首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The temperature-sensitive RLA209-15 fetal rat hepatocyte line grown at the nonpermissive temperature (40 degrees C, normal phenotype) produces authentic rat alpha-fetoproteins (AFPs) of 69K and 73K (fetal AFPs) which are encoded by a 2.2-kb mRNA. These cells also produce low levels of a 1.7-kb AFP mRNA and a 65K variant AFP when grown at the permissive temperature (33 degrees C, transformed phenotype). Hybrid-selected translation demonstrates that the 1.7-kb AFP mRNA encodes the 65K variant AFP. Northern blot hybridization and S1 nuclease analyses indicate that the 1.7-kb mRNA lacks sequences present in the first seven 5' exons of the 2.2-kb AFP mRNA. However, the 1.7- and 2.2-kb AFP mRNAs share common sequences extending from the beginning of the eighth exon (corresponding to nucleotide 873 of the fetal AFP mRNA) to the 3' end. Primer extension analysis suggests that the 1.7-kb RNA contains additional sequences 5' to the common regions shared by both AFP mRNAs. We have previously shown that adult rat liver produces a 1.7-kb AFP mRNA; we now report the isolation of a cDNA (ARFP5) encoding this variant AFP mRNA from an adult rat liver cDNA library. Restriction endonuclease mapping and sequence analysis of ARFP5 confirm that the 1.7- and 2.2-kb AFP mRNAs share similar sequences at the 3' region (approximately 1.1 kb). However, ARFP5 contains an additional 90 bp variant AFP mRNA-specific 5' sequence which is located in the seventh intron of the rat AFP gene.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
Study of liver differentiation in vitro   总被引:11,自引:3,他引:8       下载免费PDF全文
A clonal rat fetal liver cell line that expresses the functions of differentiated liver cells under controllable conditions has been established. Normal fetal liver cells were transformed by a temperature-sensitive A (tsA) mutant (tsA209) of simian virus 40. At the permissive temperature (33 degrees C), the tsA209-transformed liver cell line (RLA209-15) can be cultured indefinitely and cloned readily. The RLA209-15 cells were temperature sensitive for maintenance of the transformed phenotype. These transformed liver cells selectively lost four characteristics of the transformed phenotype at the restrictive temperature (40 degrees C): generation time of the cells increased, the saturation density decreased, the efficiency of growth on nontransformed cell layers decreased, and the ability to clone in soft agar was lost. The transformation can be reversed simply by a shift in temperature. RLA209-15 fetal liver cells synthesized alpha-fetoprotein albumin, and transferrin. At 33 degrees C, the levels of these liver proteins were relatively low. At 40 degrees C the transformed phenotype was lost and the levels of alpha-fetoprotein, albumin, and transferrin were greatly increased. At the restrictive temperature, maximal induction of the synthesis of alpha-fetoprotein, albumin, and transferrin was achieved 3-4 d after the upward shift in temperature. The synthesis of alpha-fetoprotein then decreased; the synthesis of albumin and transferrin, however, was maintained. A second phase of albumin and transferrin synthesis was observed in all cultures after 6 d or more at 40 degrees C. Alpha-Fetoprotein, albumin, and transferrin secreted by RLA209-15 cells were immunologically indistinguishable from authentic alpha-fetoprotein, albumin, and transferrin, respectively. RLA209-15 cells, like primary cultures of hepatocytes and a simian virus 40 tsA255-transformed fetal liver cell line (RLA255-4) reported earlier from this laboratory, responded to glucagon with markedly elevated levels of cyclic AMP. Thus, it appears that glucagon receptors characteristic of hepatocytes are retained in the simian virus 40 tsA-transformed fetal liver cells.  相似文献   

4.
5.
Somatomedin-C or insulin-like growth factor I (Sm-C/IGF-I) and insulin-like growth factor II (IGF-II) have been implicated in the regulation of fetal growth and development. In the present study 32P-labeled complementary DNA probes encoding human and mouse Sm-C/IGF-I and human IGF-II were used in Northern blot hybridizations to analyse rat Sm-C/IGF-I and IGF-II mRNAs in poly(A+) RNAs from intestine, liver, lung, and brain of adult rats and fetal rats between day 14 and 17 of gestation. In fetal rats, all four tissues contained a major mRNA of 1.7 kilobases (kb) that hybridized with the human Sm-C/IGF-I cDNA and mRNAs of 7.5, 4.7, 1.7, and 1.2 kb that hybridized with the mouse Sm-C/IGF-I cDNA. Adult rat intestine, liver, and lung also contained these mRNAs but Sm-C/IGF-I mRNAs were not detected in adult rat brain. These findings provide direct support for prior observations that multiple tissues in the fetus synthesize immunoreactive Sm-C/IGF-I and imply a role for Sm-C/IGF-I in fetal development as well as postnatally. The abundance of a 7.5-kb Sm-C/IGF-I mRNA in poly(A+) RNAs from adult rat liver was 10-50-fold higher than in other adult rat tissues which provides further evidence that in the adult rat the liver is a major site of Sm-C/IGF-I synthesis and source of circulating Sm-C/IGF-I. Multiple IGF-II mRNAs of estimated sizes 4.7, 3.9, 2.2, 1.75, and 1.2 kb were observed in fetal rat intestine, liver, lung, and brain. The 4.7- and 3.9-kb mRNAs were the major hybridizing IGF-II mRNAs in all fetal tissues. Higher abundance of IGF-II mRNAs in rat fetal tissues compared with adult tissues supports prior hypotheses, based on serum IGF-II concentrations, that IGF-II is predominantly a fetal somatomedin. IGF-II mRNAs are present, however, in some poly(A+) RNAs from adult rat tissues. The brain was the only tissue in the adult rat where the 4.7- and 3.9-kb IGF-II mRNAs were consistently detected. Some samples of adult rat intestine contained the 4.7- and 3.9-kb IGF-II mRNAs and some samples of adult liver and lung contained the 4.7-kb mRNA. These findings suggest that a role for IGF-II in the adult rat, particularly in the central nervous system, cannot be excluded.  相似文献   

6.
Regulators of fetal liver differentiation in vitro   总被引:5,自引:0,他引:5  
Seventeen-day-old fetal rat hepatocytes were employed to examine factors required to promote differentiation in vitro. In the absence of effectors, primary fetal hepatocytes dedifferentiated, as characterized by the rapid decline in synthesis of fetal alpha-fetoprotein (AFP), albumin, and transferrin. On the other hand, cells maintained in the presence of glucocorticoid hormone produced high levels of albumin and transferrin. Glucocorticoid could not prevent the decline in fetal AFP synthesis, but induced synthesis of the 65K variant AFP--the major AFP species produced by adult rat liver. Fetal hepatocytes maintained in the presence of 8-bromo-cAMP (8-BrcAMP), or methyl isobutyl xanthine (MIX), an agent that increases intracellular cAMP levels, synthesized high levels of fetal AFP and albumin but reduced levels of transferrin. Both glucocorticoid and 8-BrcAMP or MIX induced expression of adult liver-specific genes such as tyrosine aminotransferase (TAT) and phosphoenolpyruvate carboxykinase (PEPCK), suggesting that these fetal hepatocytes have matured. Cells maintained in the presence of glucocorticoid hormone and MIX (or 8-BrcAMP) contained more albumin, TAT, and PEPCK mRNAs and synthesized increased amounts of the 65K variant AFP than those with either agent alone. However, the glucocorticoid/MIX cells produced intermediate levels of the fetal AFP and transferrin. Our data indicate that both glucocorticoid hormone and cAMP are necessary for optimal differentiation of fetal hepatocytes in vitro.  相似文献   

7.
8.
The alpha-fetoprotein (AFP) gene is transcribed at high levels in the fetal liver and is repressed at birth, leading to low but detectable levels of AFP mRNA in the adult liver. This repression is regulated, in part, by a locus that is unlinked to AFP called Alpha-fetoprotein regulator 1 (Afr1). Previous studies showed that Afr1 regulation is independent of the AFP enhancers but requires the 1-kb AFP promoter/repressor region. Here, we demonstrate that a transgene with the 250-bp AFP promoter region linked to AFP enhancer element EII is expressed in the fetal liver and is postnatally repressed. In addition, this transgene is regulated by Afr1. These data indicate that the promoter is involved in postnatal AFP repression. Furthermore, we provide a high-resolution map of the Afr1 locus on mouse chromosome 15.  相似文献   

9.
10.
Gonadotropin activation of cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein kinases plays an important role in the regulation of testicular function. This study was undertaken to establish the expression of various subunits of cAMP-dependent protein kinases in different testicular cell types as well as during sexual maturation. RNA was extracted from cultured Sertoli cells, cultured peritubular cells, germ cells (pachytene spermatocytes, round spermatids), tumor Leydig cells, as well as whole testis from rats of various ages. Messenger RNA levels were studied by Northern analysis using available cDNA probes. The regulatory subunit (R) designated RII51 was found to be predominantly expressed in cAMP-stimulated Sertoli cells and tumor Leydig cells. Much lower levels were found in cultured peritubular cells and germ cells. A 2.9- and 3.2-kb mRNA for the RI subunit were found at about similar levels in all cell types, whereas the smaller 1.7-kb mRNA was expressed in high levels in germ cells. Also, the catalytic subunit (C) of cAMP-dependent protein kinase, designated C alpha, was expressed in all cell types; the highest mRNA levels for this subunit were found in germ cells and in tumor Leydig cells. The 1.7-kb mRNA for androgen-binding protein (ABP) was abundant in cAMP-stimulated Sertoli cells and was not present in other cell types of the testis. Furthermore, the cellular localization of the cAMP-dependent protein kinase subunits was also supported by developmental studies. The mRNA level of the RII51 3.2-kb species was relatively constant until Day 30, after which there was a tendency to decrease. A 1.6-kb message first appeared at greater ages. The mRNA for the smaller 1.7-kb species of RI, as well as the C alpha, showed a significant increase during development, supporting an enrichment of these mRNAs in germ cells. Messenger RNA levels for ABP were not detected in testis from 5- to 10-day-old rats but increased up to Day 30. After this age, mRNA for ABP revealed an age-dependent decrease, which parallels the relative increase of germ cells in the testis. In summary, these results demonstrate a clear pattern of cellular localization of the various mRNA species for subunits of the cAMP-dependent protein kinase in the rat testis.  相似文献   

11.
12.
13.
14.
alpha-Fetoprotein synthesis in transformed fetal rat liver cells   总被引:1,自引:0,他引:1  
We have reported that transformed fetal liver cells produced a variant alpha-fetoprotein of 65K that differed from the mature alpha-fetoprotein of 69K and 73K in the polypeptide backbone. In the present study, we demonstrated that the biosynthetic pathway of the variant alpha-fetoprotein differed from that of the mature alpha-fetoprotein. The 65K variant was synthesized first as a preprotein of 49.5K which was processed to a polypeptide of 59K in the presence of microsomal membranes. The latter was the precursor of the variant alpha-fetoprotein found in cells and medium of transformed fetal liver cells. The 65K alpha-fetoprotein was encoded by a mRNA of 16S while mature AFP was encoded by a mRNA of 20S.  相似文献   

15.
The origin of corticosteroid-binding globulin (CBG) and its evolution in comparison with alpha-fetoprotein (AFP) and albumin synthesis, during early development of rat liver (days 13 and 15 of fetal life), have been investigated using cultured fetal hepatocytes. Synthesis and secretion of CBG, AFP, and albumin is evidence by cycloheximide-sensitive [14C]leucine incorporation into immunoprecipitable polypeptides secreted by cultured hepatocytes into the medium, two-dimensional immunoelectrophoretic and autoradiographic identification of newly synthesized labeled proteins, corticosterone and estradiol-17 beta binding to CBG and AFP, respectively, and indirect immunofluorescence localization of AFP, albumin, and CBG in cultured fetal hepatocytes. CBG, albumin, and AFP accounted for 6, 11, and 25% (in 13-day-old rat fetuses) and 5, 15, and 28% (15-day-old rat fetuses), respectively, of the total secreted proteins in the culture medium. The rates of CBG, AFP, and albumin (counts/minute of secretion [14C]leucine incorporated per milligram of cell protein/hour of culture) in the hepatocytes of 15-day-old rat fetuses were 1.48-, 2.1-, and 2.57-fold higher, respectively, than in the 13-day-old rat fetuses. These results indicate that fetal liver is also active in CBG synthesis, along with AFP and albumin, as early as day 13 of fetal life and that the synthetic rates of these secretory proteins depend upon the developmental stage of the fetal liver. This developmental related change in the rate of synthesis of CBG by the fetal hepatocytes may regulate the level of free (active) glucocorticoid in the fetal circulation and thereby the initiation and regulation of glucocorticoid-dependent processes during the crucial stages of the differentiation of fetal liver and other developing tissues.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号