共查询到20条相似文献,搜索用时 0 毫秒
1.
O'Dowd BF Ji X O'Dowd PB Nguyen T George SR 《Biochemical and biophysical research communications》2012,422(4):556-560
The crystal structure of the mu and kappa opioid receptors has revealed dimeric structural arrangements. Mu-delta receptors heteromers also exist and we have identified discrete cytoplasmic regions in each receptor required for oligomer formation. In the carboxyl tail of the delta receptor we identified three glycine residues (-GGG), substitution of any of these residues prevented heteromer formation. In intracellular loop 3 of both mu and delta receptors we identified three residues (-SVR), substitution of any of these residues prevented heteromer formation. 相似文献
2.
Dupré DJ Robitaille M Ethier N Villeneuve LR Mamarbachi AM Hébert TE 《The Journal of biological chemistry》2006,281(45):34561-34573
Much is known about beta2-adrenergic receptor trafficking and internalization following prolonged agonist stimulation. However, less is known about outward trafficking of the beta2-adrenergic receptor to the plasma membrane or the role that trafficking might play in the assembly of receptor signaling complexes, important for targeting, specificity, and rapidity of subsequent signaling events. Here, by using a combination of bioluminescence resonance energy transfer, bimolecular fluorescence complementation, and confocal microscopy, we evaluated the steps in the formation of the core receptor-G protein heterotrimer complex. By using dominant negative Rab and Sar GTPase constructs, we demonstrate that receptor dimers and receptor-G betagamma complexes initially associate in the endoplasmic reticulum, whereas G alpha subunits are added to the complex during endoplasmic reticulum-Golgi transit. We also observed that G protein heterotrimers adopt different trafficking itineraries when expressed alone or with stoichiometric co-expression with receptor. Furthermore, deliberate mistargeting of specific components of these complexes leads to diversion of other members from their normal subcellular localization, confirming the role of these early interactions in targeting and formation of specific signaling complexes. 相似文献
3.
Sara L?chte Sharon Waichman Oliver Beutel Changjiang You Jacob Piehler 《The Journal of cell biology》2014,207(3):407-418
Interactions of proteins in the plasma membrane are notoriously challenging to study under physiological conditions. We report in this paper a generic approach for spatial organization of plasma membrane proteins into micropatterns as a tool for visualizing and quantifying interactions with extracellular, intracellular, and transmembrane proteins in live cells. Based on a protein-repellent poly(ethylene glycol) polymer brush, micropatterned surface functionalization with the HaloTag ligand for capturing HaloTag fusion proteins and RGD peptides promoting cell adhesion was devised. Efficient micropatterning of the type I interferon (IFN) receptor subunit IFNAR2 fused to the HaloTag was achieved, and highly specific IFN binding to the receptor was detected. The dynamics of this interaction could be quantified on the single molecule level, and IFN-induced receptor dimerization in micropatterns could be monitored. Assembly of active signaling complexes was confirmed by immunostaining of phosphorylated Janus family kinases, and the interaction dynamics of cytosolic effector proteins recruited to the receptor complex were unambiguously quantified by fluorescence recovery after photobleaching. 相似文献
4.
Youyi Peng Qiang Zhang Sonia Arora Susan M. Keenan Sandhya Kortagere Kenneth M. Wannemacher Richard D. Howells William J. Welsh 《Bioorganic & medicinal chemistry》2009,17(17):6442-6450
A novel family of 1,3,5-trisubstituted 1,2,4-triazoles was discovered as potent and selective ligands for the δ opioid receptor by rational design. Compound 5b exhibited low-nanomolar in vitro binding affinity (IC50 = 5.8 nM), excellent selectivity for the δ opioid receptor over the alternative μ and κ opioid receptors, full agonist efficacy in receptor down-regulation and MAP kinase activation assays, and low-efficacy partial agonist activity in stimulation of GTPγS binding. The apparent discrepancy observed in these functional assays may stem from different signaling pathways involved in each case, as found previously for other G-protein coupled receptors. More biological studies are underway to better understand the differential stimulation of signaling pathways by these novel compounds. 相似文献
5.
Degradation of low-molecular-weight opioid peptides by vascular plasma membrane aminopeptidase M 总被引:2,自引:0,他引:2
Since both aminopeptidases and angiotensin I-converting enzyme are reported to degrade circulating enkephalins, we have examined the degradation of low-molecular-weight opioid peptides by a vascular plasma membrane-enriched fraction previously shown to contain both angiotensin I-converting enzyme (EC 3.4.15.1) and aminopeptidase M (EC 3.4.11.2). Except for an enkephalin analog resistant to amino-terminal hydrolysis, [D-Ala2]enkephalin, the purified vascular plasma membrane preferentially degraded low-molecular-weight opioids by hydrolysis of the N-terminal Tyr-1--Gly-2 bond. Enkephalin degradation was optimal at pH 7.0 and was inhibited by the aminopeptidase inhibitors amastatin (I50 = 0.08 microM), bestatin (9.0 microM) and puromycin (80 microM). Maximal rates of hydrolysis, calculated per mg plasma membrane protein, were highest for the shorter peptides (18.3, 15.6 and 16.6 nmol/min per mg for Met5-enkephalin, Leu5-enkephalin and Leu5-enkephalin-Arg6, respectively) and decreased with increasing peptide length (0.7 nmol/min per mg for dynorphin (1-13)). No significant hydrolysis of beta- and gamma-endorphin was detected. Km values decreased significantly with increasing peptide length (Km = 72.9 +/- 2.7, 43.6 +/- 4.7 and 21.4 +/- 0.9 microM for Met5-enkephalin, Leu5-enkephalin-Arg6 and Met5-enkephalin-Arg6-Phe7, respectively). However, no further decreases were seen with even larger sequences, i.e., dynorphin(1-13). Other peptides hydrolyzed by the plasma membrane aminopeptidase (angiotensin III, kallidin and hepta(5-11)-substance P) inhibited enkephalin degradation in a competitive manner. Thus, localization, specificity and kinetic data are consistent with identification of aminopeptidase M as a vascular enzyme with the capacity to differentially metabolize low-molecular-weight opioid peptides within the microenvironment of vascular cell surface receptors. Such differential metabolism may play a role in modulating the vascular effects of peripheral opioids. 相似文献
6.
Cytokine signaling: STATS in plasma membrane rafts 总被引:10,自引:0,他引:10
Sehgal PB Guo GG Shah M Kumar V Patel K 《The Journal of biological chemistry》2002,277(14):12067-12074
7.
Proximal events in signaling by plasma membrane estrogen receptors 总被引:18,自引:0,他引:18
Estradiol (E2) rapidly stimulates signal transduction from plasma membrane estrogen receptors (ER) that are G protein-coupled. This is reported to occur through the transactivation of the epidermal growth factor receptor (EGFR) or insulin-like growth factor-1 receptor, similar to other G protein-coupled receptors. Here, we define the signaling events that result in EGFR and ERK activation. E2-stimulated ERK required ER in breast cancer and endothelial cells and was substantially prevented by expression of a dominant negative EGFR or by tyrphostin AG1478, a specific inhibitor for EGFR tyrosine kinase activity. Transactivation/phosphorylation of EGFR by E2 was dependent on the rapid liberation of heparin-binding EGF (HB-EGF) from cultured MCF-7 cells and was blocked by antibodies to this ligand for EGFR. Expression of dominant negative mini-genes for Galpha(q) and Galpha(i) blocked E2-induced, EGFR-dependent ERK activation, and Gbetagamma also contributed. G protein activation led to activation of matrix metalloproteinases (MMP)-2 and -9. This resulted from Src-induced MMP activation, implicated using PP2 (Src family kinase inhibitor) or the expression of a dominant negative Src protein. Antisense oligonucleotides to MMP-2 and MMP-9 or ICI 182780 (ER antagonist) each prevented E2-induced HB-EGF liberation and ERK activation. E2 also induced AKT up-regulation in MCF-7 cells and p38beta MAP kinase activity in endothelial cells, blocked by an MMP inhibitor, GM6001, and tyrphostin AG1478. Targeting of only the E domain of ERalpha to the plasma membrane resulted in MMP activation and EGFR transactivation. Thus, specific G proteins mediate the ability of E2 to activate MMP-2 and MMP-9 via Src. This leads to HB-EGF transactivation of EGFR and signaling to multiple kinase cascades in several target cells for E2. The E domain is sufficient to enact these events, defining additional details of the important cross-talk between membrane ER and EGFR in breast cancer. 相似文献
9.
Cellular signaling pathways do not simply transmit data; they integrate and process signals to operate as switches, oscillators, logic gates, memory modules and many other types of control system. These complex processing capabilities enable cells to respond appropriately to the myriad of external cues that direct growth and development. The idea that crosstalk and feedback loops are used as control systems in biological signaling networks is well established. Signaling networks are also subject to exquisite spatial regulation, yet how spatial control modulates signal outputs is less well understood. Here, we explore the spatial organization of two different signal transduction circuits: receptor tyrosine kinase activation of the mitogen-activated protein kinase module; and glycosylphosphatidylinositol-anchored receptor activation of phospholipase C. With regards to these pathways, recent results have refocused attention on the crucial role of lipid rafts and plasma membrane nanodomains in signal transmission. We identify common design principals that highlight how the spatial organization of signal transduction circuits can be used as a fundamental control mechanism to modulate system outputs in vivo. 相似文献
10.
Many cells cluster signaling complexes in plasma membrane microdomains. Polarized secretory cells cluster all Ca2+ signaling proteins, including GPCRs, at the apical pole. The functional significance of such an arrangement is not known because of a lack of techniques for functional mapping of signaling complexes at plasma membrane patches. In the present work, we developed such a technique based on the use of two patch pipettes, a recording and a stimulating pipette (SP). Including 20% glycerol in the SP solution increased the viscosity and the hydrophobicity to prevent leakage and formation of tight seals on the plasma membrane. This allowed moving the SP between sites to stimulate multiple patches of the same cell and with the same agonist concentrations. Functional mapping of Ca2+ signaling in pancreatic acinar cells revealed that the M3, cholecystokinin, and bombesin signaling complexes at the apical pole are much more sensitive to stimulation than those at the basal pole. Furthermore, at physiological agonist concentrations, Ca2+ signals could be evoked only by stimulation of membrane patches at the apical pole. [Ca2+](i) imaging revealed that Ca2+ waves were invariably initiated at the site of apical membrane patch stimulation, suggesting that long range diffusion of second messengers is not obligatory to initiate and propagate apical-to-basal Ca2+ waves. The present studies reveal a remarkable heterogeneity in responsiveness of Ca2+ signaling complexes at membrane microdomains, with the most responsive complexes confined to the apical pole, probably to restrict the Ca2+ signals to the site of exocytosis and allow the polarized functions of secretory cells. 相似文献
11.
Insulin signaling in microdomains of the plasma membrane 总被引:3,自引:0,他引:3
Although the effects of insulin on glucose and lipid metabolism are well documented, gaps remain in our understanding of the precise molecular mechanisms of signal transduction. Recent evidence suggests that compartmentalization of signaling molecules and metabolic enzymes may explain the unique cellular effects of the hormone. Signal initiation from the insulin receptor is restricted in part to caveolae microdomains of the plasma membrane. A fraction of the insulin receptor directly interacts with caveolin, thus directing the protein to caveolae. Following its activation by insulin, the receptor recruits a series of adapter proteins, resulting in the activation of the G protein TC10, which also resides in caveolae. TC10 can influence a number of cellular processes, including changes in the actin cytoskeleton, recruitment of effector including the adapter protein CIP4, and assembly of the exocyst complex. These events play crucial roles in the trafficking, docking and fusion of vesicles containing the insulin-responsive glucose transporter Glut4 at the plasma membrane. 相似文献
12.
Lipids on the plasma membrane are not only components of the membrane biophysical structures but also regulators of receptor functions. Recently, the critical roles of lipid-protein interactions have been intensively highlighted. Epidermal growth factor receptor (EGFR) is one of the most extensively studied receptors exhibiting various lipid interactions, including interactions with phosphatidylcholine, phosphatidylserine, phosphatidylinositol phosphate, cholesterol, gangliosides, and palmitate. Here, we review recent findings on how direct interaction with these lipids regulates EGFR activation and signaling, providing unprecedented insight into the comprehensive roles of various lipids in the control of EGFR functions. Finally, the current limitations in investigating lipid-protein interactions and novel technologies to potentially overcome these limitations are discussed. 相似文献
13.
14.
Na(+)/H(+) exchanger NHE1 as plasma membrane scaffold in the assembly of signaling complexes 总被引:2,自引:0,他引:2
Baumgartner M Patel H Barber DL 《American journal of physiology. Cell physiology》2004,287(4):C844-C850
The plasma membrane Na+/H+ exchanger NHE1 has an established function in intracellular pH and cell volume homeostasis by catalyzing electroneutral influx of extracellular Na+ and efflux of intracellular H+. A second function of NHE1 as a structural anchor for actin filaments through its direct binding of the ezrin, radixin, and moesin (ERM) family of actin-binding proteins was recently identified. ERM protein binding and actin anchoring by NHE1 are necessary to retain the localization of NHE1 in specialized plasma membrane domains and to promote cytoskeleton-dependent processes, including actin filament bundling and cell-substrate adhesions. This review explores a third function of NHE1, as a plasma membrane scaffold in the assembly of signaling complexes. Through its coordinate functions in H+ efflux, actin anchoring, and scaffolding, we propose that NHE1 promotes protein interactions and activities, assembles signaling complexes in specialized plasma membrane domains, and coordinates divergent signaling pathways. hydrogen ion efflux; intracellular pH; molecular scaffold 相似文献
15.
Alix is a phylogenetically conserved protein that participates in mammals in programmed cell death in association with ALG-2, a penta-EF-hand calciprotein. It contains an N-terminal Bro1 domain, a coiled-coil region and a C-terminal proline-rich domain containing several SH3- and WW-binding sites that contribute to its scaffolding properties. Recent data showed that by virtue of its Bro1 domain, Alix is functionally associated to the ESCRT complexes involved in the biogenesis of the multivesicular body and sorting of transmembrane proteins within this specific endosomal compartment. In Dictyostelium, an alx null strain shows a markedly perturbed starvation-induced morphogenetic program while ALG-2 disruptants remain unaffected. This review summarizes Dictyostelium data on Alix and ALG-2 homologues and evaluates whether known functions of Alix in other organisms can account for the developmental arrest of the alx null mutant and how Dictyostelium studies can substantiate the current understanding of the function(s) of this versatile and conserved signaling molecule. 相似文献
16.
Classical cadherin adhesion molecules are key determinants of cell recognition and tissue morphogenesis, with diverse effects on cell behavior. Recent developments indicate that classical cadherins are adhesion-activated signaling receptors. In particular, early-immediate Rac signaling is emerging as a mechanism to coordinate cadherin-actin integration at the plasma membrane. 相似文献
17.
Trafficking of GFP-tagged Delta F508-CFTR to the plasma membrane in a polarized epithelial cell line
Loffing-Cueni Dominique; Loffing Jan; Shaw Collin; Taplin Amilyn M.; Govindan Malu; Stanton Caitlin R.; Stanton Bruce A. 《American journal of physiology. Cell physiology》2001,281(6):C1889
The F508 mutationreduces the amount of cystic fibrosis transmembrane conductanceregulator (CFTR) expressed in the plasma membrane of epithelial cells.However, a reduced temperature, butyrate compounds, and "chemicalchaperones" allow F508-CFTR to traffic to the plasma membrane andincrease Cl permeability in heterologous and nonpolarizedcells. Because trafficking is affected by the polarized state ofepithelial cells and is cell-type dependent, our goal was to determinewhether these maneuvers induce F508-CFTR trafficking to the apicalplasma membrane in polarized epithelial cells. To this end, wegenerated and characterized a line of polarized Madin-Darby caninekidney (MDCK) cells stably expressing F508-CFTR tagged with greenfluorescent protein (GFP). A reduced temperature, glycerol, butyrate,or DMSO had no effect on 8-(4-chlorophenylthio)-cAMP(CPT-cAMP)-stimulated transepithelial Cl secretion acrosspolarized monolayers. However, when the basolateral membrane waspermeabilized, butyrate, but not the other experimental maneuvers,increased the CPT-cAMP-stimulated Cl current across theapical plasma membrane. Thus butyrate increased the amount offunctional F508-CFTR in the apical plasma membrane. Butyrate failedto stimulate transepithelial Cl secretion because ofinhibitory effects on Cl uptake across the basolateralmembrane. These observations suggest that studies on heterologous andnonpolarized cells should be interpreted cautiously. The GFP tag onF508-CFTR will allow investigation of F508-CFTR trafficking inliving, polarized MDCK epithelial cells in real time. 相似文献
18.
We have analyzed the spatial-temporal regulation of epidermal growth factor receptor (EGFR) phosphorylation by the orphan erbB2 receptor. It is shown that EGFR association with erbB2 is sufficient to prolong and enhance the net phosphorylation of EGFR, independent of the kinase activity of erbB2. This enhanced EGFR signaling was rather caused by erbB2-mediated retention of phosphorylated EGFR at the plasma membrane (PM), thereby preventing EGFR dephosphorylation and signal termination by endomembrane-bound protein tyrosine phosphatases (PTPs). EGF-induced EGFR internalization was indeed blocked in the presence of high levels of erbB2 or if cbl binding of EGFR was impaired. This erbB2-mediated blockage of the entry of activated EGFR into clathrin-coated vesicles could be alleviated by antibody-mediated disruption of the interaction between EGFR and erbB2. These results identify erbB2-mediated dominant trapping of phosphorylated EGFR at the PM as a mechanism that prolongs EGFR signaling, by sequestration of activated EGFR away from intracellular sites of high PTP activity. 相似文献
19.
Prinetti A Prioni S Loberto N Aureli M Chigorno V Sonnino S 《Biochimica et biophysica acta》2008,1780(3):585-596
Aberrant (glyco)sphingolipid expression deeply affects several properties of tumor cells that are involved in tumor progression and metastasis formation: cell adhesion (to the extracellular matrix or to the endothelium of blood vessels), motility, recognition and invasion of host tissues. In particular, (glyco)sphingolipids might contribute to the modulation of integrin-dependent interactions of tumor cells (determining their adhesion, motility and invasiveness) with the extracellular matrix as well as with host cells present in the stromal compartment of the tumor. A model based on solid experimental evidence has been proposed: (glyco)sphingolipids at the cell surface interact with plasma membrane receptors (e.g., integrin receptors and growth factor receptors) and adapter molecules (including tetraspanins) forming signaling complexes that are able to influence the activity of signal transduction molecules oriented at the cytosolic surface of the plasma membrane (mainly the Src kinases pathway members). The function of these signaling complexes appears to be strictly dependent on their (glyco)sphingolipid composition, and likely on specific sphingolipid-protein interactions. From this point of view, particularly intriguing is the connection between (glyco)sphingolipids and caveolin-1, a membrane protein that plays multiple roles as a suppressor of tumor growth and metastasis in ovarian, breast and colon human carcinomas. 相似文献
20.
The subcellular localization of RAS GTPases defines the operational compartment of the EGFR-ERK1/2 signaling pathway within cells. Hence, we used live-cell imaging to demonstrate that endogenous KRAS and NRAS tagged with mNeonGreen are predominantly localized to the plasma membrane. NRAS was also present in the Golgi apparatus and a tubular, plasma-membrane derived endorecycling compartment, enriched in recycling endosome markers (TERC). In EGF-stimulated cells, there was essentially no colocalization of either mNeonGreen-KRAS or mNeonGreen-NRAS with endosomal EGFR, which, by contrast, remained associated with endogenous Grb2-mNeonGreen, a receptor adaptor upstream of RAS. ERK1/2 activity was diminished by blocking cell surface EGFR with cetuximab, even after most ligand-bound, Grb2-associated EGFRs were internalized. Endogenous mCherry-tagged RAF1, an effector of RAS, was recruited to the plasma membrane, with subsequent accumulation in mNG-NRAS–containing TERCs. We propose that a small pool of surface EGFRs sustain signaling within the RAS-ERK1/2 pathway and that RAS activation persists in TERCs, whereas endosomal EGFR does not significantly contribute to ERK1/2 activity. 相似文献