首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zeng L  Li T  Xu DC  Liu J  Mao G  Cui MZ  Fu X  Xu X 《The Journal of biological chemistry》2012,287(34):29125-29133
Cells undergo apoptosis through two major pathways, the extrinsic pathway (death receptor pathway) and the intrinsic pathway (the mitochondrial pathway). These two pathways can be linked by caspase-8-activated truncated Bid formation. Very recently, death receptor 6 (DR6) was shown to be involved in the neurodegeneration observed in Alzheimer disease. DR6, also known as TNFRSF21, is a relatively new member of the death receptor family, and it was found that DR6 induces apoptosis when it is overexpressed. However, how the death signal mediated by DR6 is transduced intracellularly is not known. To this end, we have examined the roles of caspases, apoptogenic mitochondrial factor cytochrome c, and the Bcl-2 family proteins in DR6-induced apoptosis. Our data demonstrated that Bax translocation is absolutely required for DR6-induced apoptosis. On the other hand, inhibition of caspase-8 and knockdown of Bid have no effect on DR6-induced apoptosis. Our results strongly suggest that DR6-induced apoptosis occurs through a new pathway that is different from the type I and type II pathways through interacting with Bax.  相似文献   

2.
Vascular deposition of amyloid-β (Aβ) in sporadic and familial Alzheimer''s disease, through poorly understood molecular mechanisms, leads to focal ischemia, alterations in cerebral blood flow, and cerebral micro-/macro-hemorrhages, significantly contributing to cognitive impairment. Here, we show that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptors DR4 and DR5 specifically mediate oligomeric Aβ induction of extrinsic apoptotic pathways in human microvascular cerebral endothelial cells with activation of both caspase-8 and caspase-9. The caspase-8 inhibitor cellular FLICE-like inhibitory protein (cFLIP) is downregulated, and mitochondrial paths are engaged through BH3-interacting domain death agonist (Bid) cleavage. Upregulation of DR4 and DR5 and colocalization with Aβ at the cell membrane suggests their involvement as initiators of the apoptotic machinery. Direct binding assays using receptor chimeras confirm the specific interaction of oligomeric Aβ with DR4 and DR5 whereas apoptosis protection achieved through RNA silencing of both receptors highlights their active role in downstream apoptotic pathways unveiling new targets for therapeutic intervention.  相似文献   

3.
Signaling through the tumor necrosis factor receptor (TNFR) superfamily can lead to apoptosis or promote cell survival, proliferation, and differentiation. A subset of this family, including TNFR1 and Fas, signals cell death via an intracellular death domain and therefore is termed the death receptor (DR) family. In this study, we identified new members of the DR family, designated xDR-M1 and xDR-M2, in Xenopus laevis. The two proteins, which show high homology (71.7% identity), have characteristics of the DR family, that is, three cysteine-rich domains, a transmembrane domain, and a death domain. To elucidate how members of xDR-M subfamily regulate cell death and survival, we examined the intracellular signaling mediated by these receptors in 293T and A6 cells. Overexpression of xDR-M2 induced apoptosis and activated caspase-8, c-Jun N-terminal kinase, and nuclear factor-kappaB, although its death domain to a greater extent than did that of xDR-M1 in 293T cells. A caspase-8 inhibitor potently blocked this apoptosis induced by xDR-M2. In contrast, xDR-M1 showed a greater ability to induce apoptosis through its death domain than did xDR-M2 in A6 cells. Interestingly, a general serine protease inhibitor, but not the caspase-8 inhibitor, blocked the xDR-M1-induced apoptosis. These results imply that activation of caspase-8 or serine protease(s) may be required for the xDR-M2- or xDR-M1-induced apoptosis, respectively. Although xDR-M1 and xDR-M2 are very similar to each other, the difference in their death domains may result in diverse signaling, suggesting distinct roles of xDR-M1 and xDR-M2 in cell death or survival.  相似文献   

4.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis through binding to TRAIL receptors, death receptor 4 (DR4), and DR5. TRAIL has potential therapeutic value against cancer because of its selective cytotoxic effects on several transformed cell types. Fucosylation of proteins and lipids on the cell surface is a very important posttranslational modification that is involved in many cellular events. Recently, we found that a deficiency in GDP-mannose-4,6-dehydratase (GMDS) rendered colon cancer cells resistant to TRAIL-induced apoptosis, resulting in tumor development and metastasis by escape from tumor immune surveillance. GMDS is an indispensable regulator of cellular fucosylation. In this study, we investigated the molecular mechanism of inhibition of TRAIL signaling by GMDS deficiency. DR4, but not DR5, was found to be fucosylated; however, GMDS deficiency inhibited both DR4- and DR5-mediated apoptosis despite the absence of fucosylation on DR5. In addition, GMDS deficiency also inhibited CD95-mediated apoptosis but not the intrinsic apoptosis pathway induced by anti-cancer drugs. Binding of TRAIL and CD95 ligand to their cognate receptors primarily leads to formation of a complex comprising the receptor, FADD, and caspase-8, referred to as the death-inducing signaling complex (DISC). GMDS deficiency did not affect formation of the primary DISC or recruitment to and activation of caspase-8 on the DISC. However, formation of secondary FADD-dependent complex II, comprising caspase-8 and cFLIP, was significantly inhibited by GMDS deficiency. These results indicate that GMDS regulates the formation of secondary complex II from the primary DISC independent of direct fucosylation of death receptors.  相似文献   

5.
6.
cFLIP inhibits caspase 8 recruitment and processing at the death-inducing signaling complex (DISC), which is known to inhibits apoptosis mediated by death receptors such as Fas and death receptor 5 (DR5) as well as apoptosis mediated by anticancer therapeutic drugs. We observed that oxaliplatin induced apoptosis, the activation of DEVDase activity, DNA fragmentation, and cleavage of PLC-gamma1 and degradation of XIAP protein in dose-dependent manners, which was prevented by pretreatment with z-VAD or NAC, suggesting that oxaliplatin-induced apoptosis was mediated by caspase- or reactive oxygen species (ROS)-dependent pathways. Furthermore, ectopic expression of cFLIPs potently attenuated oxaliplatin-induced apoptosis, whereas cFLIP(L) had less effect. Interestingly, we found that the protein level of XIAP was sustained in oxaliplatin-treated cFLIPs overexpressing cell, which was caused by the increased XIAP protein stability and that the phospho-Akt level was high compared to vector-transfected cell. The increased XIAP protein stability was lessened by PI3K inhibitor LY294002 treatment in cFLIPs overexpressing cells. Thus, our findings imply that the anti-apoptotic functions of cFLIPs may be attributed to inhibit oxaliplatin-induced apoptosis through the sustained XIAP protein level and Akt activation.  相似文献   

7.
Development of resistance to TRAIL, an apoptosis-inducing cytokine, is one of the major problems in its development for cancer treatment. Thus, pharmacological agents that are safe and can sensitize the tumor cells to TRAIL are urgently needed. We investigated whether gossypol, a BH3 mimetic that is currently in the clinic, can potentiate TRAIL-induced apoptosis. Intracellular esterase activity, sub-G1 cell cycle arrest, and caspase-8, -9, and -3 activity assays revealed that gossypol potentiated TRAIL-induced apoptosis in human colon cancer cells. Gossypol also down-regulated cell survival proteins (Bcl-xL, Bcl-2, survivin, XIAP, and cFLIP) and dramatically up-regulated TRAIL death receptor (DR)-5 expression but had no effect on DR4 and decoy receptors. Gossypol-induced receptor induction was not cell type-specific, as DR5 induction was observed in other cell types. Deletion of DR5 by siRNA significantly reduced the apoptosis induced by TRAIL and gossypol. Gossypol induction of the death receptor required the induction of CHOP, and thus, gene silencing of CHOP abolished gossypol-induced DR5 expression and associated potentiation of apoptosis. ERK1/2 (but not p38 MAPK or JNK) activation was also required for gossypol-induced TRAIL receptor induction; gene silencing of ERK abolished both DR5 induction and potentiation of apoptosis by TRAIL. We also found that reactive oxygen species produced by gossypol treatment was critical for TRAIL receptor induction and apoptosis potentiation. Overall, our results show that gossypol enhances TRAIL-induced apoptosis through the down-regulation of cell survival proteins and the up-regulation of TRAIL death receptors through the ROS-ERK-CHOP-DR5 pathway.  相似文献   

8.
Taxol induces caspase-10-dependent apoptosis   总被引:9,自引:0,他引:9  
Taxol (paclitaxel) is known to inhibit cell growth and trigger significant apoptosis in various cancer cells. Although taxol induces apoptosis of cancer cells, its exact mechanism of action is not yet known. In this study we investigated death receptors, FAS-associated death domain protein (FADD), the activation of caspases-10 and -8 as well as the downstream caspases, and reactive oxygen species (ROS) in taxol-induced apoptosis in the CCRF-HSB-2 human lymphoblastic leukemia cell line. Pretreating the cells with neutralizing antibodies to Fas, tumor necrosis factor (TNF)-alpha receptor 1, or TNF-related apoptosis-inducing ligand receptors (DR4 and DR5) did not affect taxol-induced apoptosis, but transfection of the cells with a dominant negative FADD plasmid resulted in inhibition of taxol-induced apoptosis, revealing that taxol induces apoptosis independently of these death receptors but dependently on FADD. Furthermore, the drug induced activation of caspases-10, -8, -6, and -3, cleaved Bcl-2, Bid, poly(ADP-ribose) polymerase, and lamin B, and down-regulated cellular levels of FLICE-like inhibitory protein (FLIP) and X-chromosome-linked inhibitor of apoptosis protein (XIAP). However, despite the release of cytochrome c from the mitochondria in taxol-treated cells, caspase-9 was not activated. Inhibitors of caspases-8, -6, or -3 partially inhibited taxol-induced apoptosis, whereas the caspase-10 inhibitor totally abrogated this process. Taxol-induced apoptosis was also associated with decreased mitochondrial membrane potential (Deltapsim) and a significant increase in ROS generation. However, increased ROS production was not directly involved in taxol-triggered apoptosis. Therefore, these results demonstrate for the first time that taxol induces FADD-dependent apoptosis primarily through activation of caspase-10 but independently of death receptors.  相似文献   

9.
Whether celastrol, a triterpene from traditional Chinese medicine, can modulate the anticancer effects of TRAIL, the cytokine that is currently in clinical trial, was investigated. As indicated by assays that measure plasma membrane integrity, phosphatidylserine exposure, mitochondrial activity, and activation of caspase-8, caspase-9, and caspase-3, celastrol potentiated the TRAIL-induced apoptosis in human breast cancer cells, and converted TRAIL-resistant cells to TRAIL-sensitive cells. When examined for its mechanism, we found that the triterpene down-regulated the expression of cell survival proteins including cFLIP, IAP-1, Bcl-2, Bcl-xL, survivin, and XIAP and up-regulated Bax expression. In addition, we found that celastrol induced the cell surface expression of both the TRAIL receptors DR4 and DR5. This increase in receptors was noted in a wide variety of cancer cells including breast, lung, colorectal, prostate, esophageal, and pancreatic cancer cells, and myeloid and leukemia cells. Gene silencing of the death receptor abolished the effect of celastrol on TRAIL-induced apoptosis. Induction of the death receptor by the triterpenoid was found to be p53-independent but required the induction of CAAT/enhancer-binding protein homologous protein (CHOP), inasmuch as gene silencing of CHOP abolished the induction of DR5 expression by celastrol and associated enhancement of TRAIL-induced apoptosis. We found that celastrol also induced reactive oxygen species (ROS) generation, and ROS sequestration inhibited celastrol-induced expression of CHOP and DR5, and consequent sensitization to TRAIL. Overall, our results demonstrate that celastrol can potentiate the apoptotic effects of TRAIL through down-regulation of cell survival proteins and up-regulation of death receptors via the ROS-mediated up-regulation of CHOP pathway.  相似文献   

10.
microRNAs and death receptors   总被引:1,自引:0,他引:1  
Death receptors induce apoptosis through either the Type I or II pathway. In Type I cells, the initiator caspase-8 directly activates effector caspases such as caspase-3, whereas in Type II cells, the death signal is amplified through mitochondria thereby activating effector caspases causing cell death. Recently, there have been advances in elucidating the early events in the CD95 signaling pathways and how post-translational modifications regulate CD95 signaling. This review will focus on recent insights into the mechanisms of the two different types of CD95 signaling pathways, and will introduce miRNAs as regulators of death receptor signaling.  相似文献   

11.
Detachment of most untransformed adherent cells from the extracellular matrix promotes apoptosis, in a process termed anoikis [1] [2]. The death signalling mechanisms involved in this process are not known, although adhesion or transformation by ras oncogenes have been shown to protect epithelial cells from apoptosis through activation of phosphatidylinositol 3-kinase and protein kinase B (PKB/Akt) [3]. Here we show that detachment-induced apoptosis (anoikis) is blocked by the expression of a dominant-negative form of FAS-associated death domain protein (FADD) in a number of untransformed epithelial cell lines. Because the soluble extracellular domains of the death receptors CD95, DR4 and DR5 failed to block anoikis, we conclude that ligand-dependent activation of these death receptors is not involved in this process. Detachment induced strong activation of caspase 8 and caspase 3. Detachment-induced caspase-8 activation did not require the function of downstream caspases but was blocked by overexpression of the anti-apoptotic proteins Bcl-2 or Bcl-X(L). We propose that caspase-8 activation is the initiating event in anoikis, which is subsequently subject to a positive-feedback loop involving mitochondrial events.  相似文献   

12.
Tryptophol is a natural component isolated from vinegar produced from the boiled extract of black soybean. We have reported that tryptophol induces apoptosis in U937 cells via activation of caspase-8 followed by caspase-3. Tryptophol, however, did not affect human peripheral blood lymphocytes (PBL). In this study, we found that tryptophol enhances formation of a death-inducing signaling complex including death receptor (DR) 5. Cell viability and induction of apoptosis by tryptophol was reduced by transfection with decoy receptor (DcR) 1. These results indicate that tryptophol induces apoptosis through DR5 and that the resistance of PBL to tryptophol-induced apoptosis might be due to competition from DcR1.  相似文献   

13.
14.
Proapoptotic receptor agonists cause cellular demise through the activation of the extrinsic and intrinsic apoptotic pathways. Inhibitor of apoptosis (IAP) proteins block apoptosis induced by diverse stimuli. Here, we demonstrate that IAP antagonists in combination with Fas ligand (FasL) or the death receptor 5 (DR5) agonist antibody synergistically stimulate death in cancer cells and inhibit tumor growth. Single-agent activity of IAP antagonists relies on tumor necrosis factor-α signaling. By contrast, blockade of tumor necrosis factor-α does not affect the synergistic activity of IAP antagonists with FasL or DR5 agonist antibody. In most cancer cells, proapoptotic receptor agonist-induced cell death depends on amplifying the apoptotic signal via caspase-8-mediated activation of Bid and subsequent activation of the caspase-9-dependent mitochondrial apoptotic pathway. In the investigated cancer cell lines, induction of apoptosis by FasL or DR5 agonist antibody can be inhibited by knockdown of Bid. However, knockdown of X chromosome-linked IAP (XIAP) or antagonism of XIAP allows FasL or DR5 agonist antibody to induce activation of effector caspases efficiently without the need for mitochondrial amplification of the apoptotic signal and thus rescues the effect of Bid knockdown in these cells.  相似文献   

15.
Our study aimed to compare death signalling pathways triggered by lupulone in TRAIL-sensitive human colon cancer cells (SW480) and in their derived TRAIL-resistant metastatic cells (SW620). Lupulone (40 μg/ml) up-regulated expression of TRAIL DR4/DR5 death receptors at the cell surface of both cell lines, even in the absence of exogenous TRAIL ligand. Cell death induced by lupulone was inhibited in SW480 and SW620 cells exposed to blocking anti-DR4/DR5 antibodies. In SW480 cells, lupulone triggered cell death through a cross-talk between TRAIL-DR4/DR5 and the mitochondrial (intrinsic) pathways involving caspase-8 activation and Bid protein cleavage. As a consequence mitochondrial cytochrome c was released into the cytosol and activation of caspases-9 and -3 was observed. In the metastatic SW620 cells, lupulone restored the sensibility of these cells to TRAIL ligand and activated the extrinsic apoptotic pathway via DR4/DR5 death receptors and the involvement of the caspase-8/caspase-3 cascade. The demonstration that lupulone is able to activate TRAIL-death signalling pathways even in TRAIL resistant cancer cells highlights the potential of this natural compound for cancer prevention and therapy.  相似文献   

16.
Cell-death signaling through the pro-apoptotic tumor necrosis factor-related apoptosis inducing ligand (TRAIL) receptors, death receptor 4 (DR4) and DR5, has shown tumor-selective apoptotic activity. Here, we examine susceptibility of various leukemia cell lines (HL-60, U937, K562, CCRF-CEM, CEM-CM3, and THP-1) to an anti-DR4 agonistic monoclonal antibody (mAb), AY4, in comparison with TRAIL. While most of the leukemia cell lines were intrinsically resistant to AY4 or TRAIL alone, the two T-cell acute lymphoblastic leukemia (T-ALL) lines, CEM-CM3 and CCRF-CEM cells, underwent synergistic caspase-dependent apoptotic cell death by combination of AY4 or TRAIL with a histone deacetylase inhibitor (HDACI), either suberoylanilide hydroxamic acid (SAHA) or valproic acid (VPA). All of the combined treatments synergistically downregulated several anti-apoptotic proteins (c-FLIP, Bcl-2, Bcl-XL, XIAP, and survivin) without significant changing the expression levels of pro-apoptotic proteins (Bax and Bak) or the receptors (DR4 and DR5). Downregulation of c-FLIP to activate caspase-8 was a critical step for the synergistic apoptosis through both extrinsic and intrinsic apoptotic pathways. Our results demonstrate that the HDACIs have synergistic effects on DR4-specific mAb AY4-mediated cell death in the T-ALL cells with comparable competence to those exerted by TRAIL, providing a new strategy for the targeted treatment of human T-ALL cells.  相似文献   

17.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine that can trigger apoptosis in many types of human cancer cells via engagement of its two pro-apoptotic receptors TRAIL-R1 (DR4) and TRAIL-R2 (DR5). TRAIL can also activate several other signaling pathways such as activation of stress kinases, canonical NF-κB signaling and necroptosis. Though both receptors are ubiquitously expressed, their relative participation in TRAIL-induced signaling is still largely unknown. To analyze TRAIL receptor-specific signaling, we prepared Strep-tagged, trimerized variants of recombinant human TRAIL with high affinity for either DR4 or DR5 receptor. Using these receptor-specific ligands, we examined the contribution of individual pro-apoptotic receptors to TRAIL-induced signaling pathways. We found that in TRAIL-resistant colorectal HT-29 cells but not in pancreatic PANC-1 cancer cells, DISC formation and initial caspase-8 processing proceeds comparably via both DR4- and DR5-activated signaling. TRAIL-induced apoptosis, enhanced by the inhibitor of the Bcl-2 family ABT-737, or by the translation inhibitor homoharringtonine, proceeded in both cell lines predominantly via the DR5 receptor. ShRNA-mediated downregulation of DR4 or DR5 receptors in HT-29 cells also pointed to a stronger contribution of DR5 in TRAIL-induced apoptosis. In contrast to apoptosis, necroptotic signaling was activated similarly by both DR4- or DR5-specific ligands. Activation of auxiliary signaling pathways involving NF-κB or stress kinases proceeded under apoptotic conditions mainly in a DR5-dependent manner, while these signaling pathways were during necroptosis similarly activated by either of these ligands. Our study provides the first systematic insight into DR4 ?/DR5-specific signaling in colorectal and pancreatic cancer cells.  相似文献   

18.
The proteasome inhibitors are a new class of antitumor agents. These inhibitors cause the accumulation of many proteins in the cell with the induction of apoptosis including TRAIL death receptors DR4 and DR5, but the role of the TRAIL apoptotic pathway in proteasome inhibitor cytotoxicity is unknown. Herein, we have demonstrated that the induction of apoptosis by the proteasome inhibitors, MG-132 and PS-341 (bortezomib, Velcade), in primary CLL cells and the Burkitt lymphoma cell line, BJAB, is associated with up-regulation of TRAIL and its death receptors, DR4 and DR5. In addition, FLICE-like inhibitory protein (c-FLIP) protein is decreased. MG-132 treatment increases binding of DR5 to the adaptor protein FADD, and causes caspase-8 activation and cleavage of pro-apoptotic BID. Moreover, DR4:Fc or blockage of DR4 and DR5 expression using RNA interference, which prevents TRAIL apoptotic signaling, blocks proteasome inhibitor induced apoptosis. MG-132 also increases apoptosis and DR5 expression in normal B-cells. However, when the proteasome inhibitors are combined with TRAIL or TRAIL receptor activating antibodies the amount of apoptosis is increased in CLL cells but not in normal B cells. Thus, activation of the TRAIL apoptotic pathway contributes to proteasome inhibitor induced apoptosis in CLL cells.  相似文献   

19.
We investigated whether snake venom toxin (SVT) from Vipera lebetina turanica enhances the apoptosis ability of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) in cancer cells. TRAIL inhibited HCT116 cell growth in a dose-dependent manner; however, this reduction did not occur in TRAIL resistant HT-29, A549 and HepG2 cells with an even higher dose of TRAIL. SVT, but not TRAIL enhanced expression of cell death receptor (DR) in TRAIL resistant cancer cells in a dose-dependent manner. A combination of SVT with TRAIL significantly inhibited cell growth of TRAIL resistant HT-29, A549 and HepG2 cells. Consistent with cell growth inhibition, the expression of TRAIL receptors; DR4 and DR5 was significantly increased as well as apoptosis related proteins such as cleaved caspase-3, -8, -9 and Bax. However, the expression of survival proteins (e.g., cFLIP, survivin, XIAP and Bcl2) was suppressed by the combination treatment of SVT and TRAIL. Depletion of DR4 or DR5 by small interfering RNA significantly reversed the cell growth inhibitory and apoptosis blocking effects of SVT in HCT116 and HT-29 cells. Pretreatment with the c-Jun N-terminal kinase (JNK) inhibitor SP600125 and the reactive oxygen species (ROS) scavenger N-acetylcysteine reduced the SVT and TRAIL-induced upregulation of DR4 and DR5 expression, expression of the apoptosis related protein such as caspase-3 and-9, as well as cell growth inhibitory effects. The collective results suggest that SVT facilitates TRAIL-induced apoptosis in cancer cells through up-regulation of the TRAIL receptors; DR4 and DR5 via ROS/JNK pathway signals.  相似文献   

20.
Fas death receptor signalling: roles of Bid and XIAP   总被引:1,自引:0,他引:1  
Fas (also called CD95 or APO-1), a member of a subgroup of the tumour necrosis factor receptor superfamily that contain an intracellular death domain, can initiate apoptosis signalling and has a critical role in the regulation of the immune system. Fas-induced apoptosis requires recruitment and activation of the initiator caspase, caspase-8 (in humans also caspase-10), within the death-inducing signalling complex. In so-called type 1 cells, proteolytic activation of effector caspases (-3 and -7) by caspase-8 suffices for efficient apoptosis induction. In so-called type 2 cells, however, killing requires amplification of the caspase cascade. This can be achieved through caspase-8-mediated proteolytic activation of the pro-apoptotic Bcl-2 homology domain (BH)3-only protein BH3-interacting domain death agonist (Bid), which then causes mitochondrial outer membrane permeabilisation. This in turn leads to mitochondrial release of apoptogenic proteins, such as cytochrome c and, pertinent for Fas death receptor (DR)-induced apoptosis, Smac/DIABLO (second mitochondria-derived activator of caspase/direct IAP binding protein with low Pi), an antagonist of X-linked inhibitor of apoptosis (XIAP), which imposes a brake on effector caspases. In this review, written in honour of Juerg Tschopp who contributed so much to research on cell death and immunology, we discuss the functions of Bid and XIAP in the control of Fas DR-induced apoptosis signalling, and we speculate on how this knowledge could be exploited to develop novel regimes for treatment of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号