extend throughout the protein. Binding of lGP results in an increase in protein-wide millisecond dynamics evidenced as severe NMR line broadening and elevated R ex values. Together, these data demonstrate a grouping of flexible residues that link the HisF active site with the protein interface to which HisH binds and provide a model for the path of communication between the IGPS active sites. 相似文献
19.
Polymer-protein conjugates generated from side chain functional synthetic polymers are attractive because they can be easily further modified with, for example, labeling groups or targeting ligands. The residue specific modification of proteins with side chain functional synthetic polymers using the traditional coupling strategies may be compromised due to the nonorthogonality of the side-chain and chain-end functional groups of the synthetic polymer, which may lead to side reactions. This study explores the feasibility of the squaric acid diethyl ester mediated coupling as an amine selective, hydroxyl tolerant, and hydrolysis insensitive route for the preparation of side-chain functional, hydroxyl-containing, polymer-protein conjugates. The hydroxyl side chain functional polymers selected for this study are a library of amine end-functional, linear, midfunctional, hyperbranched, and linear-block-hyperbranched polyglycerol (PG) copolymers. These synthetic polymers have been used to prepare a diverse library of BSA and lysozyme polymer conjugates. In addition to exploring the scope and limitations of the squaric acid diethylester-mediated coupling strategy, the use of the library of polyglycerol copolymers also allows to systematically study the influence of molecular weight and architecture of the synthetic polymer on the biological activity of the protein. Comparison of the activity of PG-lysozyme conjugates generated from relatively low molecular weight PG copolymers did not reveal any obvious structure-activity relationships. Evaluation of the activity of conjugates composed of PG copolymers with molecular weights of 10000 or 20000 g/mol, however, indicated significantly higher activities of conjugates prepared from midfunctional synthetic polymers as compared to linear polymers of similar molecular weight. 相似文献
20.
Karin Schubert Dieter Reiml Jean-Pierre Accolas Franz Fiedler 《Archives of microbiology》1993,160(3):222-228
The primary structure of the peptidoglycan and the teichoic acids of two coryneform isolates from the surface flora of French cooked cheeses, CNRZ 925 and CNRZ 926, have been determined. In the peptidoglycan, meso-diaminopimelic acid was localized in position three of the peptide subunit. It contained an d-glutamyl-d-aspartyl interpeptide bridge, connecting meso-diaminopimelic acid and d-alanine residues of adjacent peptide subunits. The -carboxyl group of d-glutamic acid in position two of peptide subunits was substituted with glycine amide. The teichoic acid pattern and composition differed between the strains: both contained an erythritol teichoic acid and strain CNRZ 925 also contained an N-acetylglucosaminylphosphate polymer. The erythritol teichoic acids differed in terms of the quality and quantity of substituents, but they both had N,N-diacetyl-2,3-diamino-2,3-dideoxyglucuronic acid in common.Abbreviations DNP
dinitrophenyl
- Ery
erythritol
- Gal
galactose
- GlcN
glucosamine
- GlcNAc
N-acetylglucosamine
- GlcUANAc2
N,N-diacetyl-2,3-diamino-2,3-dideoxyglucuronic acid
- Hex UANAc2
N,N-diacetyl-2,3-diamino-2,3-dideoxyhexuronic
- acid
m-Dpm, meso-diaminopimelic acid
- Mur
muramic acid
- MurNAc
N-acetylmuramic acid 相似文献