首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The antiviral effect of interferon inductors, such as poly-I--poly-C, phage f2 RNA replicative form and low molecular inductor GSN and their influence on cellular DNA synthesis were studied in the cultures of lymphoblastoid (inplanting lines Raji Namalva) and somatic human cells. The Semliki forest virus used as the test organism multiplicated well in cells Raji accumulating up to 9 lg BOU/ml. The two-strand RNA was less active in the lymphoid cells than in the somatic ones. GSN was 10 times more active and less toxic in cells Raji as compared to the fibroblasts. The lymphoblastoid interferon had higher antiviral activity as compared to the fibroblast interferon in the system of Raji--Semliki forest virus than in the system of the human embryon fibroblast--Venezuela Horse Encephalytic Virus. Romantadin actively inhibited (100 times) production of the alfavirus in both the somatic and lymphoblastoid cells.  相似文献   

2.
Lactoperoxidase (LPO) is a 78 kDa heme-containing oxidation–reduction enzyme present in milk, found in physiological fluids of mammals. LPO has an antimicrobial activity, and presumably contribute to the protective functions of milk against infectious diseases. In this study, recombinant vaccinia virus expressing bovine LPO (vv/bLPO) was constructed. In rabbit kidney (RK13) cells infected with vv/bLPO, recombinant bLPO was detected in both cell extracts and culture supernatants. Tunicamycin treatment decreased the molecular weight of recombinant bLPO, indicating that recombinant bLPO contains a N-linked glycosylation site. The replication of recombinant vaccinia viruses expressing bovine lactoferrin (vv/bLF) at a multiplicity of infection (moi) of 5 plaque-forming units (PFU)/cell was inhibited by antiviral activity of recombinant bLF, suggesting that vv/bLF has an antiviral effect against vaccinia virus. On the other hand, the replication of vv/bLPO at a moi of 5 PFU/cell was not inhibited by antiviral activity of recombinant bLPO, indicating that this recombinant virus could be used as a suitable viral vector. These results indicate that a combination of bLPO and vaccinia virus vector may be useful for medical and veterinary applications in vivo.  相似文献   

3.
Biological activities of the RNA replicative form of phage f2, a natural interferon inductor and poly-I -- poly-C, a synthetic polyribonucleotide complex were studied comparatively. Differences in the comparative interferonogenic and antiviral activity of the inductors were as dependent on the type of the cell system. It was shown that DEAE-dextran increased the interferon-inducing activity of RFf2 in the cell culture by 4 to 8 times. The dynamics of the interferonogenic and antiviral activity of RFf2 in the L-929 cell culture was studied. Interferon appeared in the culture fluid in 6--8 hours and reached its maximum titers (128 IU50/ml) by the 24th hour, the maximum protection of the cells being also developed by the 12th--24th hour, reaching on an average 51 g PFU/ml. It was shown in the experiments with green marmosets that administration of RFf2 in the form of aerosol in a dose of 2.3 mg/kg induced interferon production in the blood serum the titers of which amounted to 80--160 IU50/ml 24 hours after the administration.  相似文献   

4.
5.
Sinupret(?), a herbal medicinal product made from Gentian root, Primula flower, Elder flower, Sorrel herb, and Verbena herb is frequently used in the treatment of acute and chronic rhinosinusitis and respiratory viral infections such as common cold. To date little is known about its potential antiviral activity. Therefore experiments have been performed to measure the antiviral activity of Sinupret(?) oral drops (hereinafter referred to as "oral drops") and Sinupret(?) dry extract (hereinafter referred to as "dry extract"), in vitro against a broad panel of both enveloped and non-enveloped human pathogenic RNA and DNA viruses known to cause infections of the upper respiratory tract: influenza A, Chile 1/83 (H1N1) virus (FluA), Porcine Influenza A/California/07/2009 (H1N1) virus (pFluA), parainfluenza type 3 virus (Para 3), respiratory syncytial virus, strain Long (RSV), human rhinovirus B subtype 14 (HRV 14), coxsackievirus subtype A9 (CA9), and adenovirus C subtype 5 (Adeno 5). Concentration-dependent antiviral activity (EC(50) between 13.8 and 124.8 μg/ml) of Sinupret(?) was observed against RNA as well as DNA viruses independent of a viral envelope. Remarkable antiviral activity was shown against Adeno 5, HRV 14 and RSV in which dry extract was significantly superior to oral drops. This could be ascertained with different assays as plaque-reduction assays in plaque forming units (PFU), the analyses of a cytopathogenic effect (CPE) and with enzyme immunoassays (ELISA) to determine the amount of newly synthesised virus. Our results demonstrate that Sinupret(?) shows a broad spectrum of antiviral activity in vitro against viruses commonly known to cause respiratory infections.  相似文献   

6.
Experimental data on the effect of various concentrations of gentamycin on reproduction of VEE and Sindbis viruses in tissue culture are presented. It was found that gentamycin had no cytotoxic effect on the primary tripsinized chick embryon fibroblasts (CEF) when used in doses of 10, 20 or 30 mg/ml and only when used in a dose of 50 mg/ml it induced 50 percent destruction of the cell layer. Multiplication of the VEE and Sindbis viruses in the culture of CEF was inhibited in the presence of gentamycin by 1.5--3.5 lg PFU/ml. Two stages in the virus inhibiting effect of gentamycin were determined on the model of VEE, i. e. the stage of inhibition in the absence of visible damages of the cells and the stage associated with their destruction. The doses of gentamycin higher than 3 mg/ml inhibited in parallel the virus specific synthesis and synthesis of the cell proteins and nucleic acids. At the same time, when gentamycin was used in a dose of 10 mg/ml, no impairement of the cell viability was observed and the cell capacity to produce high titers of the model virus was reduced after incubation without the antibiotic for 24 hours. The antiviral activity of gentamycin were therefore determined by revers inhibition of the cell metabolic activity.  相似文献   

7.
8.
目的通过乳杆菌DM9811发酵液提取物中RNA组分对水泡性口炎病毒(VSV)抑制作用研究,探讨其在抵抗肠道病毒性感染性疾病方面的作用。方法应用50%细胞感染计量法(TCID50)、免疫荧光法、ELISA和MTT法探讨不同浓度的RNA组分对VSV的抑制作用。结果 RNA组分200μg/mL浓度时与对照比较,RNA组分具有竞争性抑制VSV感染作用,细胞存活率为(90.9±3.67)%,并具有阻断VSV侵入细胞作用,细胞存活率为(96.6±1.47)%。但RNA组分对病毒生物合成的抑制作用不明显。此外RNA组分具有诱导BALB/c小鼠脾细胞产生IFN-α作用,并呈现一定的剂量依赖关系。结论乳杆菌DM9811发酵液提取物中RNA组分对VSV具有明显抑制作用。  相似文献   

9.
Chen W  Liu M  Jiao Y  Yan W  Wei X  Chen J  Fei L  Liu Y  Zuo X  Yang F  Lu Y  Zheng Z 《Journal of virology》2006,80(7):3559-3566
Foot-and-mouth disease virus (FMDV) infection is responsible for the heavy economic losses in stockbreeding each year. Because of the limited effectiveness of existing vaccines and antiviral drugs, the development of new strategies is needed. RNA interference (RNAi) is an effective means of suppressing virus replication in vitro. Here we demonstrate that treatment with recombinant, replication-defective human adenovirus type 5 (Ad5) expressing short-hairpin RNAs (shRNAs) directed against either structural protein 1D (Ad5-NT21) or polymerase 3D (Ad5-POL) of FMDV totally protects swine IBRS-2 cells from homologous FMDV infection, whereas only Ad5-POL inhibits heterologous FMDV replication. Moreover, delivery of these shRNAs significantly reduces the susceptibility of guinea pigs and swine to FMDV infection. Three of five guinea pigs inoculated with 10(6) PFU of Ad5-POL and challenged 24 h later with 50 50% infectious doses (ID50) of homologous virus were protected from the major clinical manifestation of disease: the appearance of vesicles on the feet. Two of three swine inoculated with an Ad5-NT21-Ad5-POL mixture containing 2 x 10(9) PFU each and challenged 24 h later with 100 ID50 of homologous virus were protected from the major clinical disease, but treatment with a higher dose of adenovirus mixture cannot promote protection of animals. The inhibition was rapid and specific because treatment with a control adenovirus construct (Ad5-LacZ) expressing Escherichia coli galactosidase-specific shRNA showed no marked antiviral activity. Our data highlight the in vivo potential of RNAi technology in the case of FMD.  相似文献   

10.
The question of whether RNA interference (RNAi) acts as an antiviral mechanism in mammalian cells remains controversial. The antiviral interferon (IFN) response cannot easily be distinguished from a possible antiviral RNAi pathway owing to the involvement of double‐stranded RNA (dsRNA) as a common inducer molecule. The non‐structural protein 3 (NS3) protein of rice hoja blanca virus (RHBV) is an RNA silencing suppressor (RSS) that exclusively binds to small dsRNA molecules. Here, we show that this plant viral RSS lacks IFN antagonistic activity, yet it is able to substitute the RSS function of the Tat protein of human immunodeficiency virus type 1. An NS3 mutant that is deficient in RNA binding and its associated RSS activity is inactive in this complementation assay. This cross‐kingdom suppression of RNAi in mammalian cells by a plant viral RSS indicates the significance of the antiviral RNAi response in mammalian cells and the usefulness of well‐defined RSS proteins.  相似文献   

11.
With the agar diffusion test and BS-C-1 cells, mycophenolic acid was found to give a straight-line dose-response activity in inhibiting the cytopathic effects of vaccinia, herpes simplex, and measles viruses. Plaque tests have shown 100% reduction of virus plaques by mycophenolic acid over drug ranges of 10 to 50 mug/ml and virus input as high as 6,000 plaque-forming units (PFU) per flask. Back titration studies with measles virus inhibited by mycophenolic acid have indicated that extracellular virus titers were reduced by approximately 3 logs(10) and total virus was reduced by 1 log(10). The agar diffusion test system lends itself readily to drug reversal studies. Mycophenolic acid incorporated into agar at 10 mug/ml gave 100% protection to virus-infected cells. Filter paper discs impregnated with selected chemical agents at concentrations of 1,000 mug/ml (20 mug per filter paper disc) were placed on the agar surface. Reversal of the antiviral activity of mycophenolic acid was indicated by virus breakthrough in those cells in close proximity to the filter paper disc. Chemicals showing the best reversal of the antiviral activity of mycophenolic acid were guanine, guanosine, guanylic acid, deoxyguanylic acid, and 2,6-diaminopurine. The reversal of antiviral activity was confirmed by titrations of virus produced with various amounts of both mycophenolic acid and guanine present and by isotope tracer methods with uptakes of labeled uridine, guanine, leucine, and thymidine in treated and nontreated, infected and noninfected cells as parameters. All antiviral effects of mycophenolic acid at 10 mug/ml could be reversed to the range shown by untreated controls by the addition of 10 mug/ml of those chemicals exhibiting reversal activity.  相似文献   

12.
CD4+ T cells play an important role in regulating the immune response; their contribution to virus clearance is variable. Mice that lack CD4+ T cells (CD4-/- mice) and are therefore unable to produce neutralizing antibodies cleared viscero-lymphotropic lymphocytic choriomeningitis virus (LCMV) strain WE when infected intravenously with a low dose (2 x 10(2) PFU) because of an effective CD8+ cytotoxic T-cell (CTL) response. In contrast, infection with a high dose (2 x 10(6) PFU) of LCMV strain WE led to expansion of antiviral CTL, which disappeared in CD4-/- mice; in contrast, CD4+ T-cell-competent mice developed antiviral memory CTL. This exhaustion of specific CTL caused viral persistence in CD4-/- mice, whereas CD4+ T-cell-competent mice eliminated the virus. After infection of CD4-/- mice with the faster-replicating LCMV strain DOCILE, abrogation of CTL response and establishment of viral persistence developed after infection with a low dose (5 x 10(2) PFU), i.e., an about 100-fold lower dose than in CD(4+)-competent control mice. These results show that absence of T help enhances establishment of an LCMV carrier state in selected situations.  相似文献   

13.
14.
Bunyamwera virus replication was examined in Aedes albopictus (mosquito) cell cultures in which a persistent infection is established and in cytopathically infected BHK cells. During primary infection of A. albopictus cells, Bunyamwera virus reached relatively high titers (107 PFU/ml), and autointerference was not observed. Three virus-specific RNAs (L, M, and S) and two virion proteins (N and G1) were detected in infected cells. Maximum rates of viral RNA synthesis and viral protein synthesis were extremely low, corresponding to <2% of the synthetic capacities of uninfected control cells. Viral protein synthesis was maximal at 12 h postinfection and was shut down to barely detectable levels at 24 h postinfection. Virus-specific RNA and nucleocapsid syntheses showed similar patterns of change, but later in infection. The proportions of cells able to release a single PFU at 3, 6, and 54 days postinfection were 100, 50, and 1.5%, respectively. Titers fell to 103 to 105 PFU/ml in carrier cultures. Persistently infected cultures were resistant to superinfection with homologous virus but not with heterologous virus. No changes in host cell protein synthesis or other cytopathic effects were observed at any stage of infection. Small-plaque variants of Bunyamwera virus appeared at approximately 7 days postinfection and increased gradually until they were 75 to 95% of the total infectious virus at 66 days postinfection. Temperature-sensitive mutants appeared between 23 and 49 days postinfection. No antiviral activity similar to that reported in A. albopictus cell cultures persistently infected with Sindbis virus (R. Riedel and D. T. Brown, J. Virol. 29: 51-60, 1979) was detected in culture fluids by 3 months after infection. Bunyamwera virus replicated more rapidly in BHK cells than in mosquito cells but reached lower titers. Autointerference occurred at multiplicities of infection of 10. Virus-specific RNA and protein syntheses were at least 20% of the levels in uninfected control cells. Host cell protein synthesis was completely shut down, and nucleocapsid protein accumulated until it was 4% of the total cell protein. We discuss these results in relation to possible mechanisms involved in determining the outcome of arbovirus infection of vertebrate and mosquito cells.  相似文献   

15.
Virulence of La Crosse virus is under polygenic control.   总被引:6,自引:5,他引:1       下载免费PDF全文
To identify which RNA segments of the California serogroup bunyaviruses determine virulence, we prepared reassortant viruses by coinfecting BHK-21 cells with two wild-type parents, La Crosse/original and Tahyna/181-57 viruses, which differed about 30,000-fold in virulence. The progeny clones were screened by polyacrylamide gel electrophoresis to ascertain the phenotype of the M and S RNA segments, and RNA-RNA hybridization was used to determine the genotype of selected clones. Two or three clones of each of the six possible reassortant genotypes were characterized quantitatively for neuroinvasiveness by determining the PFU/50% lethal dose (LD50) ratio after subcutaneous injection into suckling mice. The reassortants fell into two groups. (i) Six of seven reassortants with a La Crosse M RNA segment were as virulent as the parent La Crosse virus (about 1 PFU/LD50); the one exception was strikingly different (about 1,000 PFU/LD50) and probably represents a spontaneous mutant. (ii) The seven reassortants with a Tahyna M RNA segment were about 10-fold more virulent than the parent Tahyna virus (median 1,600 PFU/LD50 for reassortants and 16,000 PFU/LD50 for Tahyna virus). A comparative pathogenesis study in suckling mice of one reassortant virus and the parent Tahyna virus confirmed the greater neuroinvasiveness of the reassortant virus. From these data it was concluded that the M RNA segment was the major determinant of virulence, but that the other two gene segments could modulate the virulence of a nonneuroinvasive California serogroup virus.  相似文献   

16.
Crimean-Congo hemorrhagic fever virus (CCHFV) causes severe human disease. The CCHFV medium RNA encodes a polyprotein which is proteolytically processed to yield the glycoprotein precursors PreGn and PreGc, followed by structural glycoproteins Gn and Gc. Subtilisin kexin isozyme-1/site-1 protease (SKI-1/S1P) plays a central role in Gn processing. Here we show that CCHFV-infected cells deficient in SKI-1/S1P produce no infectious virus, although PreGn and PreGc accumulated normally in the Golgi apparatus, the site of virus assembly. Only nucleoprotein-containing particles which lacked virus glycoproteins (Gn/Gc or PreGn/PreGc) were secreted. Complementation of SKI-1/S1P-deficient cells with a SKI-1/S1P expression vector restored release of infectious virus (>106 PFU/ml), confirming that SKI-1/S1P processing is required for incorporation of viral glycoproteins. SKI-1/S1P may represent a promising antiviral target.  相似文献   

17.
To determine whether a sex difference exists in the biosynthetic capacity of vasopressingergic (AVP) neurons in the bed nucleus of the stria terminalis (BNST), we have used in situ hybridization and quantitative autoradiography to measure propressophysin messenger RNA levels in these cells from adult male and female rats. We have found that significantly more (p less than 0.01) neurons are labeled in male rats than in female rats and that these labeled cells averaged more grains/cell (p less than 0.05) in males than in females. Therefore, the sexual dimorphism of AVP pathways in the BNST and lateral septum recently shown by immunohistochemistry results from a sex difference in the biosynthetic capacity of these AVP neurons.  相似文献   

18.
We sought to investigate the cellular uptake and antiviral activity for the M1 zinc finger peptides derived from influenza A and influenza B viruses in vitro. No cellular uptake was detected by fluorescent microscopy for the synthetic zinc finger peptides. When flanked to a cell permeable peptide Tp10, the zinc finger recombinant proteins were efficiently internalized by MDCK cells. However, no antiviral activity was detected against homologous or heterologous virus infections for the synthetic peptides or the Tp10-flanked recombinant proteins, regardless treated with or without Zn2+. Nevertheless, MDCK cell constitutively expressing the M1 zinc finger peptides in cell nuclei potently inhibited replication of homologous, but not heterologous influenza viruses. Adenoviral vector delivered M1 zinc finger peptides also exhibited potent antiviral activity against homologous viruses challenge. Transduction at 100 PFU dose of recombinant adenovirus efficiently protected 99% of the cells from 100 TCID50 of different virus infections for both peptides. These results brought new insight to the antiviral researches against influenza virus infections.  相似文献   

19.
20.
RIG-I is a DExD/H-box RNA helicase and functions as a critical cytoplasmic sensor for RNA viruses to initiate antiviral interferon (IFN) responses. Here we demonstrate that another DExD/H-box RNA helicase DHX36 is a key molecule for RIG-I signaling by regulating double-stranded RNA (dsRNA)-dependent protein kinase (PKR) activation, which has been shown to be essential for the formation of antiviral stress granule (avSG). We found that DHX36 and PKR form a complex in a dsRNA-dependent manner. By forming this complex, DHX36 facilitates dsRNA binding and phosphorylation of PKR through its ATPase/helicase activity. Using DHX36 KO-inducible MEF cells, we demonstrated that DHX36 deficient cells showed defect in IFN production and higher susceptibility in RNA virus infection, indicating the physiological importance of this complex in host defense. In summary, we identify a novel function of DHX36 as a critical regulator of PKR-dependent avSG to facilitate viral RNA recognition by RIG-I-like receptor (RLR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号