首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
An autonomous impala transposon trapped in Fusarium oxysporum by insertion within the niaD gene encoding nitrate reductase was introduced in the genome of the fungus Penicillium griseoroseum, a producer of pectinase enzymes. Through a phenotypic assay, we demonstrate that this element is able to excise from the niaD gene and to reinsert at new genomic positions. As in the original host, impala inserts into a TA site and footprints left by impala excisions are generally 5 bp. The fact that impala is able to transpose in P. griseoroseum offers the opportunity to develop a gene-tagging system based on this element with the objective to detect and clone genes related in pectinase production.  相似文献   

2.
We previously determined that the impalaD transposable element of Fusarium oxysporum was able to mobilize a non autonomous copy of impala ( niaD::imp::hph), inserted in the niaD gene encoding nitrate reductase. Generally, mobilization results in the recovery of Nia(+) revertants at low frequency. In the course of this study, we recovered a transformant that gave rise to Nia(+) revertants at a high rate. These revertants displayed atypical phenotypes and showed a niaD hybridization pattern different from that in more typical revertants. Molecular analysis of the structure of the transformant and atypical revertants indicated that (i) in the transformant, two copies of impala, one defective and one active, were inserted at the same genomic locus in a head-to-head orientation; and (ii) all the revertants analyzed presented the same chromosomal rearrangement, an inversion resulting in the replacement of the niaD promoter by a new sequence containing a cryptic promoter. We also frequently observed additional DNA rearrangements (deletion or inversion) in these revertants. The sequences at the rearrangement junctions indicated the occurrence of a transposition event that used the ITRs (Inverted Terminal Repeats) of separate transposons arranged in direct orientation. These features can be interpreted as the consequences of an aberrant transposition process. Such a process may account for the rearrangements observed in some genomic regions containing multiple transposon ends, and could serve as a mechanism for the generation of genetic diversity.  相似文献   

3.
The impala transposon of Fusarium oxysporum is an active element. We demonstrated that the imp160 copy, transposed into the gene encoding nitrate reductase, is an autonomous element, since it excises from this gene and reinserts at a new genomic position in backgrounds free of active elements. An element in which the transposase gene was replaced by a hygromycin B resistance gene was used (1) to demonstrate the absence of endogenous transposase in several F. oxysporum strains and (2) to check the ability of different genomic copies of impala to transactivate this defective element. This two-component system allowed the identification of autonomous elements in two impala subfamilies and revealed that transactivation can occur between highly divergent elements. We also demonstrate that the autonomous copy transposes in a closely related species complex, F. moniliforme, in a fashion similar to that observed in F. oxysporium. The ability of impala to function as a two-component system and to transpose in a heterologous host promises further advances in our understanding of the factors that modulate transposition efficiency and demonstrates the potential of impala as a means of establishing a transposon tagging system for a wide range of fungal species.  相似文献   

4.
Autonomous mobility of different copies of the Fot1 element was determined for several strains of the fungal plant pathogen Fusarium oxysporum to develop a transposon tagging system. Two Fot1 copies inserted into the third intron of the nitrate reductase structural gene (niaD) were separately introduced into two genetic backgrounds devoid of endogenous Fot1 elements. Mobility of these copies was observed through a phenotypic assay for excision based on the restoration of nitrate reductase activity. Inactivation of the Fot1 transposase open reading frame (frameshift, deletion, or disruption) prevented excision in strains free of Fot1 elements. Molecular analysis of the Nia+ revertant strains showed that the Fot1 element reintegrated frequently into new genomic sites after excision and that it can transpose from the introduced niaD gene into a different chromosome. Sequence analysis of several Fot1 excision sites revealed the so-called footprint left by this transposable element. Three reinserted Fot1 elements were cloned and the DNA sequences flanking the transposon were determined using inverse polymerase chain reaction. In all cases, the transposon was inserted into a TA dinucleotide and created the characteristic TA target site duplication. The availability of autonomous Fot1 copies will now permit the development of an efficient two-component transposon tagging system comprising a trans-activator element supplying transposase and a cis-responsive marked element.  相似文献   

5.
An heterologous transformation system for the phytopathogenic fungus Fusarium oxysporum has been developed based on the use of the Aspergillus nidulans nitrate reductase gene (niaD). F. oxysporum nia- mutants were easily selected by chlorate resistance. The A. nidulans niaD gene was isolated from a gene library by complementation of an A. nidulans niaD mutant. The cloned gene is capable of transforming F. oxysporum nia- mutants at a frequency of up to ten transformants per microgram of DNA. Southern analysis of the DNA of the F. oxysporum transformants showed that transformation resulted in integration of one or more copies of the vector DNA into the genome.  相似文献   

6.
The plant-pathogenic fungus Fusarium oxysporum was successfully transformed with the beta-D-glucuronidase gene from Escherichia coli (gusA) (GUS system) in combination with the gene for nitrate reductase (niaD) as the selectable marker. The frequency of cotransformation, as determined by GUS expression on plates containing medium supplemented with 5-bromo-4-chloro-3-indolyl glucuronide (GUS+), was very high (up to 75%). Southern hybridization analyses of GUS+ transformants revealed that single or multiple copies of the gusA gene were integrated into the genomes. High levels of GUS activity are expressed in some transformants, but activity in F. oxysporum does not appear to be correlated with the copy number of the gusA gene. Since the highest activity was found in a transformant with a single copy, it can be assumed that sequence elements of F. oxysporum integrated upstream of the gene can act as a promoter or enhancer. Expression of the gusA gene was also detected during growth of the fungus in plants, indicating that the GUS system can be used as a sensitive and easy reporter gene assay in F. oxysporum.  相似文献   

7.
8.
Heterologous transposition in Aspergillus nidulans   总被引:4,自引:0,他引:4  
Aspergillus nidulans is one of the model ascomycete fungi. Transposition events have never been described in this organism. We have determined that this organism has at least 13 copies of a Fot1-related element. These copies are transcribed, non-methylated and polymorphic in various wild isolates. In spite of this, we have failed to isolate transposon insertions when the resident niaD gene is used as a transposon trap. This contrasts with the situation described previously in Fusarium oxysporum. We show that two elements of F. oxysporum, Fot1 and impala, transpose efficiently in A. nidulans. We have developed the impala system by tagging it with the yA gene. This permits the visual detection of the transposon by the colour of the conidiospores. We demonstrate that no endogenous transposase of A. nidulans is able to act in trans on a defective impala element, whereas its own transposase driven by two different promoters is able to mobilize this element. The frequency of excision of these modified elements is between 10(-4) and 10(-5). Loss of the transposable element occurs in about 10% of all excision events. In the remaining 90%, the transposon seems to be integrated at random positions in the genome. The availability of mitochondrially inherited mutations has allowed us to demonstrate that hybrid dysgenesis is apparently absent in A. nidulans. The development of this system opens the way to investigating the mechanism underlying the paucity of transposition events leading to visible phenotypes. It should allow us to develop efficient gene-tagging tools, useful in this and other fungi.  相似文献   

9.
Forward genetic screens are efficient tools for the dissection of complex biological processes, such as fungal pathogenicity. A transposon tagging system was developed in the vascular wilt fungus Fusarium oxysporum f. sp. lycopersici by inserting the novel modified impala element imp160::gfp upstream of the Aspergillus nidulans niaD gene, followed by transactivation with a constitutively expressed transposase. A collection of 2072 Nia+ revertants was obtained from reporter strain T12 and screened for alterations in virulence, using a rapid assay for invasive growth on apple slices. Seven strains exhibited reduced virulence on both apple slices and intact tomato plants. Five of these were true revertants showing the re-insertion of imp160::gfp within or upstream of predicted coding regions, whereas the other two showed either excision without re-insertion or no excision. Linkage between imp160::gfp insertion and virulence phenotype was determined in four transposon-tagged loci using targeted deletion in the wild-type strain. Knockout mutants in one of the genes, FOXG_00016 , displayed significantly reduced virulence, and complementation of the original revertant with the wild-type FOXG_00016 allele fully restored virulence. FOXG_00016 has homology to the velvet gene family of A. nidulans . The high rate of untagged virulence mutations in the T12 reporter strain appears to be associated with increased genetic instability, possibly as a result of the transactivation of endogenous transposable elements by the constitutively expressed transposase.  相似文献   

10.
Fungal ammonia fermentation is a novel dissimilatory metabolic mechanism that supplies energy under anoxic conditions. The fungus Fusarium oxysporum reduces nitrate to ammonium and simultaneously oxidizes ethanol to acetate to generate ATP (Zhou, Z., Takaya, N., Nakamura, A., Yamaguchi, M., Takeo, K., and Shoun, H. (2002) J. Biol. Chem. 277, 1892-1896). We identified the Aspergillus nidulans genes involved in ammonia fermentation by analyzing fungal mutants. The results showed that assimilatory nitrate and nitrite reductases (the gene products of niaD and niiA) were essential for reducing nitrate and for anaerobic cell growth during ammonia fermentation. We also found that ethanol oxidation is coupled with nitrate reduction and catalyzed by alcohol dehydrogenase, coenzyme A (CoA)-acylating aldehyde dehydrogenase, and acetyl-CoA synthetase (Acs). This is similar to the mechanism suggested in F. oxysporum except A. nidulans uses Acs to produce ATP instead of the ADP-dependent acetate kinase of F. oxysporum. The production of Acs requires a functional facA gene that encodes Acs and that is involved in ethanol assimilation and other metabolic processes. We purified the gene product of facA (FacA) from the fungus to show that the fungus acetylates FacA on its lysine residue(s) specifically under conditions of ammonia fermentation to regulate its substrate affinity. Acetylated FacA had higher affinity for acetyl-CoA than for acetate, whereas non-acetylated FacA had more affinity for acetate. Thus, the acetylated variant of the FacA protein is responsible for ATP synthesis during fungal ammonia fermentation. These results showed that the fungus ferments ammonium via coupled dissimilatory and assimilatory mechanisms.  相似文献   

11.
A new type of active DNA transposon has been identified in the genome of Fusarium oxysporum by its transposition into the niaD target gene. Two insertions within the final exon, in opposite orientations at the same nucleotide site, have been characterized. These elements, called Hop, are 3,299 bp long, with perfect terminal inverted repeats (TIRs) of 99 bp. The sequencing of genomic copies reveals a 9-bp target site duplication and no apparent sequence specificity at the insertion sites. The sequencing of a cDNA indicates that Hop does not contain an intron and encodes a putative transposase of 836 amino acids. The structural features (length, TIRs size, and 9-bp duplication), together with the presence of conserved domains in the transposase, strongly suggest that Hop is a Mutator-like element (MULE). Hop is thus the first active member of this family found beyond plants. The high rate of excision observed indicates that Hop is very active and thus represents a promising efficient tagging system for the isolation of fungal genes. The distribution of Hop elements within the Fusarium genus revealed that they are present in different species, suggesting that related elements could be present in other fungal genomes. In fact, Hop-related sequences have been identified in the survey of the entire genome sequence of three other ascomycetes, Magnaporthe grisea, Neurospora crassa, and Aspergillus fumigatus.  相似文献   

12.
13.
香蕉枯萎病菌4号生理小种致病相关基因foABC1的分离   总被引:2,自引:0,他引:2  
通过对香蕉枯萎病菌4号小种致病突变体B1233的进一步研究,分离了被突变的致病相关基因foABC1,同源性分析及保守结构预测该基因编码一类ABC转运蛋白,其功能可能同稻瘟病菌的ABC转运蛋白一样,负责真菌毒素的泵出,或是像其他真菌的ABC转运蛋白,在病原菌侵染寄主植物时能忍耐植物因防卫反应所释放的植保素或抗毒素类物质。  相似文献   

14.
T S Wu  J E Linz 《Applied microbiology》1993,59(9):2998-3002
Functional disruption of the gene encoding nitrate reductase (niaD) in Aspergillus parasiticus was conducted by two strategies, one-step gene replacement and the integrative disruption. Plasmid pPN-1, in which an internal DNA fragment of the niaD gene was replaced by a functional gene encoding orotidine monophosphate decarboxylase (pyrG), was constructed. Plasmid pPN-1 was introduced in linear form into A. parasiticus CS10 (ver-1 wh-1 pyrG) by transformation. Approximately 25% of the uridine prototrophic transformants (pyrG+) were chlorate resistant (Chlr), demonstrating their inability to utilize nitrate as a sole nitrogen source. The genetic block in nitrate utilization was confirmed to occur in the niaD gene by the absence of growth of the A. parasiticus CS10 transformants on medium containing nitrate as the sole nitrogen source and the ability to grow on several alternative nitrogen sources. Southern hybridization analysis of Chlr transformants demonstrated that the resident niaD locus was replaced by the nonfunctional allele in pPN-1. To generate an integrative disruption vector (pSKPYRG), an internal fragment of the niaD gene was subcloned into a plasmid containing the pyrG gene as a selectable marker. Circular pSKPYRG was transformed into A. parasiticus CS10. Chlr pyrG+ transformants were screened for nitrate utilization and by Southern hybridization analysis. Integrative disruption of the genomic niaD gene occurred in less than 2% of the transformants. Three gene replacement disruption transformants and two integrative disruption transformants were tested for mitotic stability after growth under nonselective conditions. All five transformants were found to stably retain the Chlr phenotype after growth on nonselective medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Impala is an active DNA transposon family that was first identified in a strain of Fusarium oxysporum pathogenic to melon. The 10 copies present in this strain define three subfamilies that differ by about 20% at the nucleotide level. This high level of polymorphism suggests the existence of an ancestral polymorphism associated with vertical transmission and/or the introduction of some subfamilies by horizontal transfer from another species. To gain insights into the molecular evolution of this family, impala distribution was investigated in strains with various host specificities by Southern blot, PCR, and sequencing. Detection of impala elements in most of the F. oxysporum strains tested indicates that impala is an ancient component of the F. oxysporum genome. Subfamily-specific amplifications and sequence and phylogenetic analyses revealed five subfamilies, several of which can be found within the same genome. This supports the hypothesis of an ancestral polymorphism followed by vertical transmission and independent evolution in the host-specific forms. Highly similar elements showing unique features (internal deletions, high rates of CG-to-TA transitions) or being present at the same genomic location were identified in several strains with different host specificities, raising questions about the phylogenetic relationships of these strains. A phylogenetic analysis performed by sequencing a portion of the EF1alpha gene showed in most cases a correlation between the presence of a particular element and a close genetic relationship. All of these data provide important information on the evolutionary origin of this element and reveal its potential as a valuable tool for tracing populations.  相似文献   

16.
17.
从73个尖孢镰孢(Fusarium oxysporum)不同专化型菌株上获得684个硝酸盐营养突变株(nit mutant)。作相关氮源利用试验及亚硝酸反应后,鉴定出一新硝酸盐营养突变类型:亚硝酸盐还原酶结构基因类型,命名为nit8,占总突变株的6.7%。同时被鉴别的还有nit1、nit3和Nit M三种突变类型,它们分别占突变株总数的81.0%,3.8%和8.5%。此外,首次引入一种亚硝酸反应在这类研究中的应用,还提出了互补指数概念与公式来表示nit突变株营养体之间亲和的能力。  相似文献   

18.
Abstract A heterologous transformation system for Aspergillus alliaceus based on the Aspergillus niger nitrate reductase structural gene ( niaD ) has been developed. Two mutants of A. alliaceus (M3 and M17), each carrying an niaD mutation were isolated by screening UV-irradiated cells for the inability to grow on nitrate as sole nitrogen source. Using plasmid pSTA 10, transformation frequencies of 4 and 200 per μg DNA respectively were obtained for these two strains. All the niaD + transformants tested were mitotically stable. Southern hybridisation analyses showed that the vector DNA sequences were present.  相似文献   

19.
An heterologous transformation system for entomopathogenic fungi B. bassiana and M. anisopliae was developed based on the use of A. nidulans nitrate reductase gene (niaD). B. bassiana and M. anisopliae niaD stable mutants were selected by treatment of protoplast with ethane methane sulphonate (EMS) and regenerated on chlorate medium. The cloned gene was capable of transforming B. bassiana and M. anisopliae at a frequency of 5.8 to 20 transformants per microg of DNA. Most of them were mitotically stable.  相似文献   

20.
Rapid progress in fungal genome sequencing presents many new opportunities for functional genomic analysis of fungal biology through the systematic mutagenesis of the genes identified through sequencing. However, the lack of efficient tools for targeted gene replacement is a limiting factor for fungal functional genomics, as it often necessitates the screening of a large number of transformants to identify the desired mutant. We developed an efficient method of gene replacement and evaluated factors affecting the efficiency of this method using two plant pathogenic fungi, Magnaporthe grisea and Fusarium oxysporum. This method is based on Agrobacterium tumefaciens-mediated transformation with a mutant allele of the target gene flanked by the herpes simplex virus thymidine kinase (HSVtk) gene as a conditional negative selection marker against ectopic transformants. The HSVtk gene product converts 5-fluoro-2'-deoxyuridine to a compound toxic to diverse fungi. Because ectopic transformants express HSVtk, while gene replacement mutants lack HSVtk, growing transformants on a medium amended with 5-fluoro-2'-deoxyuridine facilitates the identification of targeted mutants by counter-selecting against ectopic transformants. In addition to M. grisea and F. oxysporum, the method and associated vectors are likely to be applicable to manipulating genes in a broad spectrum of fungi, thus potentially serving as an efficient, universal functional genomic tool for harnessing the growing body of fungal genome sequence data to study fungal biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号