首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Self splicing introns and inteins that rely on a homing endonuclease for propagation are parasitic genetic elements. Their life-cycle and evolutionary fate has been described through the homing cycle. According to this model the homing endonuclease is selected for function only during the spreading phase of the parasite. This phase ends when the parasitic element is fixed in the population. Upon fixation the homing endonuclease is no longer under selection, and its activity is lost through random processes. Recent analyses of these parasitic elements with functional homing endonucleases suggest that this model in its most simple form is not always applicable. Apparently, functioning homing endonuclease can persist over long evolutionary times in populations and species that are thought to be asexual or nearly asexual. Here we review these recent findings and discuss their implications. Reasons for the long-term persistence of a functional homing endonuclease include: More recombination (sexual and as a result of gene transfer) than previously assumed for these organisms; complex population structures that prevent the element from being fixed; a balance between active spreading of the homing endonuclease and a decrease in fitness caused by the parasite in the host organism; or a function of the homing endonuclease that increases the fitness of the host organism and results in purifying selection for the homing endonuclease activity, even after fixation in a local population. In the future, more detailed studies of the population dynamics of the activity and regulation of homing endonucleases are needed to decide between these possibilities, and to determine their relative contributions to the long term survival of parasitic genes within a population. Two outstanding publications on the amoeba Naegleria group I intron (Wikmark et al. BMC Evol Biol 2006, 6: 39) and the PRP8 inteins in ascomycetes (Butler et al. BMC Evol Biol 2006, 6: 42) provide important stepping stones towards integrated studies on how these parasitic elements evolve through time together with, or despite, their hosts.  相似文献   

2.
The mt-rns gene of Cryphonectria parasitica is 9872 bp long and includes two group I and two group II introns. An analysis of intronic protein-encoding sequences revealed that LAGLIDADG ORFs, which usually are associated with group I introns, were transferred at least twice into group II introns. A plasmid-like mitochondrial element (plME) that appears in high amounts in previously mutagen-induced mit1 and mit2 hypovirulent mutants of the Ep155 standard virulent strain of C. parasitica was found to be derived from a short region of the mt-rns gene, including the exon 1 and most of the first intron. The plME is a 4.2-kb circular, multimeric DNA and an autonomously-replicating mtDNA fragment. Although sexual transmission experiments indicate that the plME does not directly cause hypovirulence, its emergence is one manifestation of the many complex molecular and genetic events that appear to underlie this phenotype.  相似文献   

3.
Inteins, valuable genetic elements in molecular biology and biotechnology   总被引:2,自引:0,他引:2  
Inteins are internal protein elements that self-excise from their host protein and catalyze ligation of the flanking sequences (exteins) with a peptide bond. They are found in organisms in all three domains of life, and in viral proteins. Intein excision is a posttranslational process that does not require auxiliary enzymes or cofactors. This self-excision process is called protein splicing, by analogy to the splicing of RNA introns from pre-mRNA. Protein splicing involves only four intramolecular reactions, and a small number of key catalytic residues in the intein and exteins. Protein-splicing can also occur in trans. In this case, the intein is separated into N- and C-terminal domains, which are synthesized as separate components, each joined to an extein. The intein domains reassemble and link the joined exteins into a single functional protein. Understanding the cis- and trans-protein splicing mechanisms led to the development of intein-mediated protein-engineering applications, such as protein purification, ligation, cyclization, and selenoprotein production. This review summarizes the catalytic activities and structures of inteins, and focuses on the advantages of some recent intein applications in molecular biology and biotechnology.  相似文献   

4.
Self-splicing group I introns are being found in an increasing number of bacteriophages. Most introns contain an open reading frame coding for a homing endo-nuclease that confers mobility to both the intron and the homing endonuclease gene (HEG). The frequent occurrence of intron/HEG has raised questions whether group I introns are spread via horizontal transfer between phage populations. We have determined complete sequences for the known group I introns among T-even-like bacteriophages together with sequences of the intron-containing genes td, nrdB, and nrdD from phages with and without introns. A previously uncharacterized phage isolate, U5, is shown to contain all three introns, the only phage besides T4 found with a "full set" of these introns. Sequence analysis of td and nrdB genes from intron-containing and intronless phages provides evidence that recent horizontal transmission of introns has occurred among the phages. The fact that several of the HEGs have suffered deletions rendering them non-functional implies that the homing endonucleases are of no selective advantage to the phage and are rapidly degenerating and probably dependent upon frequent horizontal transmissions for maintenance within the phage populations. Several of the introns can home to closely related intronless phages during mixed infections. However, the efficiency of homing varies and is dependent on homology in regions flanking the intron insertion site. The occurrence of optional genes flanking the respective intron-containing gene can strongly affect the efficiency of homing. These findings give further insight into the mechanisms of propagation and evolution of group I introns among the T-even-like bacteriophages.  相似文献   

5.
6.
Self-splicing group II introns are present in the organelles of lower eukaryotes, plants and Bacteria and have been found recently in Archaea. It is generally accepted that group II introns originated in bacteria before spreading to mitochondria and chloroplasts. These introns are thought to be related to the progenitors of spliceosomal introns. Group II introns are also mobile genetic elements. In bacteria, they appear to spread using either other mobile genetic elements or low-expression regions as target sites. Bacteria and Archaea genome sequence annotations have revealed the diversity of group II intron classes and that they are involved in vertical and horizontal inheritance.  相似文献   

7.
B Dujon 《Gene》1989,82(1):91-114
Group I introns form a structural and functional group of introns with widespread but irregular distribution among very diverse organisms and genetic systems. Evidence is now accumulating that several group I introns are mobile genetic elements with properties similar to those originally described for the omega system of Saccharomyces cerevisiae: mobile group I introns encode sequence-specific double-strand (ds) endoDNases, which recognize and cleave intronless genes to insert a copy of the intron by a ds-break repair mechanism. This mechanism results in: the efficient propagation of group I introns into their cognate sites; their maintenance at the site against spontaneous loss; and, perhaps, their transposition to different sites. The spontaneous loss of group I introns occurs with low frequency by an RNA-mediated mechanism. This mechanism eliminates introns defective for mobility and/or for RNA splicing. Mechanisms of intron acquisition and intron loss must create an equilibrium, which explains the irregular distribution of group I introns in various genetic systems. Furthermore, the observed distribution also predicts that horizontal transfer of intron sequences must occur between unrelated species, using vectors yet to be discovered.  相似文献   

8.
Group I self-splicing introns are present in the td, nrdB and sunY genes of bacteriophage T4. We previously reported that whereas the td intron is present in T2, T4 and T6, the nrdB intron is present in T4 only. These studies, which argue in favor of introns as mobile genetic elements, have been extended by defining the distribution of all three T4 introns in a more comprehensive collection of T2, T4 and T6 isolates. The three major findings are as follows: First, all three introns are inconsistently distributed throughout the T-even phage family. Second, different T2 isolates have different intron complements, with T2H and T2L having no detectable introns. Third, the intron open reading frames are inherited or lost as a unit with their respective flanking intron core elements. Furthermore, exon sequences flanking sites where introns are inserted in the T4 td, sunY and nrdB genes were determined for all the different T-even isolates studied. Six of eighteen residues surrounding the junction sequences are identical. In contrast, a comprehensive comparison of exon sequences in intron plus and intron minus variants of the sunY gene indicate that sequence changes are concentrated around the site of intron occurrence. This apparent paradox may be resolved by hypothesizing that the recombination events responsible for intron acquisition or loss require a consensus sequence, while these same events result in sequence heterogeneity around the site.  相似文献   

9.
Understanding genomic susceptibility risk has been represented as key to a new era of personalized medicine, in which “empowered” individuals shape their lives according to a “somatic ethics” of genetic risk management. Based on a comprehensive analysis of websites and other documents produced by key companies within the personal genomics industry, I argue that the rhetoric of empowerment these companies employ constructs an “ideal subject” of personal genomics while also expressing tensions implicit within the idea of a somatic ethics based on genetic susceptibility. Using Kaushik Sunder Rajan's concept of “genomic fetishism,” I show how these tensions arise from the relationship the rhetoric of personal genomics constructs between risk and uncertainty, and relate them to broader tensions within “risk thinking” as a mode of governmentality that extends beyond genomics.  相似文献   

10.
Homing endonucleases are sequence-tolerant DNA endonucleases that act as mobile genetic elements. The ability of homing endonucleases to cleave substrates with multiple nucleotide substitutions suggests a high degree of adaptability in that changing or modulating cleavage preference would require relatively few amino acid substitutions. Here, using directed evolution experiments with the GIY-YIG homing endonuclease I-TevI that targets the thymidylate synthase gene of phage T4, we readily isolated variants that dramatically broadened I-TevI cleavage preference, as well as variants that fine-tuned cleavage preference. By combining substitutions, we observed an ∼10 000-fold improvement in cleavage on some substrates not cleaved by the wild-type enzyme, correlating with a decrease in readout of information content at the cleavage site. Strikingly, we were able to change the cleavage preference of I-TevI to that of the isoschizomer I-BmoI which targets a different cleavage site in the thymidylate synthase gene, recapitulating the evolution of cleavage preference in this family of homing endonucleases. Our results define a strategy to isolate GIY-YIG nuclease domains with distinct cleavage preferences, and provide insight into how homing endonucleases may escape a dead-end life cycle in a population of saturated target sites by promoting transposition to different target sites.  相似文献   

11.
In a forest nursery growing Sitka spruce Rotylenchus robustus was most numerous at a soil depth of 10–19 cm, the vertical distribution being associated with that of the tree roots. Although no consistent seasonal fluctuations in nematode numbers were obvious there was a seasonal pattern in the relative frequency with which adult and larval nematodes were recovered.
Experimentally, the life cycle of R. robustus was completed in 14–18 months depending upon the time of year when nematodes were added to the trees. Soil moisture content of less than 8.7% (pF 3.8) restricted the movement of 50% of the population. The overall mean basal temperature for the completion of the life cycle of R. robustus was calculated to be 6.5°C.
Soil temperature was considered to be the dominant factor controlling the rate of development under field conditions in Scotland; only occasionally did soil moisture become limiting.  相似文献   

12.
Perspective: transposable elements, parasitic DNA, and genome evolution   总被引:32,自引:0,他引:32  
The nature of the role played by mobile elements in host genome evolution is reassessed considering numerous recent developments in many areas of biology. It is argued that easy popular appellations such as "selfish DNA" and "junk DNA" may be either inaccurate or misleading and that a more enlightened view of the transposable element-host relationship encompasses a continuum from extreme parasitism to mutualism. Transposable elements are potent, broad spectrum, endogenous mutators that are subject to the influence of chance as well as selection at several levels of biological organization. Of particular interest are transposable element traits that early evolve neutrally at the host level but at a later stage of evolution are co-opted for new host functions.  相似文献   

13.
14.
Le Rouzic A  Capy P 《Genetics》2005,169(2):1033-1043
Transposable elements are often considered as selfish DNA sequences able to invade the genome of their host species. Their evolutive dynamics are complex, due to the interaction between their intrinsic amplification capacity, selection at the host level, transposition regulation, and genetic drift. Here, we propose modeling the first steps of TE invasion, i.e., just after a horizontal transfer, when a single copy is present in the genome of one individual. If the element has a constant transposition rate, it will disappear in most cases: the elements with low-transposition rate are frequently lost through genetic drift, while those with high-transposition rate may amplify, leading to the sterility of their host. Elements whose transposition rate is regulated are able to successfully invade the populations, thanks to an initial transposition burst followed by a strong limitation of their activity. Self-regulation or hybrid dysgenesis may thus represent some genome-invasion parasitic strategies.  相似文献   

15.
16.
The mitochondrial small subunit ribosomal RNA (rns) gene of the ascomycetous fungus Ophiostoma minus [strain WIN(M)371] was found to contain a group IC2 and a group IIB1 intron at positions mS569 and mS952 respectively. Both introns have open reading frames (ORFs) embedded that encode double motif LAGLIDADG homing endonucleases (I-OmiI and I-OmiII respectively). Codon-optimized versions of I-OmiI and I-OmiII were synthesized for overexpression in Escherichia coli. The in vitro characterization of I-OmiII showed that it is a functional homing endonuclease that cleaves the rns target site two nucleotides upstream (sense strand) of the intron insertion site generating 4 nucleotide 3′ overhangs. The endonuclease activity of I-OmiII was tested using linear and circular substrates and cleavage activity was evaluated at various temperatures. The I-OmiI protein was expressed in E. coli, but purification was difficult, thus the endonuclease activity of this protein was tested via in vivo assays. Overall this study showed that there are many native forms of functional homing endonucleases yet to be discovered among fungal mtDNA genomes.  相似文献   

17.
Entomopathogenic nematodes survive in the soil as stress-resistant infective juveniles that seek out and infect insect hosts. Upon sensing internal host cues, the infective juveniles regurgitate bacterial pathogens from their gut that ultimately kill the host. Inside the host, the nematode develops into a reproductive adult and multiplies until unknown cues trigger the accumulation of infective juveniles. Here, we show that the entomopathogenic nematode Heterorhabditis bacteriophora uses a small-molecule pheromone to control infective juvenile development. The pheromone is structurally related to the dauer pheromone ascarosides that the free-living nematode Caenorhabditis elegans uses to control its development. However, none of the C. elegans ascarosides are effective in H. bacteriophora, suggesting that there is a high degree of species specificity. Our report is the first to show that ascarosides are important regulators of development in a parasitic nematode species. An understanding of chemical signaling in parasitic nematodes may enable the development of chemical tools to control these species.  相似文献   

18.
Phyllosiphon arisari Kühn (Phyllosiphonaceae, Chlorophyta) commonly occurs in Arisarum leaves in coastal Mediterranean areas of the Iberian Peninsula and Balearic islands. The genus Phyllosiphon was first considered to be a member of the Xanthophyceae but was later transferred to the chlorophytes. However, there are few data about its morphology, ultrastructure, ecology or phylogenetic affinities. In this paper we describe the morphology of Phyllosiphon, as studied in field material and in culture; the fine structure, analysed by transmission electron microscopy; and phylogenetic relationships, inferred from DNA sequences. The siphonous filaments were seen to divide and penetrate leaf tissues. The cytoplasm divided into spherical or subspherical sporocysts producing autospores inside. Cytoplasmic remains could be observed between autospores or on their cell walls. Phylogenetic analysis of 18S rDNA and 16S rDNA sequences showed that the closest relatives of Phyllosiphon are subaerial strains of Heterochlorella, Heveochlorella and Kalinella, demonstrating that Phyllosiphon should be transferred to Trebouxiophyceae. An evolution from unicells to a siphonous thallus, and from aerophytic to endophytic and parasitic habits, is proposed for Trebouxiophyceae.  相似文献   

19.
The structure of aHyperia galba population, and its seasonal fluctuations were studied in the waters of the German Bight around the island of Helgoland over a period of two years (1984 and 1985). A distinct seasonal periodicity in the distribution pattern of this amphipod was recorded. During summer, when its hosts—the scyphomedusaeAurelia aurita, Chrysaora hysoscella, Rhizostoma pulmo, Cyanea capillata andCyanea lamarckii—occur in large numbers, supplying shelter and food, a population explosion ofH. galba can be observed. It is caused primarily by the relatively high fecundity ofH. galba which greatly exceeds that of other amphipods: a maximum of 456 eggs was observed. The postembryonic development is completed in the medusae infested; only then are the young able to swim and search for a new host. The smallest fréely-swimming hyperians obtained from plankton samples were 2.6 mm in body size. The size classes observed as well as moult increment and moulting frequencies in relation to different temperatures suggest that two generations are developed per year: a rapidly growing generation in summer and a slower growing generation in winter that shifts to a benthic mode of life and hibernation. For short periods, adult hyperians may become attached to zooplankters other than scyphomedusae. However, when releasing the progeny, they are dependent on the presence of these coelenterates. Apparently, a host specificity does not exist. During daytime, the hyperians seem to avoid a host change; only 0.2% of all the individuals sampled in the plankton during the day were not associated with medusae. The heavy infestation of medusae by this crustacean leads to a weakening and a progressive breakdown of these important predators on fish larvae.H. galba occupies a specific position in the marine food web which is discussed in detail.  相似文献   

20.
AM真菌生活史、遗传特性与纯培养的生物学基础   总被引:3,自引:0,他引:3  
<正>丛枝菌根(AM)真菌可能是地球上最古老的通过无性繁殖后代的多核生物,属于单元类群。基于AM真菌分子特征的研究进展,Schü?ler等在真菌界(Fungi)建立一个新门——球囊菌门Glomeromycota,并提出了AM真菌最新分类系统:包括1个纲,4个目,7个科,9个属,200余种。虽然该类真菌的分类地位越来越高,但对其生活史和遗传特性了解甚微,而且目前尚未获得纯培养。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号