首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ion channels are often modulated by intracellular calcium levels. TRPV1, a channel responsible for the burning pain sensation in response to heat, acid or capsaicin, is desensitized at high intracellular calcium concentrations. We recently identified a multiligand-binding site in the N-terminal ankyrin repeat domain (ARD) of TRPV1 that binds ATP and sensitizes the channel. Calcium-calmodulin binds the same site and is necessary for calcium-mediated TRPV1 desensitization. Here, we examine in more detail the conservation of this TRPV1 multiligand-binding site in other species. Furthermore, using sequence analysis, we determine that the unusually twisted shape of the TRPV1-ARD is likely conserved in other TRPV channels, but not in the ARDs of other TRP subfamilies.  相似文献   

2.
Ion channels are often modulated by intracellular calcium levels. TRPV1, a channel responsible for the burning pain sensation in response to heat, acid or capsaicin, is desensitized at high intracellular calcium concentrations. We recently identified a multiligand-binding site in the N-terminal ankyrin repeat domain (ARD) of TRPV1 that binds ATP and sensitizes the channel. Calcium-calmodulin binds the same site and is necessary for calcium-mediated TRPV1 desensitization. Here, we examine in more detail the conservation of this TRPV1 multiligand-binding site in other species. Furthermore, using sequence analysis, we determine that the unusually twisted shape of the TRPV1-ARD is likely conserved in other TRPV channels, but not in the ARDs of other TRP subfamilies.  相似文献   

3.
1. Selective protein–protein interactions between neurotransmitter transporters and their synaptic targets play important roles in regulating chemical neurotransmission. We screened a yeast two-hybrid library with bait containing the C-terminal amino acids of VGLUT1 and obtained clones that encode endophilin 1 and endophilin 3, proteins considered to play an integral role in glutamatergic vesicle formation.2. Using a modified yeast plasmid vector to enable more cost-effective screens, we analyzed the selectivity and specificity of this interaction. Endophilins 1 and 3 selectively recognize only VGLUT1 as the C-terminus of VGLUT2 and VGLUT3 do not interact with either endophilin isoform. We mutagenized four conserved stretches of primary sequence in VGLUT1 that includes two polyproline motifs (Pro1, PPAPPP, and Pro2, PPRPPPP), found only in VGLUT1, and two conserved stretches (SEEK, SYGAT), found also in VGLUT2 and VGLUT3. The absence of the VGLUT conserved regions does not affect VGLUT1–endophilin association. Of the two polyproline stretches, only one (Pro2) is required for binding specificity to both endophilin 1 and endophilin 3.3. We also show that endophilin 1 and endophilin 3 co-localize with VGLUT1 in synaptic terminals of differentiated rat neocortical neurons in primary culture. These results indicate that VGLUT1 and both endophilins are enriched in a class of excitatory synaptic terminals in cortical neurons and there, may interact to play an important role affecting the vesicular sequestration and synaptic release of glutamate.  相似文献   

4.
Transient receptor potential (TRP) channels as cellular sensors are thought to function as tetramers. Yet, the molecular determinants governing channel multimerization remain largely elusive. Here we report the identification of a segment comprising 21 amino acids (residues 752-772 of mouse TRPV1) after the known TRP-like domain in the channel C terminus that functions as a tetrameric assembly domain (TAD). Purified recombinant C-terminal proteins of TRPV1-4, but not the N terminus, mediated the protein-protein interaction in an in vitro pulldown assay. Western blot analysis combined with electrophysiology and calcium imaging demonstrated that TAD exerted a robust dominant-negative effect on wild-type TRPV1. When fused with the membrane-tethered peptide Gap43, the TAD blocked the formation of stable homomultimers. Calcium imaging and current recordings showed that deletion of the TAD in a poreless TRPV1 mutant subunit suppressed its dominant-negative phenotype, confirming the involvement of the TAD in assembly of functional channels. Our findings suggest that the C-terminal TAD in TRPV1 channels functions as a domain that is conserved among TRPV1-4 and mediates a direct subunit-subunit interaction for tetrameric assembly.  相似文献   

5.
To initiate QTL studies in the nonmodel fish Cottus gobio we constructed a genetic map based on 171 microsatellite markers. The mapping panel consisted of F1 intercrosses between two divergent Cottus lineages from the River Rhine System. Basic local alignment search tool (BLAST) searches with the flanking sequences of the microsatellite markers yielded a significant (e < 10(-5)) hit with the Tetraodon nigroviridis genomic sequence for 45% of the Cottus loci. Remarkably, most of these hits were due to short highly conserved noncoding stretches. These have an average length of 40 bp and are on average 92% conserved. Comparison of the map locations between the two genomes revealed extensive conserved synteny, suggesting that the Tetraodon genomic sequence will serve as an excellent genomic reference for at least the Acanthopterygii, which include evolutionarily interesting fish groups such as guppies (Poecilia), cichlids (Tilapia) or Xiphophorus (Platy). The apparent high density of short conserved noncoding stretches in these fish genomes will highly facilitate the identification of genes that have been identified in QTL mapping strategies of evolutionary relevant traits.  相似文献   

6.
There is evidence that polycystin-2 (TRPP2) interacts with two other members of the transient receptor potential (TRP) family, TRPC1 and TRPV4. We have previously shown that TRPP2 forms a heteromeric complex with TRPC1, with a 2:2 stoichiometry and an alternating subunit arrangement. Here, we used coimmunoprecipitation to show that TRPP2 also interacts with TRPV4, but not with TRPA1 or TRPM8; hence, its promiscuity is limited. We then used atomic force microscopy to study the structure of the TRPV4 homomer and the interaction between TRPP2 and TRPV4. The molecular volume of V5-tagged TRPV4 isolated from singly-transfected tsA 201 cells indicated that it assembled as a homotetramer. The distribution of angles between pairs of anti-V5 antibodies bound to TRPV4 particles had a large peak close to 90° and a smaller peak close to 180°, again consistent with the assembly of TRPV4 as a homotetramer. In contrast, the angle distributions for decoration of the TRPP2-TRPV4 heteromer by either anti-Myc or anti-V5 antibodies had major peaks close to 180°. This result indicates that TRPP2-TRPV4 assembles identically to TRPP2-TRPC1, suggesting a common subunit arrangement among heteromeric TRP channels.  相似文献   

7.
Recently, we described estrogen and agonists of the G-protein coupled estrogen receptor GPR30 to induce protein kinase C (PKC)ε-dependent pain sensitization. PKCε phosphorylates the ion channel transient receptor potential, vanilloid subclass I (TRPV1) close to a novel microtubule-TRPV1 binding site. We now modeled the binding of tubulin to the TRPV1 C-terminus. The model suggests PKCε phosphorylation of TRPV1-S800 to abolish the tubulin-TRPV1 interaction. Indeed, in vitro PKCε phosphorylation of TRPV1 hindered tubulin-binding to TRPV1. In vivo, treatment of sensory neurons and F-11 cells with estrogen and the GPR30 agonist, G-1, resulted in microtubule destabilization and retraction of microtubules from filopodial structures. We found estrogen and G-1 to regulate the stability of the microtubular network via PKC phosphorylation of the PKCε-phosphorylation site TRPV1-S800. Microtubule disassembly was not, however, dependent on TRPV1 ion conductivity. TRPV1 knock-down in rats inverted the effect of the microtubule-modulating drugs, Taxol and Nocodazole, on estrogen-induced and PKCε-dependent mechanical pain sensitization. Thus, we suggest the C-terminus of TRPV1 to be a signaling intermediate downstream of estrogen and PKCε, regulating microtubule-stability and microtubule-dependent pain sensitization.  相似文献   

8.
Transient receptor potential (TRP) proteins are cation channels composed of a transmembrane domain flanked by large N- and C-terminal cytoplasmic domains. All members of the vanilloid family of TRP channels (TRPV) possess an N-terminal ankyrin repeat domain (ARD). The ARD of mammalian TRPV6, an important regulator of calcium uptake and homeostasis, is essential for channel assembly and regulation. The 1.7 A crystal structure of the TRPV6-ARD reveals conserved structural elements unique to the ARDs of TRPV proteins. First, a large twist between the fourth and fifth repeats is induced by residues conserved in all TRPV ARDs. Second, the third finger loop is the most variable region in sequence, length and conformation. In TRPV6, a number of putative regulatory phosphorylation sites map to the base of this third finger. Size exclusion chromatography and crystal packing indicate that the TRPV6-ARD does not assemble as a tetramer and is monomeric in solution. Adenosine triphosphate-agarose and calmodulin-agarose pull-down assays show that the TRPV6-ARD does not interact with either ligand, indicating a different functional role for the TRPV6-ARD than in the paralogous thermosensitive TRPV1 channel. Similar biochemical findings are also presented for the highly homologous mammalian TRPV5-ARD. The implications of the structural and biochemical data on the role of the ankyrin repeats in different TRPV channels are discussed.  相似文献   

9.
Toll/IL-1R (TIR) domain, that is, the cytoplasmic domain, in toll-like receptors (TLRs) from different species showed high sequence conservation in stretches spread across the surface as well as the core of the domain. To probe the structure–function significance of these residues, especially those coming from the core of TIR domains, we analyzed molecular dynamics trajectories of sequence similarity based models of human TIR domains. This study brought forth that N-terminal of the TIR domain simultaneously interacts with the flanking residues of the BB loop and central β-sheets. At the same time, residues of the central β-strands form favorable contacts with the DD loop and C-terminal, thus forming a two-way circuit between the N- and C-termini. In this work, the array of intradomain interactions is termed as communication network. Importantly, the “hubs” of this communication network were found to be conserved in all human TLRs. Earlier mutagenesis–function correlation work brought forth that certain mutations in the “core” of the TIR domain of TLR4 (e.g. in IFI767–769AAA and L815A) led to almost complete abrogation of signaling and reasoning for this dramatic loss-of-function has remained unclear, since these sites are not surface exposed. Using MD studies, we show here that this communication network gets disrupted in mutants of human TLR4 which were earlier reported to be functionally compromised. Extension of MD studies to heterodimer of TLR1/2 suggested that this evolutionarily conserved communication network senses the interactions formed upon dimerization and relays it to surfaces which are not involved in direct interdomain contacts.  相似文献   

10.
The transmission of pain signalling involves the cytoskeleton, but mechanistically this is poorly understood. We recently demonstrated that the capsaicin receptor TRPV1, a non-selective cation channel expressed by nociceptors that is capable of detecting multiple pain-producing stimuli, directly interacts with the tubulin cytoskeleton. We hypothesized that the tubulin cytoskeleton is a downstream effector of TRPV1 activation. Here we show that activation of TRPV1 results in the rapid disassembly of microtubules, but not of the actin or neurofilament cytoskeletons. TRPV1 activation mainly affects dynamic microtubules that contain tyrosinated tubulins, whereas stable microtubules are apparently unaffected. The C-terminal fragment of TRPV1 exerts a stabilizing effect on microtubules when over-expressed in F11 cells. These findings suggest that TRPV1 activation may contribute to cytoskeleton remodelling and so influence nociception.  相似文献   

11.
A conserved 21-base pair element, designated as hex-1, located between -180 and -160 of the wheat histone H3 promoter, is known to interact with two tobacco nuclear factors, activating sequence factor 1 and hex-1-specific binding factor. We have shown previously that a mutant sequence (hex-3), which differs from hex-1 by three base pairs, can no longer bind these two factors significantly. In the present work, we examined the functional characteristics of these two sequences in transgenic tobacco. Surprisingly, we found that a tetramer of hex-3, but not of hex-1, confers high level expression in mature seeds. Expression of this synthetic promoter rapidly diminishes upon germination but can be reactivated in young seedlings and mature leaves by desiccation, NaCl, or the phytohormone abscisic acid (ABA). Treatment with auxin or cytokinin has no apparent effect on the expression. Since the endogenous ABA level of plant cells is known to increase upon water stress, our data suggest that hex-3, the mutated hex-1 sequence, is an abscisic acid-responsive element (abre). We propose that a tobacco nuclear factor, distinct from activating sequence factor 1 and hex-1-specific binding factor, interacts with this sequence and is involved in mediating the effects of ABA and water stress on gene expression.  相似文献   

12.
Although a large number of ion channels are now believed to be regulated by phosphoinositides, particularly phosphoinositide 4,5-bisphosphate (PIP2), the mechanisms involved in phosphoinositide regulation are unclear. For the TRP superfamily of ion channels, the role and mechanism of PIP2 modulation has been especially difficult to resolve. Outstanding questions include: is PIP2 the endogenous regulatory lipid; does PIP2 potentiate all TRPs or are some TRPs inhibited by PIP2; where does PIP2 interact with TRP channels; and is the mechanism of modulation conserved among disparate subfamilies? We first addressed whether the PIP2 sensor resides within the primary sequence of the channel itself, or, as recently proposed, within an accessory integral membrane protein called Pirt. Here we show that Pirt does not alter the phosphoinositide sensitivity of TRPV1 in HEK-293 cells, that there is no FRET between TRPV1 and Pirt, and that dissociated dorsal root ganglion neurons from Pirt knock-out mice have an apparent affinity for PIP2 indistinguishable from that of their wild-type littermates. We followed by focusing on the role of the C terminus of TRPV1 in sensing PIP2. Here, we show that the distal C-terminal region is not required for PIP2 regulation, as PIP2 activation remains intact in channels in which the distal C-terminal has been truncated. Furthermore, we used a novel in vitro binding assay to demonstrate that the proximal C-terminal region of TRPV1 is sufficient for PIP2 binding. Together, our data suggest that the proximal C-terminal region of TRPV1 can interact directly with PIP2 and may play a key role in PIP2 regulation of the channel.  相似文献   

13.
14.

Background

TRPV4 and the cellular cytoskeleton have each been reported to influence cellular mechanosensitive processes as well as the development of mechanical hyperalgesia. If and how TRPV4 interacts with the microtubule and actin cytoskeleton at a molecular and functional level is not known.

Methodology and Principal Findings

We investigated the interaction of TRPV4 with cytoskeletal components biochemically, cell biologically by observing morphological changes of DRG-neurons and DRG-neuron-derived F-11 cells, as well as functionally with calcium imaging. We find that TRPV4 physically interacts with tubulin, actin and neurofilament proteins as well as the nociceptive molecules PKCε and CamKII. The C-terminus of TRPV4 is sufficient for the direct interaction with tubulin and actin, both with their soluble and their polymeric forms. Actin and tubulin compete for binding. The interaction with TRPV4 stabilizes microtubules even under depolymerizing conditions in vitro. Accordingly, in cellular systems TRPV4 colocalizes with actin and microtubules enriched structures at submembranous regions. Both expression and activation of TRPV4 induces striking morphological changes affecting lamellipodial, filopodial, growth cone, and neurite structures in non-neuronal cells, in DRG-neuron derived F11 cells, and also in IB4-positive DRG neurons. The functional interaction of TRPV4 and the cytoskeleton is mutual as Taxol, a microtubule stabilizer, reduces the Ca2+-influx via TRPV4.

Conclusions and Significance

TRPV4 acts as a regulator for both, the microtubule and the actin. In turn, we describe that microtubule dynamics are an important regulator of TRPV4 activity. TRPV4 forms a supra-molecular complex containing cytoskeletal proteins and regulatory kinases. Thereby it can integrate signaling of various intracellular second messengers and signaling cascades, as well as cytoskeletal dynamics. This study points out the existence of cross-talks between non-selective cation channels and cytoskeleton at multiple levels. These cross talks may help us to understand the molecular basis of the Taxol-induced neuropathic pain development commonly observed in cancer patients.  相似文献   

15.
Although PI(4,5)P2 is believed to play an essential role in regulating the activity of numerous ion channels and transporters, the mechanisms by which it does so are unknown. Here, we used the ability of the TRPV1 ion channel to discriminate between PI(4,5)P2 and PI(4)P to localize the region of TRPV1 sequence that interacts directly with the phosphoinositide. We identified a point mutation in the proximal C-terminal region after the TRP box, R721A, that inverted the selectivity of TRPV1. Although the R721A mutation produced only a 30% increase in the EC50 for activation by PI(4,5)P2, it decreased the EC50 for activation by PI(4)P by more than two orders of magnitude. We used chemically induced and voltage-activated phosphatases to determine that PI(4)P continued to support TRPV1 activity even after depletion of PI(4,5)P2 from the plasma membrane. Our data cannot be explained by a purely electrostatic mechanism for interaction between the phosphoinositide and the protein, similar to that of the MARCKS (myristoylated alanine-rich C kinase substrate) effector domain or the EGF receptor. Rather, conversion of a PI(4,5)P2-selective channel to a PI(4)P-selective channel indicates that a structured phosphoinositide-binding site mediates the regulation of TRPV1 activity and that the amino acid at position 721 likely interacts directly with the moiety at the 5′ position of the phosphoinositide.  相似文献   

16.

Background

Transient Receptor Potential Vanilloid sub type 1 (TRPV1), commonly known as capsaicin receptor can detect multiple stimuli ranging from noxious compounds, low pH, temperature as well as electromagnetic wave at different ranges. In addition, this receptor is involved in multiple physiological and sensory processes. Therefore, functions of TRPV1 have direct influences on adaptation and further evolution also. Availability of various eukaryotic genomic sequences in public domain facilitates us in studying the molecular evolution of TRPV1 protein and the respective conservation of certain domains, motifs and interacting regions that are functionally important.

Methodology and Principal Findings

Using statistical and bioinformatics tools, our analysis reveals that TRPV1 has evolved about ∼420 million years ago (MYA). Our analysis reveals that specific regions, domains and motifs of TRPV1 has gone through different selection pressure and thus have different levels of conservation. We found that among all, TRP box is the most conserved and thus have functional significance. Our results also indicate that the tubulin binding sequences (TBS) have evolutionary significance as these stretch sequences are more conserved than many other essential regions of TRPV1. The overall distribution of positively charged residues within the TBS motifs is conserved throughout evolution. In silico analysis reveals that the TBS-1 and TBS-2 of TRPV1 can form helical structures and may play important role in TRPV1 function.

Conclusions and Significance

Our analysis identifies the regions of TRPV1, which are important for structure – function relationship. This analysis indicates that tubulin binding sequence-1 (TBS-1) near the TRP-box forms a potential helix and the tubulin interactions with TRPV1 via TBS-1 have evolutionary significance. This interaction may be required for the proper channel function and regulation and may also have significance in the context of Taxol®-induced neuropathy.  相似文献   

17.
In this paper we report the amino acid sequence of pyruvate phosphate dikinase (PPDK) from Bacteroides symbiosus as determined from the nucleotide sequence of the PPDK gene. Comparison of the B. symbiosus PPDK amino acid sequence with that of the maize PPDK [Matsuoka, M., Ozeki, Y., Yamamoto, N., Hirano, H., Kamo-Murakami, Y., & Tanaka, Y. (1988) J. Biol. Chem. 263, 11080] revealed long stretches of homologous sequence (greater than 70% identity), which contributed to an overall sequence identity of 53%. The circular dichrosim spectra, hydropathy profiles, and calculated secondary structural elements of the two dikinases suggest that they may have very similar tertiary structures as well. A comparison made between the amino acid sequence of the maize and B. symbiosus dikinase with other known protein sequences revealed homology, concentrated in three stretches of sequences, to a mechanistically related enzyme, enzyme I of the Escherichia coli PEP: sugar phosphotransferase system [Saffen, D. W., Presper, K. A., Doering, T. L., Roseman, S. (1987) J. Biol. Chem. 262, 16241]. It is proposed that (i) these three stretches of sequence constitute the site for PEP binding and catalysis and a possible site for the regulation of enzymatic activity and (ii) the conserved sequences exist in a third mechanistically related enzyme, PEP synthase.  相似文献   

18.
Transient receptor potential vanilloid (TRPV) channels, which include the thermosensitive TRPV1–V4, have large cytoplasmic regions flanking the transmembrane domain, including an N-terminal ankyrin repeat domain. We show that a multiligand binding site for ATP and calmodulin previously identified in the TRPV1 ankyrin repeat domain is conserved in TRPV3 and TRPV4, but not TRPV2. Accordingly, TRPV2 is insensitive to intracellular ATP, while, as previously observed with TRPV1, a sensitizing effect of ATP on TRPV4 required an intact binding site. In contrast, ATP reduced TRPV3 sensitivity and potentiation by repeated agonist stimulations. Thus, ATP and calmodulin, acting through this conserved binding site, are key players in generating the different sensitivity and adaptation profiles of TRPV1, TRPV3, and TRPV4. Our results suggest that competing interactions of ATP and calmodulin influence channel sensitivity to fluctuations in calcium concentration and perhaps even metabolic state. Different feedback mechanisms likely arose because of the different physiological stimuli or temperature thresholds of these channels.  相似文献   

19.
The mammalian transient receptor potential (TRP) protein gene family consists of a diverse group of cation channels that currently contain at least 26 members. The physiologic functions of many remain unknown. They are structurally similar to Drosophila TRP and have a wide tissue distribution. In the present report, we compare the chromosomal locations, the gene, and primary structures of each of these 26 human TRP family members. Based on primary amino acid analyses, these channels comprise four different subfamilies: C- (canonical or classical), V- (or vanilloid receptor related), M- (melastatin related), and P (PKD)-type. The highest homology within each subfamily and between subfamilies exists in the predicted ion channel domains. Belonging to a given subfamily, however, does not determine the activating stimuli. This is exemplified by the V- and M-subfamilies, both of which have members that respond to temperature and osmolarity. TRP genes vary in their intron-exon organization, with the greatest diversity in the P subfamily. Chromosomal organization analyses revealed that two TRP members are found as direct repeats; TRPV3 follows TRPV1 and TRPV6 follows TRPV5. Both of these duplications appear to be recent as TRPV1 and V3 are more similar to each other than to other members of the TRPV subfamily. The same holds true for TRPV5 and V6. The article presents complication of comparisons including exon-intron boundaries, the amino acid sequence alignments, and the chromosomal organization of each of the presently known TRP channels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号