首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BackgroundBiologically variable ventilation (return of physiological variability in rate and tidal volume using a computer-controller) was compared to control mode ventilation with and without a recruitment manoeuvre – 40 cm H2O for 40 sec performed hourly; in a porcine oleic acid acute lung injury model.MethodsWe compared gas exchange, respiratory mechanics, and measured bronchoalveolar fluid for inflammatory cytokines, cell counts and surfactant function. Lung injury was scored by light microscopy. Pigs received mechanical ventilation (FIO2 = 0.3; PEEP 5 cm H2O) in control mode until PaO2 decreased to 60 mm Hg with oleic acid infusion (PaO2/FIO2 <200 mm Hg). Additional PEEP to 10 cm H2O was added after injury. Animals were randomized to one of the 3 modes of ventilation and followed for 5 hr after injury.ResultsPaO2 and respiratory system compliance was significantly greater with biologically variable ventilation compared to the other 2 groups. Mean and mean peak airway pressures were also lower. There were no differences in cell counts in bronchoalveolar fluid by flow cytometry, or interleukin-8 and -10 levels between groups. Lung injury scoring revealed no difference between groups in the regions examined. No differences in surfactant function were seen between groups by capillary surfactometry.ConclusionsIn this porcine model of acute lung injury, various indices to measure injury or inflammation did not differ between the 3 approaches to ventilation. However, when using a low tidal volume strategy with moderate levels of PEEP, sustained improvements in arterial oxygen tension and respiratory system compliance were only seen with BVV when compared to CMV or CMV with a recruitment manoeuvre.  相似文献   

2.
In a porcine model of oleic acid-induced lung injury, the effects of inhaled nitric oxide (iNO) and intravenous almitrine bismesylate (ivALM), which enhances the hypoxic pulmonary vasoconstriction on the distribution of regional pulmonary blood flow (PBF), were assessed. After injection of 0.12 ml/kg oleic acid, 20 anesthetized and mechanically ventilated piglets [weight of 25 +/- 2.6 (SD) kg] were randomly divided into four groups: supine position, prone position, and 10 ppm iNO for 40 min followed by 4 microg x kg(-1) x min(-1) ivALM for 40 min in supine position and in prone position. PBF was measured with positron emission tomography and H(2)15O. The redistribution of PBF was studied on a pixel-by-pixel basis. Positron emission tomography scans were performed before and then 120, 160, and 200 min after injury. With prone position alone, although PBF remained prevalent in the dorsal regions it was significantly redistributed toward the ventral regions (P < 0.001). A ventral redistribution of PBF was also obtained with iNO regardless of the position (P = 0.043). Adjunction of ivALM had no further effect on PBF redistribution. PP and iNO have an additive effect on ventral redistribution of PBF.  相似文献   

3.

Background

Proline-rich tyrosine kinase 2 (Pyk2) is essential in neutrophil degranulation and chemotaxis in vitro. However, its effect on the process of lung inflammation and edema formation during LPS induced acute lung injury (ALI) remains unknown. The goal of the present study was to determine the effect of inhibiting Pyk2 on LPS-induced acute lung inflammation and injury in vivo.

Methods

C57BL6 mice were given either 10 mg/kg LPS or saline intratracheally. Inhibition of Pyk2 was effected by intraperitoneal administration TAT-Pyk2-CT 1 h before challenge. Bronchoalveolar lavage analysis of cell counts, lung histology and protein concentration in BAL were analyzed at 18 h after LPS treatment. KC and MIP-2 concentrations in BAL were measured by a mouse cytokine multiplex kit. The static lung compliance was determined by pressure-volume curve using a computer-controlled small animal ventilator. The extravasated Evans blue concentration in lung homogenate was determined spectrophotometrically.

Results

Intratracheal instillation of LPS induced significant neutrophil infiltration into the lung interstitium and alveolar space, which was attenuated by pre-treatment with TAT-Pyk2-CT. TAT-Pyk2-CT pretreatment also attenuated 1) myeloperoxidase content in lung tissues, 2) vascular leakage as measured by Evans blue dye extravasation in the lungs and the increase in protein concentration in bronchoalveolar lavage, and 3) the decrease in lung compliance. In each paradigm, treatment with control protein TAT-GFP had no blocking effect. By contrast, production of neutrophil chemokines MIP-2 and keratinocyte-derived chemokine in the bronchoalveolar lavage was not reduced by TAT-Pyk2-CT. Western blot analysis confirmed that tyrosine phosphorylation of Pyk2 in LPS-challenged lungs was reduced to control levels by TAT-Pyk2-CT pretreatment.

Conclusions

These results suggest that Pyk2 plays an important role in the development of acute lung injury in mice and that pharmacological inhibition of Pyk2 might provide a potential therapeutic strategy in the pretreatment for patients at imminent risk of developing acute lung injury.  相似文献   

4.

Background

Ventilation using low tidal volumes with permission of hypercapnia is recommended to protect the lung in acute respiratory distress syndrome. However, the most lung protective tidal volume in association with hypercapnia is unknown. The aim of this study was to assess the effects of different tidal volumes with associated hypercapnia on lung injury and gas exchange in a model for acute respiratory distress syndrome.

Methodology/Principal Findings

In this randomized controlled experiment sixty-four surfactant-depleted rabbits were exposed to 6 hours of mechanical ventilation with the following targets: Group 1: tidal volume = 8–10 ml/kg/PaCO2 = 40 mm Hg; Group 2: tidal volume = 4–5 ml/kg/PaCO2 = 80 mm Hg; Group 3: tidal volume = 3–4 ml/kg/PaCO2 = 120 mm Hg; Group 4: tidal volume = 2–3 ml/kg/PaCO2 = 160 mm Hg. Decreased wet-dry weight ratios of the lungs, lower histological lung injury scores and higher PaO2 were found in all low tidal volume/hypercapnia groups (group 2, 3, 4) as compared to the group with conventional tidal volume/normocapnia (group 1). The reduction of the tidal volume below 4–5 ml/kg did not enhance lung protection. However, oxygenation and lung protection were maintained at extremely low tidal volumes in association with very severe hypercapnia and no adverse hemodynamic effects were observed with this strategy.

Conclusion

Ventilation with low tidal volumes and associated hypercapnia was lung protective. A tidal volume below 4–5 ml/kg/PaCO2 80 mm Hg with concomitant more severe hypercapnic acidosis did not increase lung protection in this surfactant deficiency model. However, even at extremely low tidal volumes in association with severe hypercapnia lung protection and oxygenation were maintained.  相似文献   

5.
Ischemia-reperfusion not only damages the affected organ but also leads to remote organ injuries. Hepatic inflow interruption usually occurs during hepatic surgery. To investigate the influence of liver ischemia-reperfusion on lung injury and to determine the contribution of tidal volume settings on liver ischemia-reperfusion-induced lung injury, we studied anesthetized and mechanically ventilated rats in which the hepatic inflow was transiently interrupted twice for 15 min. Two tidal volumes, 6 ml/kg as a low tidal volume (IR-LT) and 24 ml/kg as a high tidal volume (IR-HT), were assessed after liver ischemia-reperfusion, as well as after a sham operation, 6 ml/kg (NC-LT) and 24 ml/kg (NC-HT). Both the IR-HT and IR-LT groups had a gradual decline in the systemic blood pressure and a significant increase in plasma TNF-alpha concentrations. Of the four groups, only the IR-HT group developed lung injury, as assessed by an increase in the lung wet-to-dry weight ratio, the presence of significant histopathological changes, such as perivascular edema and intravascular leukocyte aggregation, and an increase in the bronchoalveolar lavage fluid TNF-alpha concentration. Furthermore, only in the IR-HT group was airway pressure increased significantly during the 6-h reperfusion period. These findings suggest that liver ischemia-reperfusion caused systemic inflammation and that lung injury is triggered when high tidal volume ventilation follows liver ischemia-reperfusion.  相似文献   

6.
Rodent models have been described to investigate lung preservation and reperfusion injury but have significant disadvantages. In large animals single lung transplant studies are probably optimal but problems remain over the ability to rigorously separate the lungs for assessment while promoting medium to long-term animal survival for meaningful investigation. Our aim was to develop a novel and refined large animal model to assess reperfusion injury in the transplanted lung, overcoming the difficulties associated with existing models. Specifically, small animal models of lung transplantation usually have short perfusion times (often one hour) and include extracorporeal circuits while larger animal models often require the contralateral lung to be excluded after transplantation-an unphysiological situation under which to evaluate the graft. A porcine model of left lung allotransplantation was developed in which native and donor lungs are individually ventilated. Sampling catheters placed within the graft lung allowed specimen withdrawal without mixing of blood from the contralateral lung after reimplantation. The model permits a variety of clinical scenarios to be simulated with the native lung supporting the animal irrespective of function in the graft. This model has been used in over 60 transplant procedures with a postoperative survival time of 12 h being readily achieved. The mean operating time was 2.6 h. The mortality rate is 4% in our series. We have found the model to be reliable, reproducible and flexible. We propose this model as an adaptable investigation for evaluating lung reperfusion injury and preservation.  相似文献   

7.

Background

Previous experimental studies have shown that injurious mechanical ventilation has a direct effect on pulmonary and systemic immune responses. How these responses are propagated or attenuated is a matter of speculation. The goal of this study was to determine the contribution of mechanical ventilation in the regulation of Toll-like receptor (TLR) signaling and interleukin-1 receptor associated kinase-3 (IRAK-3) during experimental ventilator-induced lung injury.

Methods

Prospective, randomized, controlled animal study using male, healthy adults Sprague-Dawley rats weighing 300-350 g. Animals were anesthetized and randomized to spontaneous breathing and to two different mechanical ventilation strategies for 4 hours: high tidal volume (VT) (20 ml/kg) and low VT (6 ml/kg). Histological evaluation, TLR2, TLR4, IRAK3 gene expression, IRAK-3 protein levels, inhibitory kappa B alpha (IκBα), tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL6) gene expression in the lungs and TNF-α and IL-6 protein serum concentrations were analyzed.

Results

High VT mechanical ventilation for 4 hours was associated with a significant increase of TLR4 but not TLR2, a significant decrease of IRAK3 lung gene expression and protein levels, a significant decrease of IκBα, and a higher lung expression and serum concentrations of pro-inflammatory cytokines.

Conclusions

The current study supports an interaction between TLR4 and IRAK-3 signaling pathway for the over-expression and release of pro-inflammatory cytokines during ventilator-induced lung injury. Our study also suggests that injurious mechanical ventilation may elicit an immune response that is similar to that observed during infections.  相似文献   

8.
To evaluate the utility of monitoring the sound-filtering characteristics of the respiratory system in the assessment of acute lung injury (ALI), we injected a multifrequency broadband sound signal into the airway of five anesthetized, intubated pigs, while recording transmitted sound over the trachea and on the chest wall. Oleic acid injections effected a severe lung injury predominantly in the dependent lung regions, increasing venous admixture from 6 +/- 1 to 54 +/- 8% (P < 0.05) and reducing dynamic respiratory system compliance from 19 +/- 0 to 12 +/- 2 ml/cmH(2)O (P < 0.05). A two- to fivefold increase in sound transfer function amplitude was seen in the dependent (P < 0.05) and lateral (P < 0.05) lung regions; no change occurred in the nondependent areas. High within-subject correlations were found between the changes in dependent lung sound transmission and venous admixture (r = 0.82 +/- 0.07; range 0.74-0.90) and dynamic compliance (r = -0.87 +/- 0.05; -0.80 to -0.93). Our results indicate that the acoustic changes associated with oleic acid-induced lung injury allow monitoring of its severity and distribution.  相似文献   

9.
Ventilator settings influence the development and outcome of acute lung injury. This study investigates the influence of low versus high tidal volume (V(t)) on oxidative stress-induced lung injury.Isolated rabbit lungs were subjected to one of three ventilation patterns (V(t)-positive end-expiratory pressure, PEEP): LVZP (6 ml/kg-0 cm H(2)O), HVZP (12 ml/kg-0 cm H(2)O), LV5P (6 ml/kg-5 cm H(2)O). These ventilation patterns allowed a comparison between low and high V(t) without dependence on peak inspiratory pressure (PIP). Infusion of hypochlorite (1000 nmol/min) or buffer (control) was started at t=0 min. Pulmonary artery pressure (PAP), PIP and weight were continuously recorded. Capillary filtration coefficient [K(f,c) (10(-4) ml s(-1) cm H(2)O(-1) g(-1))] was gravimetrically determined (-15/30/60/90/120 min).PIP averaged 5.8+/-0.6/13.9+/-0.6/13.9+/-0.4 cm H(2)O in the LVZP, HVZP and LV5P groups. PIP, K(f,c) or PAP did not change in control groups, indicating that none of the ventilation patterns caused lung injury by themselves. Hypochlorite-induced increase in K(f,c) but not hypochlorite-induced increase in PAP, was significantly attenuated in the LVZP-/LV5P- versus the HVZP-group (K(f,c,max.) 1.0+/-0.23/1.4+/-0.40 versus 3.2+/-1.0*). Experiments with hypochlorite were terminated due to excessive edema (>50 g) at 97+/-2.2/94.5+/-4.5 min in the LVZP-/LV5P-group versus 82+/-3.8* min in the HVZP-group (*: P<0.05).Low V(t) attenuated oxidative stress-induced increase in vascular permeability independently from PIP and PEEP.  相似文献   

10.
Serum IL-6 is increased in acute kidney injury (AKI) and inhibition of IL-6 reduces AKI-mediated lung inflammation. We hypothesized that circulating monocytes produce IL-6 and that alveolar macrophages mediate lung inflammation after AKI via chemokine (CXCL1) production. To investigate systemic and alveolar macrophages in lung injury after AKI, sham operation or 22 min of renal pedicle clamping (AKI) was performed in three experimental settings: 1) systemic macrophage depletion via diphtheria toxin (DT) injection to CD11b-DTR transgenic mice, 2) DT injection to wild-type mice, and 3) alveolar macrophage depletion via intratracheal (IT) liposome-encapsulated clodronate (LEC) administration to wild-type mice. In mice with AKI and systemic macrophage depletion (CD11b-DTR transgenic administered DT) vs. vehicle-treated AKI, blood monocytes and lung interstitial macrophages were reduced, renal function was similar, serum IL-6 was increased, lung inflammation was improved, lung CXCL1 was reduced, and lung capillary leak was increased. In wild-type mice with AKI administered DT vs. vehicle, serum IL-6 was increased. In mice with AKI and alveolar macrophage depletion (IT-LEC) vs. AKI with normal alveolar macrophage content, blood monocytes and lung interstitial macrophages were similar, alveolar macrophages were reduced, renal function was similar, lung inflammation was improved, lung CXCL1 was reduced, and lung capillary leak was increased. In conclusion, administration of DT in AKI is proinflammatory, limiting the use of the DTR-transgenic model to study systemic effects of AKI. Mice with AKI and either systemic mononuclear phagocyte depletion or alveolar macrophage depletion had reduced lung inflammation and lung CXCL1, but increased lung capillary leak; thus, mononuclear phagocytes mediate lung inflammation, but they protect against lung capillary leak after ischemic AKI. Since macrophage activation and chemokine production are key events in the development of acute lung injury (ALI), these data provide further evidence that AKI may cause ALI.  相似文献   

11.
Acute lung injury occurs mostly in the very low birth weight and extremely low birth weight infants. The pathological process leading to acute lung injury includes immature and/or diseased lung that experienced oxidative stress, inflammation and mechanical insult with the bronchial, alveolar and capillary injuries and cell death. It may be the first step to the subsequent development of chronic lung disease of prematurity or bronchopulmonary dysplasia. The mechanisms of lung injury are extensively investigated in the experimental models and clinical studies, mostly performed on the adult patients. At present, the explanations of the mechanism(s) leading to lung tissue injury in tiny premature babies are just derived from these studies. Acute lung injury seems to be rather a syndrome than a well-defined nosological unit and is of multifactorial etiology. The purpose of this review is to discuss the main factors contributing to the development of acute lung injury in the very low or extremely low birth weight infants--lung immaturity, mechanical injury, oxidative stress and inflammation. Nevertheless, numerous other factors may influence the status of immature lung after delivery.  相似文献   

12.
Pentraxin 3 (PTX3) is an acute-phase protein, which can be produced by a variety of tissue cells at the site of infection or inflammation. It plays an important role in innate immunity in the lung and in mediating acute lung injury. The aim of this study was to determine the effect of mechanical ventilation on PTX3 expression in multiple lung injury models. Male Sprague-Dawley rats were challenged with intravenous injection of lipopolysaccharide (LPS) or hemorrhage followed by resuscitation (HS). The animals were then subjected to either relatively higher (12 ml/kg) or lower (6 ml/kg, positive end-expiratory pressure of 5 cmH(2)O) volume ventilation for 4 h. High-volume ventilation significantly enhanced PTX3 expression in the lung, either alone or in combination with LPS or hemorrhage. A significant increase of PTX3 immunohistochemistry staining in the lung was seen in all injury groups. The PTX3 expression was highly correlated with the severity of lung injury determined by blood gas, lung elastance, and wet-to-dry ratio. To determine the effects of HS, LPS, or injurious ventilation (25 ml/kg) alone on PTX3 expression, another group of rats was studied. Injurious ventilation significantly damaged the lung and increased PTX3 expression. A local expression of PTX3 induced by high-volume ventilation, either alone or in combination with other pathological conditions, suggests that it may be an important mediator in ventilator-induced lung injury.  相似文献   

13.
Adrenomedullin (ADM) is upregulated independently by hypoxia and LPS, two key factors in the pathogenesis of acute lung injury (ALI). This study evaluates the expression of ADM in ALI using experimental models combining both stimuli: an in vivo model of rats treated with LPS and acute normobaric hypoxia (9% O2) and an in vitro model of rat lung cell lines cultured with LPS and exposed to hypoxia (1% O2). ADM expression was analyzed by in situ hybridization, Northern blot, Western blot, and RIA analyses. In the rat lung, combination of hypoxia and LPS treatments overcomes ADM induction occurring after each treatment alone. With in situ techniques, the synergistic effect of both stimuli mainly correlates with ADM expression in inflammatory cells within blood vessels and, to a lesser extent, to cells in the lung parenchyma and bronchiolar epithelial cells. In the in vitro model, hypoxia and hypoxia + LPS treatments caused a similar strong induction of ADM expression and secretion in epithelial and endothelial cell lines. In alveolar macrophages, however, LPS-induced ADM expression and secretion were further increased by the concomitant exposure to hypoxia, thus paralleling the in vivo response. In conclusion, ADM expression is highly induced in a variety of key lung cell types in this rat model of ALI by combination of hypoxia and LPS, suggesting an essential role for this mediator in this syndrome.  相似文献   

14.
Capillary leakage and alveolar edema are hallmarks of acute lung injury (ALI). Neutrophils and serum macromolecules enter alveoli, promoting inflammation. Vascular endothelial growth factor (VEGF) causes plasma leakage in extrapulmonary vessels. Angiopoietin (Ang)-1 and -4 stabilize vessels, attenuating capillary leakage. We hypothesized that VEGF and Ang-1 and -4 modulate vessel leakage in the lung, contributing to the pathogenesis of ALI. We examined a murine model of lipopolysaccharide (LPS)-induced ALI. C57BL/6 and 129/J mice were studied at baseline and 24, 48, and 96 h after single or multiple doses of aerosolized LPS. Both strains exhibited time- and dose-dependent increases in inflammation and a deterioration of lung mechanics. Bronchoalveolar lavage (BAL) protein levels increased significantly, suggesting capillary leakage. Increased BAL neutrophil and total protein content correlated with time-dependent increased tissue VEGF and decreased Ang-1 and -4 levels, with peak VEGF and minimum Ang-1 and -4 expression after 96 h of LPS challenge. These data suggest that changes in the balance between VEGF and Ang-1 and -4 after LPS exposure may modulate neutrophil influx, protein leakage, and alveolar flooding during early ALI.  相似文献   

15.
Cerebral oedema has been noted to occur frequently in patients dying of fulminant hepatic failure. Therefore, in the present study, multimodal neuromonitoring was evaluated in an animal model of hepatectomy. Acute liver failure was surgically induced in swine by complete hepatectomy (n = 8). Intracranial pressure monitoring via a ventricular drainage system, electroencephalogram and recording of visually evoked potentials were used to establish a continuous neuromonitoring system. Measurements of liquor and serum ammonia (NH(3)) levels were taken at later stages of the trial in an approach to widen monitoring. Serial monitoring of the electroencephalogram revealed progressive slowing of the frequency with decreasing amplitude. Monitoring of the intracranial pressure with a subdural pressure transducer demonstrated a progressive and reproducible elevation. Increase in blood NH(3) was observed. Anaesthesia was terminal. In all cases death was caused by cardiocirculatory insufficiency, confirmed by autopsy. At autopsy, brain tissue of the animals was found to be swollen showing flattened cortical gyri. In conclusion, the technique of extended neuromonitoring offers an advanced option for monitoring animal models of fulminant hepatic failure for further developments and investigations.  相似文献   

16.
When normal subjects are exposed to hypergravity [5 times normal gravity (5 G)] there is an impaired arterial oxygenation that is less severe in the prone compared with supine posture. We hypothesized that under these conditions the heterogeneities of ventilation and/or perfusion distributions would be less prominent when subjects were prone compared with supine. Expirograms from a combined rebreathing-single breath washout maneuver (Rohdin M, Sundblad P, and Linnarsson D. J Appl Physiol 96: 1470-1477, 2004) were analyzed for vital capacity (VC), phase III slope, and phase IV amplitude, to analyze heterogeneities in ventilation (Ar) and perfusion [CO(2)-to-Ar ratio (CO(2)/Ar)] distribution, respectively. During hypergravity, VC decreased more in the supine than in the prone position (ANOVA, P = 0.02). Phase III slope was more positive for Ar (P = 0.003) and more negative for CO(2)/Ar (P = 0.007) in the supine compared with prone posture at 5 G, in agreement with the notion of a more severe hypergravity-induced ventilation-perfusion mismatch in supine posture. Phase IV amplitude became lower in the supine than in the prone posture for both Ar (P = 0.02) and CO(2)/Ar (P = 0.004) during hypergravity as a result of the more reduced VC in the supine posture. We speculate that results of VC and phase IV amplitude are due to the differences in heart-lung interaction and diaphragm position between postures: a stable position of the heart and diaphragm in prone hypergravity, in contrast to supine in which the weight of the heart and a cephalad shift of the diaphragm compress lung tissue.  相似文献   

17.
Accurate mechanics measurements during high-frequency oscillatory ventilation (HFOV) facilitate optimizing ventilator support settings. Yet, these are influenced substantially by endotracheal tube (ETT) contributions, which may dominate when leaks around uncuffed ETT are present. We hypothesized that 1) the effective removal of ETT leaks may be confirmed via direct comparison of measured vs. model-predicted mean intratracheal pressure [mPtr (meas) vs. mPtr (pred)], and 2) reproducible respiratory system resistance (Rrs) and compliance (Crs) may be derived from no-leak oscillatory Ptr and proximal flow. With the use of ETT test-lung models, proximal airway opening (Pao) and distal (Ptr) pressures and flows were measured during slow-cuff inflations until leaks are removed. These were repeated for combinations of HFOV settings [frequency, mean airway pressure (Paw), oscillation amplitudes (ΔP), and inspiratory time (%t(I))] and varying test-lung Crs. Results showed that leaks around the ETT will 1) systematically reduce the effective distending pressures and lung-delivered oscillatory volumes, and 2) derived mechanical properties are increasingly nonphysiologic as leaks worsen. Mean pressures were systematically reduced along the ventilator circuit and ETT (Paw > Pao > Ptr), even for no-leak conditions. ETT size-specific regression models were then derived for predicting mPtr based on mean Pao (mPao), ΔP, %t(I), and frequency. Next, in 10 of 11 studied preterm infants (0.77 ± 0.24 kg), no-to-minimal leak was confirmed based on excellent agreement between mPtr (meas) and mPtr (pred), and consequently, their oscillatory respiratory mechanics were evaluated. Infant resistance at the proximal ETT (R(ETT); resistance airway opening = R(ETT) + Rrs; P < 0.001) and ETT inertance (P = 0.014) increased significantly with increasing ΔP (50%, 100%, and 150% baseline), whereas Rrs showed a modest, nonsignificant increase (P = 0.14), and Crs was essentially unchanged (P = 0.39). We conclude that verifying no-leak conditions is feasible by comparison of model-derived vs. distending mPtr (meas). This facilitated the reliable and accurate assessment of physiologic respiratory mechanical properties that can objectively guide ventilatory management of HFOV-treated preterm infants.  相似文献   

18.
19.
Traumatic injury is a leading cause of death worldwide for people between 5 and 44 y of age, and it accounts for 10% of all deaths. The incidence of acute lung injury, a life-threatening complication in severely injured trauma patients remains between 30% and 50%. This study describes an experimental protocol of volume-controlled hemorrhage in Landrace-Large White swine. The experimental approach simulated the clinical situation associated with hemorrhagic shock in the trauma patient while providing controlled conditions to maximize reproducibility. The duration of the protocol was 8 h and was divided into 5 distinct phases-stabilization, hemorrhage, maintenance, resuscitation, and observation-after which the swine were euthanized. Lung tissue samples were analyzed histologically. All swine survived the protocol. The hemodynamic responses accurately reflected those seen in humans, and the development of acute lung injury was consistent among all swine. This experimental protocol of hemorrhagic shock and fluid resuscitation in Landrace-Large White swine may be useful for future study of hemorrhagic shock and acute lung injury.  相似文献   

20.
The pathophysiology of acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), is characterized by increased vascular and epithelial permeability, hypercoagulation and hypofibrinolysis, inflammation, and immune modulation. These detrimental changes are orchestrated by cross talk between a complex network of cells, mediators, and signaling pathways. A rapidly growing number of studies have reported the appearance of distinct populations of microparticles (MPs) in both the vascular and alveolar compartments in animal models of ALI/ARDS or respective patient populations, where they may serve as diagnostic and prognostic biomarkers. MPs are small cytosolic vesicles with an intact lipid bilayer that can be released by a variety of vascular, parenchymal, or blood cells and that contain membrane and cytosolic proteins, organelles, lipids, and RNA supplied from and characteristic for their respective parental cells. Owing to this endowment, MPs can effectively interact with other cell types via fusion, receptor-mediated interaction, uptake, or mediator release, thereby acting as intrinsic stimulators, modulators, or even attenuators in a variety of disease processes. This review summarizes current knowledge on the formation and potential functional role of different MPs in inflammatory diseases with a specific focus on ALI/ARDS. ALI has been associated with the formation of MPs from such diverse cellular origins as platelets, neutrophils, monocytes, lymphocytes, red blood cells, and endothelial and epithelial cells. Because of their considerable heterogeneity in terms of origin and functional properties, MPs may contribute via both harmful and beneficial effects to the characteristic pathological features of ALI/ARDS. A better understanding of the formation, function, and relevance of MPs may give rise to new promising therapeutic strategies to modulate coagulation, inflammation, endothelial function, and permeability either through removal or inhibition of "detrimental" MPs or through administration or stimulation of "favorable" MPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号