首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have reported previously that the pectoralis muscle from three month-old dystrophic chickens with signs of myopathy exhibits increased calmodulin content, elevated calmodulin-specific mRNA (Biochem. Biophys. Res. Commun. 137:507-512, 1986), and reduced sarcoplasmic reticulum (SR) Ca2+-ATPase activity in response to calmodulin exposure in vitro (Clin. Res. 34: 725A, 1986). To determine the early time sequence for development of these abnormalities, we have studied muscle from embryos and post-hatched chickens at various ages. Quantitated by dot blot analysis, there was an approximate two-fold increase in calmodulin-specific mRNA in dystrophic muscle as early as 13 days ex ovo which was maintained throughout development up to three months ex ovo. Similarly, Ca2+-ATPase activity measured in SR membranes from chickens as early as 13 days post-hatch was also found to be resistant to stimulation in vitro by exogenous calmodulin, whereas the enzyme from normal muscle was calmodulin-stimulable. These findings suggest that the genetic lesion expressed in the avian dystrophic animal model involves the loss of normal control of intracellular calcium metabolism early in the maturation of the affected musculature and prior to appearance of disease signs.  相似文献   

2.
Compared to that of genetically-related normal chickens, pectoralis muscle from the dystrophic chicken contained increased calmodulin measured by radioimmunoassay. Determined by the dot blot procedure, expression of the calmodulin gene was enhanced in muscle from affected animals. The bioactivity of the gene product was normal. Together with previous studies reporting increased cell Ca2+ content in dystrophic muscle, the current findings of increased sarcoplasmic calmodulin suggest the latter is a cellular response to defective Ca2+ transport at the level of cell efflux or intracellular organelle (sarcoplasmic reticulum) uptake.  相似文献   

3.
Myometrium cell plasma membrane Ca2+, Mg(2+)-ATPase purified by an affinity chromatography on calmodulin-sepharose 4B is calmodulin-dependent enzyme. Concentration of calmodulin required for half-maximal activation of enzyme was about 26 nM. By unlike to the enzymes originated from other tissues sensitivity to the calmodulin of the myometrial sarcolemma Ca(2+)-transporting ATPase was lower: calmodulin increased Vmax of ATPase about 1.25-fold, the apparent constant of the activation of enzyme by Ca2+ failed to alter independently on the phospholipid presenting at the enzyme isolation.  相似文献   

4.
With the aim to elucidate mechanism of eosin Y inhibitory effect on the Ca(2+)-transporting ATPase activity of myometrial cell plasma membrane effect of this inhibitor on the maximal initial rate of ATP hydrolysis reaction, catalyzed by Ca2+, Mg(2+)-ATPase, and on the enzyme affinity for Ca2+ was studied. It was established that eosin Y decreased the rate of Ca2+, Mg(2+)-ATPase catalitic turnover determined by Ca2+ and had no effect on enzyme affinity for this cation.  相似文献   

5.
6.
Calmodulin (CaM) and troponin C (TnC) are EF-hand proteins that play fundamentally different roles in animal physiology. TnC has a very low affinity for the plasma membrane Ca2+-ATPase and is a poor substitute for CaM in increasing the enzyme's affinity for Ca2+ and the rate of ATP hydrolysis. We use a series of recombinant TnC (rTnC)/CaM chimeras to clarify the importance of the CaM carboxyl-terminal domain in the activation of the plasma membrane Ca2+-ATPase. The rTnC/CaM chimera, in which the carboxyl-terminal domain of TnC is replaced by that of CaM, has the same ability as CaM to bind and transmit the signal to Ca2+ sites on the enzyme. There is no further functional gain when the amino-terminal domain is modified to make the rTnC/CaM chimera more CaM-like. To identify which regions of the carboxyl-terminal domain of CaM are responsible for these effects, we constructed the chimeras rTnC/3CaM and rTnC/4CaM, where only one-half of the C-terminal domain of CaM (residues 85-112 or residues 113-148) replaces the corresponding region in rTnC. Neither rTnC/3CaM nor rTnC/4CaM can mimic CaM in its affinity for the enzyme. Nevertheless, with respect to the signal transduction process, rTnC/4CaM, but not rTnC/3CaM, shows the same behaviour as CaM. We conclude that the whole C-terminal domain is required for binding to the enzyme while Ca2+-binding site 4 of CaM bears all the requirements to increase Ca2+ binding at PMCA sites. Such mechanism of binding and activation is distinct from that proposed for most other CaM targets. Furthermore, we suggest that Ala128 and Met124 from CaM site 4 may play a crucial role in discriminating CaM from TnC.  相似文献   

7.
Abnormal collagen synthesis in skeletal muscle of dystrophic chicken   总被引:1,自引:0,他引:1  
Specific molecular properties of skeletal muscle collagens from normal and dystrophic chickens have been compared. When dystrophy develops in skeletal muscle tissue there was an increase in the amount of total collagen and an increased proportion of Type III collagen in the tissue. The results from the cross-link study as well as the analysis of the solubility of collagen showed that skeletal muscle of dystrophic chicken produces more immature collagen fibers compared to normal chicken. These findings strongly indicate an important role of collagen in the pathogenesis of the extensive connective tissue prolipheration characteristic of muscular dystrophies.  相似文献   

8.
The properties of the Ca2+, Mg2+-ATPase of erythrocyte membranes from patients with cystic fibrosis (CF) were extensively compared to that of healthy controls. Following removal of an endogenous membrane inhibitor of the ATPase, activation of the enzyme by Ca2+, calmodulin, limited tryptic digestion or oleic acid, as well as inhibition by trifluoperazine, were studied. The only properties found to be significantly different (CF cells vs controls) were calmodulin-stimulated peak activity (90 vs 101, P less than 0.02) and trypsin-activated peak activity (92 vs 102, P less than 0.02). No significant difference could be measured in the steady-state Ca2+-dependent phosphorylation of CF and control erythrocyte membranes indicating similar numbers of enzyme molecules per cell. The functional state of Ca2+ homeostasis in intact erythrocytes was investigated by measuring the resting cytosolic free Ca2+ levels using quin-2. Both CF and control erythrocytes maintained cytosolic free Ca2+ between 20 to 30 nM. Addition of 50 uM trifluoperazine resulted in an increase in erythrocyte cytosolic free Ca2+ to about 50 nM in both CF and control cells. Estimates of erythrocyte membrane permeability using the steady-state uptake of 45Ca into intact erythrocytes revealed no differences between CF and control cells. These results confirm that there is a small decrease in the calmodulin-stimulated activity of the erythrocyte Ca2+, Mg2+-ATPase in CF. However, this deficit is apparently not large enough to impair the ability of the CF erythrocyte to maintain normal resting levels of cytosolic free Ca2+.  相似文献   

9.
10.
Purified transverse tubule membranes from normal and dystrophic chicken skeletal muscle were isolated by a calcium-loading procedure. Normal and dystrophic T-tubules were similar in cholesterol content and (Na+,K+)-ATPase and 5'-nucleotidase activities but a significant decrease of Mg2(+)-ATPase activity was observed in dystrophic membranes. A comparative analysis of the enzyme properties revealed that the kinetic parameters were altered in dystrophic T-tubules and the ATP-hydrolyzing activity was differently affected by the ionic strength. However, the influence of temperature and the regulatory effect of concanavalin A were the same as in normal T-tubules. Membrane fluidity was similar in both preparations as estimated by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene and trimethylammonium diphenylhexatriene. These results point to an impairment in the function of Mg2(+)-ATPase due to structural alterations of the enzyme.  相似文献   

11.
We have investigated the subunit structure of Ca2+-transport ATPase in human erythrocyte membranes using radiation inactivation analysis. All inactivation data were linear on a semilog plot down to at least 20% of the control activity. We found a target size for the calmodulin-dependent Ca2+-ATPase activity of 331 kDa, consistent with the presence of this enzyme as a dimer in calmodulin-depleted ghosts. Membranes which had been saturated with calmodulin before irradiation yield a a similar size of 317 kDa, implying that activation of Ca2+-transport ATPase by calmodulin does not involve significant change in oligomeric structure. Basal (calmodulin-independent) Ca2+-ATPase activity corresponded to a size of 290 kDa, suggesting that this activity resides in the same, or similar-sized, complex as the calmodulin-dependent activity. Mg2+-ATPase activity, however, was found to reside in a smaller complex of 224 kDa, which proved to be statistically distinct from the target size of Ca2+-ATPase activity. It would appear that Mg2+-ATPase is a distinct entity whose function is likely unrelated to the Ca2+-transport ATPase.  相似文献   

12.
The Ca2+-ATPase (ATP phosphohydrolase, EC 3.6.1.3) in human erythrocyte membranes, which is part of the Ca2+ pump, can be activated by binding of calmodulin. Rate constants (k1) for association of calmodulin and enzyme, which depends on the Ca2+ concentration, have been determined by the aid of an enzyme model. k1 increased from 0.25 . 10(6) to 17.3 . 10(6) M-1 . min-1 (70 times) when the free Ca2+ concentration was raised from 0.7 to 20 microM. The binding of calmodulin to the Ca2+-ATPase is reversible. The rate constants (k-1) for dissociation of enzyme-calmodulin complex decreased from 6.0 to 0.044 min-1 (135 times) when the free Ca2+ concentration was increased from 0.1 to 2-20 microM. The apparent dissociation constant Kd = k-1/k1 accordingly increased from 2.5 nM to 25 microM (or higher) when the Ca2+ concentration was reduced from 20 to 0.1 microM. Therefore, at 10(-7) M free Ca2+ most of the Ca2+-pump enzyme will not bind calmodulin. For the intact cell the time dependences of activation and deactivation of the Ca2+-pump enzyme have been estimated from the rate constants above. The results suggest that the Ca2+ pump is well suited to maintain a cytosolic concentration of 10(-7) M free Ca2+ (or lower) in the unstimulated cell and, when the cell is stimulated, to allow transient Ca2+ signals up to approx. 10(-5) M in the cytosol.  相似文献   

13.
The involvement of membrane protein in dystrophic chicken fragmented sarcoplasmic reticulum alterations has been examined. A purified preparation of the (Ca2+ + Mg2+)-ATPase protein from dystrophic fragmented sarcoplasmic reticulum was found to have a reduced calcium-sensitive ATPase activity and phosphoenzyme level, in agreement with alterations found in dystrophic chicken fragmented sarcoplasmic reticulum. An amino acid analysis of the ATPase preparations showed no difference in the normal and dystrophic (Ca2+ + Mg2+)-ATPase. The (Ca2+ + Mg2+)-ATPase was investigated further by isoelectric focusing and proteolytic digestion of the fragmented sarcoplasmic reticulum. Neither of these methods indicated any alteration in the composition of the dystrophic (Ca2+ + Mg2+)-ATPase. We have concluded that the alterations observed in dystrophic fragmented sarcoplasmic reticulum are not due to increased amounts of non-(Ca2+ + Mg2+)-ATPase protein, and that the normal and dystrophic (Ca2+ + Mg2+)-ATPase protein are not detectably different.  相似文献   

14.
Lipid composition and Ca(2+)-ATPase activity both change with age and disease in many tissues. We explored relationships between lipid composition/structure and plasma membrane Ca(2+)-ATPase (PMCA) activity. PMCA was purified from human erythrocytes and was reconstituted into liposomes prepared from human ocular lens membrane lipids and synthetic lipids. Lens lipids were used in this study as a model for naturally ordered lipids, but the influence of lens lipids on PMCA function is especially relevant to the lens since calcium homeostasis is vital to lens clarity. Compared to fiber cell lipids, epithelial lipids exhibited an ordered to disordered phase transition temperature that was 12 degrees C lower. Reconstitution of PMCA into lipids was essential for maximal activity. PMCA activity was two to three times higher when the surrounding phosphatidylcholine molecules contained acyl chains that were ordered (stiff) compared to disordered (fluid) acyl chains. In a completely ordered lipid hydrocarbon chain environment, PMCA associates more strongly with the acidic lipid phosphatidylserine in comparison to phosphatidylcholine. PMCA associates much more strongly with phosphatidylcholine containing disordered hydrocarbon chains than ordered hydrocarbon chains. PMCA activity is influenced by membrane lipid composition and structure. The naturally high degree of lipid order in plasma membranes such as those found in the human lens may serve to support PMCA activity. The absence of PMCA activity in the cortical region of human lenses is apparently not due to a different lipid environment. Changes in lipid composition such as those observed with age or disease could potentially influence PMCA function.  相似文献   

15.
Ca2+-ATPase of human erythrocyte membranes, after being washed to remove Ca2+ after incubation with the ion, was found to be activated. Stimulation of the ATPase was related neither to fluidity change nor to cytoskeletal degradation of the membranes mediated by Ca2+. Activation of the transport enzyme was also unaffected by detergent treatment of the membrane, but was suppressed when leupeptin was included during incubation of the membranes with Ca2+. Stimulation of the ATPase by a membrane-associated Ca2+-dependent proteinase was thus suggested. Much less 138 kDa Ca2+-ATPase protein could be harvested from a Triton extract of membranes incubated with Ca2+ than without Ca2+. Activity of the activated enzyme could not be further elevated by exogenous calpain, even after treatment of the membranes with glycodeoxycholate. There was also an overlap in the effect of calmodulin and the Ca2+-mediated stimulation of membrane Ca2+-ATPase. While Km(ATP) of the stimulated ATPase remained unchanged, a significant drop in the free-Ca2+ concentration for half-maximal activation of the enzyme was observed.  相似文献   

16.
Treatment with calcitriol of isolated cartilage cells derived from epiphyseal growth plates of rachitic chicks results in reduced intracellular calcium concentrations. The reduction in calcium was found to correlate with increased activity of Ca2+-ATPase. The activities of Na+-K+-ATPase and of Mg2+-ATPase did not change in response to the treatment with calcitriol. It is suggested that calcitriol regulates intracellular calcium by modulating the activity of the Ca2+-pumping ATPase.  相似文献   

17.
Islet cell plasma membranes contain a calcium-stimulated and magnesium-dependent ATPase (Ca2+ + Mg2+)-ATPase) which requires calmodulin for maximum enzyme activity (Kotagal, N., Patke, C., Landt, M., McDonald, J., Colca, J., Lacy, P., and McDaniel, M. (1982) FEBS Lett. 137, 249-252). Investigations indicated that exogenously added calmodulin increases the velocity and decreases the Km for Ca2+ of the high affinity (Ca2+ + Mg2+)-ATPase. These studies routinely employed the chelator ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) to maintain Ca2+ concentrations in the submicromolar range. During the course of these investigations, it was found unexpectedly that increasing the concentrations of EGTA (0.1-4 mM) and total calcium in the media, while maintaining constant free Ca2+ levels, increased the velocity of the high affinity (Ca2+ + Mg2+)-ATPase. The free calcium concentrations under these conditions were verified by a calcium-sensitive electrode. The (Ca2+ + Mg2+)-ATPase maximally activated by 2-4 mM EGTA was not further stimulated by calmodulin, whereas camodulin stimulation increased as the concentration of EGTA in the media was decreased. A similar enhancement by Ca-EGTA was observed on active calcium transport by the plasma membrane-enriched fraction. Moreover, Ca-EGTA had a negligible effect on both active calcium transport as well as Ca2+-stimulated ATPase activity by the islet cell endoplasmic reticulum, processes which are not stimulated by calmodulin. The results indicate that stimulation by Ca-EGTA may be used to differentiate calcium transport systems by these subcellular organelles. Furthermore, the concentration of EGTA routinely employed to maintain free Ca2+ levels may itself obscure effects of calmodulin and other physiological agents on calcium-dependent activities.  相似文献   

18.
19.
The effect of an intracellular cryoprotectant glycerol on human erythrocyte Ca2+-ATPase activity and possible involvement of calmodulin in the regulation of Ca2+-pump under these conditions were investigated. The experiments were carried out using saponin-permeabilized cells and isolated erythrocyte membrane fractions (white ghosts). Addition of rather low concentrations of glycerol to the medium increased Ca2+-ATPase activity in the saponin-permeabilized cells; the maximal effect was observed at 10% glycerol. Subsequent increase in glycerol concentrations above 20% was accompanied by inhibition of Ca2+-ATPase activity. Lack of stimulating effect of glycerol on white ghost Ca2+-ATPase may be attributed to removal of endogenous compounds regulating activity of this ion transport system. Inhibitory analysis using R24571 revealed that activation of Ca2+-ATPase by 10% glycerol was observed only in the case of inhibitor administration after modification of cells with glycerol; in the case of inhibitor addition before erythrocyte contact with glycerol, this phenomenon disappeared. These data suggest the possibility of regulation of human erythrocyte Ca2+-ATPase by glycerol; this regulatory effect may be attributed to both glycerol-induced structural changes in the membrane and also involvement of calmodulin in modulation of catalytic activity of the Ca2+-pump.  相似文献   

20.
In this work, we set out to identify and characterize the calcium occluded intermediate(s) of the plasma membrane Ca(2+)-ATPase (PMCA) to study the mechanism of calcium transport. To this end, we developed a procedure for measuring the occlusion of Ca(2+) in microsomes containing PMCA. This involves a system for overexpression of the PMCA and the use of a rapid mixing device combined with a filtration chamber, allowing the isolation of the enzyme and quantification of retained calcium. Measurements of retained calcium as a function of the Ca(2+) concentration in steady state showed a hyperbolic dependence with an apparent dissociation constant of 12 ± 2.2 μM, which agrees with the value found through measurements of PMCA activity in the absence of calmodulin. When enzyme phosphorylation and the retained calcium were studied as a function of time in the presence of La(III) (inducing accumulation of phosphoenzyme in the E(1)P state), we obtained apparent rate constants not significantly different from each other. Quantification of EP and retained calcium in steady state yield a stoichiometry of one mole of occluded calcium per mole of phosphoenzyme. These results demonstrate for the first time that one calcium ion becomes occluded in the E(1)P-phosphorylated intermediate of the PMCA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号