首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protoplasts, protoplast extracts (intact chloroplasts plus extrachloroplastic material), and chloroplasts isolated from protoplasts of wheat (Triticum aestivum) have rates of photosynthesis as measured by light-dependent O2 evolution of about 100 to 150 micromoles of O2 per milligram of chlorophyll per hour at 20 C and saturating bicarbonate. The assay conditions sufficient for this activity were 0.4 molar sorbitol, 50 millimolar N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid KOH (pH 7.6), and 10 millimolar NaHCO3 with protoplast, plus a requirement of 1 to 10 millimolar ethylenediaminetetraacetate (EDTA) and 0.2 to 0.5 millimolar inorganic orthophosphate (Pi) with protoplast extracts and chloroplasts. Protoplast extracts evolved approximately 6 micromoles of O2 per milligram of chlorophyll before photosynthesis became largely dependent on exogenous Pi while photosynthesis by chloroplasts had a much stronger dependence on exogenous Pi from the outset.

Photosynthesis by chloroplasts from 6-day-old wheat plants under optimum levels of Pi was similar to that with the addition of 5 millimolar inorganic pyrophosphate (PPi) plus 0.2 millimolar adenosine-5′-diphosphate (ADP). Either PPi or ADP added separately inhibited photosynthesis. When chloroplasts were incubated in the dark for 2 to 6 minutes, photosynthesis was strongly inhibited by 5 millimolar PPi and this inhibiting was relieved by including adenosine-5′-triphosphate (ATP) or ADP (0.2 to 0.6 millimolar). Chloroplasts from 9-day-old wheat leaves were slightly less sensitive to inhibition by PPi and showed little or no inhibition by ADP.

Chloroplasts isolated from protoplasts and assayed with 0.3 millimolar Pi added before illumination have an induction time from less than 1 minute up to 16 minutes depending on the time of the assay after isolation and the components of the medium. In order to obtain maximum rates of photosynthesis and minimum induction time, NaHCO3 and chelating agents, EDTA or PPi (+ATP), are required in the chloroplast isolation, resuspension and assay medium. With these inclusions in the isolation and resuspension medium the induction time decreased rapidly during the first 20 to 30 minutes storage of chloroplasts on ice. Requirements for isolating intact and photosynthetically functional chloroplasts from wheat protoplasts are discussed.

  相似文献   

2.
The effects of phosphoenolpyruvate (PEP), inorganic phosphate (Pi), and ATP on 3-phosphoglycerate (PGA)-dependent O2 evolution by chloroplasts of Digitaria sanguinalis (L.) Scop. (crabgrass) were evaluated relative to possible mechanisms of PEP transport by the C4 mesophyll chloroplast. Crude and Percoll purified chloroplast preparations exhibited rates of PGA-dependent O2 evolution in the range of 90 to 135 micromoles O2 per milligram chlorophyll per hour, and up to 180 micromoles O2 per milligram chlorophyll per hour at optimal Pi concentrations (approximately 0.2 millimolar at 9 millimolar PGA). Higher concentrations of Pi were inhibitory. PEP inhibited O2 evolution (up to 70%) in both chloroplast preparations when the PEP to PGA ratio was high (i.e. 9 millimolar PEP to 0.36 millimolar PGA). Usually no inhibition was seen when the PEP to PGA ratio was less than 2. PEP acted as a competitive inhibitor and, at a concentration of 9 millimolar, increased the apparent Km (PGA) from 0.15 to 0.53 millimolar in Percoll purified chloroplasts. A low concentration of PGA and high ratio of PEP to PGA, which are considered unphysiological, were required to detect any inhibition of O2 evolution by PEP. Similar results were obtained from crude versus Percoll purified preparations. Neither the addition of Pi nor ATP could overcome PEP inhibition. As PEP inhibition was competitive with respect to PGA concentration, and as addition of ATP or Pi could not prevent PEP inhibition of PGA-dependent O2 evolution, the inhibition was not due to PEP exchange of adenylates or Pi out of the chloroplast. Analysis of the effect of Pi and PEP, separately and in combination, on PGA-dependent O2 evolution suggests interactions between PEP, Pi, and PGA on the same translocator in the C4 mesophyll chloroplast. C3 spinach chloroplasts were also found to be sensitive to PEP, but to a lesser extent than crabgrass chloroplasts. The apparent Ki values (PEP) were 3 and 21 millimolar for crabgrass and spinach, respectively.  相似文献   

3.
Intact chloroplasts of wheat (Triticum aestivum) were isolated from mesophyll protoplasts. With decreasing concentrations of bicarbonate from 10 to 0.3 millimolar (pH 8.0), the optimal concentration of orthophosphate (Pi) for photosynthetic O2 evolution decreased from a value of 0.1 to 0.2 millimolar to 0 to 0.025 millimolar. The extremely low Pi optimum for photosynthesis at the low bicarbonate levels of 0.3 millimolar was increased by lowering the O2 concentration from 253 (21% gas phase) to 72 micromolar (6% gas phase). The relative amount of glycolate and dihydroxyacetone phosphate (DHAP) synthesized under high and low levels of bicarbonate and varying levels of Pi was determined. At low levels of bicarbonate, glycolate was the main product, whereas at high bicarbonate levels, DHAP was the main product. Most of the DHAP and glycolate was found in the extrachloroplastic fraction.  相似文献   

4.
Huber SC 《Plant physiology》1979,64(5):846-851
High concentrations of orthophosphate (Pi) inhibited CO2-dependent O2 evolution and prevented the inactivation of glucose-6-P dehydrogenase by light in intact spinach and barley chloroplasts. Addition of glycerate-3-P to chloroplasts inhibited by Pi in the light, induced O2 evolution and caused rapid inactivation of glucose-6-P dehydrogenase. The activity of phosphofructokinase detected in chloroplast preparations was not affected by light or by Pi.  相似文献   

5.
Intact isolated chloroplasts from pea (Pisum sativum) leaves carried out light-dependent (NH3, 2-oxoglutarate) and (glutamine, 2-oxoglutarate)-dependent O2 evolution at rates of 3.3 ± 0.7 (n = 7) and 6.0 ± 0.4 (n = 5) micromoles per milligram chlorophyll per hour, respectively. Malate stimulated the rate of (NH3, 2-oxoglutarate)-dependent O2 evolution 2.1 ± 0.5 (n = 7)-fold in the absence of glutamine, and 3.3 ± 0.4 (n = 11)-fold in the presence of glutamine. Malate also stimulated (glutamine, 2-oxoglutarate)-dependent O2 evolution in the presence of high concentrations of glutamine. The affinity (K1/2) of (NH3, glutamine, 2-oxoglutarate)-dependent O2 evolution for 2-oxoglutarate was estimated at 200 to 250 micromolar in the absence of malate and 50 to 80 micromolar when malate (0.5 millimolar) was present. In contrast to malate and various other dicarboxylates, aspartate, glutarate, and glutamate did not stimulate (NH3, glutamine, 2-oxoglutarate)-dependent O2 evolution in isolated pea chloroplasts. Using both in vitro assays and reconstituted chloroplast systems, malate was shown to have no effect on the activities of either glutamine synthetase or glutamate synthase.

The concentration of malate required for maximal stimulation of O2 evolution was dependent on the concentration of 2-oxoglutarate present. However, the small extent of the competition between malate and 2-oxoglutarate for uptake was not consistent with that predicted by the current `single carrier' model proposed for the uptake of dicarboxylates into chloroplasts.

  相似文献   

6.
Huber SC 《Plant physiology》1979,63(4):754-757
Millimolar concentrations of Mg2+ inhibited CO2-dependent O2 evolution by barley (Hordeum vulgare L.) chloroplasts and also prevented the activation of NADP-glyceraldehyde-3-phosphate dehydrogenase, ribulose-5-phosphate kinase, and fructose-1,6-diphosphatase by light in intact chloroplasts. When added in the dark, 3-phosphoglycerate prevented the inhibition of O2 evolution by Mg2+ and reduced the Mg2+ inhibition of enzyme activation by light. Fructose 1,6-diphosphate and ribulose 5-phosphate also prevented the inhibition of O2 evolution by Mg2+ whereas glucose 1-phosphate, glucose 6-phosphate, ribulose 1,5-diphosphate, and citrate had no effect. Phosphoenolpyruvate gave an intermediate response. Metabolites that prevented the Mg2+ inhibition of O2 evolution shortened the lag phase of CO2-dependent O2 evolution in the absence of M2+. Loading chloroplasts in the dark with 3-phosphoglycerate reduced both the lag phase of O2 evolution and the inhibition of O2 evolution by Mg2+. The results suggested that Mg2+ inhibition was lessened either by external metabolites that compete with inorganic phosphate for transport into the chloroplast or by a high concentration of internal metabolites.  相似文献   

7.
8.
Conditions for optimal CO2 fixation and malate decarboxylation by isolated bundle sheath chloroplasts from Zea mays were examined. The relative rates of these processes varied according to the photosynthetic carbon reduction cycle intermediate provided. Highest rates of malate decarboxylation, measured as pyruvate formation, were seen in the presence of 3-phosphoglycerate, while carbon fixation was highest in the presence of dihydroxyacetone phosphate; only low rates were measured with added ribose-5-phosphate. Chloroplasts exhibited a distinct phosphate requirement and this was optimal at a level of 2 millimolar inorganic phosphate in the presence of 2.5 millimolar 3-phosphoglycerate, dihydroxyacetone phosphate, or ribose-5-phosphate. Malate decarboxylation and CO2 fixation were stimulated by additions of AMP, ADP, or ATP with half-maximal stimulation occurring at external adenylate concentrations of about 0.15 millimolar. High concentrations (>1 millimolar) of AMP were inhibitory. Aspartate included in the incubation medium stimulated malate decarboxylation and CO2 assimilation. In the presence of aspartate, the apparent Michaelis constant (malate) for malate decarboxylation to pyruvate by chloroplasts decreased from 6 to 0.67 millimolar while the calculated Vmax for this process increased from 1.3 to 3.3 micromoles per milligram chlorophyll. Aspartate itself was not metabolized. It was concluded that the processes mediating the transport of phosphate, 3-phosphoglycerate, and dihydroxyacetone phosphate transport on the one hand, and also of malate might differ from those previously described for chloroplasts from C3 plants.  相似文献   

9.
Robinson SP 《Plant physiology》1985,79(4):996-1002
Spinach leaf chloroplasts isolated in isotonic media (330 millimolar sorbitol, −1.0 megapascals osmotic potential) had optimum rates of photosynthesis when assayed at −1.0 megapascals. When chloroplasts were isolated in hypertonic media (720 millimolar sorbitol, −2.0 megapascals osmotic potential) the optimum osmotic potential for photosynthesis was shifted to −1.8 megapascals and the chloroplasts had higher rates of CO2-dependent O2 evolution than chloroplasts isolated in 330 millimolar sorbitol when both were assayed at high solute concentrations.

Transfer of chloroplasts isolated in 330 millimolar sorbitol to 720 millimolar sorbitol resulted in decreased chloroplast volume but this shrinkage was only transient and the chloroplasts subsequently swelled so that within 2 to 3 minutes at 20°C the chloroplast volume had returned to near the original value. Thus, actual steady state chloroplast volume was not decreased in hypertonic media. In isotonic media, there was a slow but significant uptake of sorbitol by chloroplasts (10 to 20 micromoles per milligram chlorophyll per hour at 20°C). Transfer of chloroplasts from 330 millimolar sorbitol to 720 millimolar sorbitol resulted in rapid uptake of sorbitol (up to 280 micromoles per milligram chlorophyll per hour at 20°C) and after 5 minutes the concentration of sorbitol inside the chloroplasts exceeded 500 millimolar. This uptake of sorbitol resulted in a significant underestimation of chloroplast volume unless [14C]sorbitol was added just prior to centrifuging the chloroplasts through silicone oil. Sudden exposure to osmotic stress apparently induced a transient change in the permeability of the chloroplast envelope since addition of [14C]sorbitol 3 minutes after transfer to hypertonic media (when chloroplast volume had returned to normal) did not result in rapid uptake of labeled sorbitol.

It is concluded that chloroplasts can osmotically adjust in vitro by uptake of solutes which do not normally penetrate the chloroplast envelope, resulting in a restoration of normal chloroplast volume and partially preventing the inhibition of photosynthesis by high solute concentrations. The results indicate the importance of matching the osmotic potential of isolation media to that of the tissue, particularly in studies of stress physiology.

  相似文献   

10.
Isolation of Intact Chloroplasts from Dunaliella tertiolecta   总被引:10,自引:7,他引:3       下载免费PDF全文
Cells of Dunaliella tertiolecta from the log phase of growth were broken by rapid extrusion at low pressure through a Yeda press and the chloroplasts were isolated by centrifugation through a Percoll gradient. Osmolarity of the growth media, the suspending media, and the Percoll gradient was kept identical to minimize change in chloroplast volume and mitochondrial entrapment. The isolated intact chloroplasts were obtained in a 30 to 50% yield based on chlorophyll and were stable to washing with buffered medium. Isolated chloroplast yield and purity was dependent on cell culture condition; a cycle of 16 hours light and 8 hours dark with continuous high CO2 was optimum. Isolated chloroplasts were about 90% intact by microscopic examination, ferricyanide-dependent O2 evolution, and the distribution of four stromal enzymes. Enzymes associated with glycolate metabolism were not in the chloroplast fraction. The isolated chloroplasts with 10 millimolar bicarbonate evolved 24 micromoles of O2 and fixed 21 micromoles of CO2 per hour per milligram of chlorophyll, which rates were about one-third of those by whole cells. The inhibition of oxygen evolution by 10 millimolar phosphate was reversed by P-glycerate. Whole chloroplasts were also isolated from cells adapted to low CO2 in air for 24 hours. On low CO2 the cells excreted more gelatinous material, which had to be removed with additional washing of the cells, before it was possible to obtain good chloroplast preparations.  相似文献   

11.
Cornic G  Woo KC  Osmond CB 《Plant physiology》1982,70(5):1310-1315
Intact spinach (Spinacia oleracea L.) chloroplasts, when pre-illuminated at 4 millimoles quanta per square meter per second for 8 minutes in a CO2-free buffer at 21% O2, showed a decrease (30-70%) in CO2-dependent O2 evolution and 14CO2 uptake. This photoinhibition was observed only when the O2 concentration and the quantum fluence rate were higher than 4% and 1 millimole per square meter per second, respectively. There was only a small decrease in the extent of photoinhibition when the CO2 concentration was increased from 0 to 25 micromolar during the treatment, but photoinhibition was abolished when the CO2 concentration was increased to 30 micromolar. Addition of small quantities of P-glycerate (40-200 micromolar) or glycerate (160 micromolar) was found to prevent photoinhibition. Other intermediates of the Calvin cycle (fructose-6-P, fructose-1,6-P, ribose-5-P, ribulose-5-P) also prevented photoinhibition to various extents. Oxaloacetate was not effective in preventing photoinhibition in these chloroplasts. The amount of O2 evolved during treatments with 3-P-glycerate or glycerate was no more than 65% of that measured in the presence of low CO2 concentrations (9-12 micromolar) which did not prevent photoinhibition. In all cases, the extent to which photoinhibition was prevented by these metabolites was not correlated to the amount of O2 evolved during the photoinhibitory treatment. It is concluded that in these chloroplasts the prevention of the O2-dependent photoinhibition of light saturated CO2 fixation capacity is not linked to the dissipation of excitation energy via the photosynthetic electron transport nor to ATP utilization. The requirement of O2 for photoinhibition of CO2 fixation capacity in isolated chloroplasts may be explained by an effect of O2 in allowing metabolic depletion of Calvin cycle intermediates.  相似文献   

12.
Huber SC 《Plant physiology》1978,62(3):321-325
Magnesium was most inhibitory to photosynthetic reactions by intact chloroplasts when the magnesium was added in the dark before illumination. Two millimolar MgCl2, added in the dark, inhibited CO2-dependent O2 evolution by Hordeum vulgare L. and Spinacia oleracea L. (C3 plants) chloroplasts 70 to 100% and inhibited (pyruvate + oxaloacetate)-dependent O2 evolution by Digitaria sanguinalis L. (C4 plant) mesophyll chloroplasts from 80 to 100%. When Mg2+ was added in the light, O2 evolution was reduced only slightly. O2 evolution in the presence of phosphoglycerate was less sensitive to Mg2+ inhibition than was CO2-dependent O2 evolution.

Magnesium prevented the light activation of several photosynthetic enzymes. Two millimolar Mg2+ blocked the light activation of NADP-malate dehydrogenase in D. sanguinalis mesophyll chloroplasts, and the light activation of phosphoribulokinase, NADP-linked glyceraldehyde-3-phosphate dehydrogenase, and fructose 1,6-diphosphatase in barley chloroplasts. The results suggest that Mg2+ inhibits chloroplast photosynthesis by preventing the light activation of certain enzymes.

  相似文献   

13.
Relatively high concentrations of monovalent salts (150 millimolar) stimulated light-saturated uncoupled rates of O2 evolution linked to oxaloacetic acid (OAA) reduction by intact chloroplasts 2-to 3-fold. In contrast, monovalent salts partially inhibited light-saturated rates of O2 evolution coupled to CO2 fixation and uncoupled rates of nitrite reduction. In the presence of high salt concentration, light-saturated rates of electron transport were about equivalent for all three terminal electron acceptors. It is inferred that exogenous monovalent salts have at least two effects on photosynthetic electron transport, independent of photophosphorylation and CO2 metabolism: a partial inhibitory effect common to OAA, NO2 and CO2 reduction and a marked stimulatory effect unique to the photoreduction of OAA.  相似文献   

14.
Photosynthesis, stroma-pH, and internal K+ and Cl concentrations of isolated intact chloroplasts from Spinacia oleracea, as well as ion (K+, H+, Cl) movements across the envelope, were measured over a wide range of external KCl concentrations (1-100 millimolar).

Isolated intact chloroplasts are a Donnan system which accumulates cations (K+ or added Tetraphenylphosphonium+) and excludes anions (Cl) at low ionic strength of the medium. The internally negative dark potential becomes still more negative in the light as estimated by Tetraphenylphosphonium+ distribution. At 100 millimolar external KCl, potentials both in the light and in the dark and also the light-induced uptake of K+ or Na+ and the release of protons all become very small. Light-induced K+ uptake is not abolished by valinomycin suggesting that the K+ uptake is not primarily active. Intact chloroplasts contain higher K+ concentrations (112-157 millimolar) than chloroplasts isolated in standard media. Photosynthetic activity of intact chloroplasts is higher at 100 millimolar external KCl than at 5 to 25 millimolar. The pH optimum of CO2 fixation at high K+ concentrations is broadened towards low pH values. This can be correlated with the observation that high external KCl concentrations at a constant pH of the suspending medium produce an increase of stroma-pH both in the light and in the dark. These results demonstrate a requirement of high external concentrations of monovalent cations for CO2 fixation in intact chloroplasts.

  相似文献   

15.
J. W. Anderson  D. A. Walker 《Planta》1983,159(3):247-253
(Ammonia plus 2-oxoglutarate)-dependent O2 evolution by intact chloroplasts was enhanced three- to five fold by 2 mM L- and D-malate, attaining rates of 9–15 μmol mg-1 Chl h-1. Succinate and fumarate also promoted activity but D-aspartate and, in the presence of aminooxyacetate, L-aspartate inhibited the malate-promoted rate. A reconstituted chloroplast system supported (ammonia plus 2-oxoglutarate)-dependent O2 evolution at rates of 6-11 μmol mg-1 Chl h-1 in the presence of MgCl2, NADP(H), ADP plus Pi (or ATP), ferredoxin and L-glutamate. The concentrations of L-glutamate and ATP required to support 0.5 V max were 5 mM and 0.25 mM, respectively. When the reaction was initiated with NH4Cl, O2 evolution was preceded by a lag phase before attaining a constant rate. The lag phase was shortened by addition of low concentrations of L-glutamine or by preincubating in the dark in the presence of glutamate, ATP and NH4Cl. Oxygen evolution was inhibited by 2 mM azaserine and, provided it was added initially, 2 mM methionine sulphoximine. The (ammonia plus 2-oxoglutarate)-dependent O2 evolution was attributed to the synthesis of glutamine from NH4Cl and glutamate which reacted with 2-oxoglutarate in a reaction catalysed by ferredoxin-specific glutamate synthase using H2O as the ultimate electron donor. The lag phase was attributed to the establishment of a steady-state pool of glutamine. L-Malate did not affect the activity of the reconstituted system.  相似文献   

16.
Effects of glyoxylate on photosynthesis by intact chloroplasts   总被引:6,自引:4,他引:2       下载免费PDF全文
Because glyoxylate inhibits CO2 fixation by intact chloroplasts and purified ribulose bisphosphate carboxylase/oxygenase, glyoxylate might be expected to exert some regulatory effect on photosynthesis. However, ribulose bisphosphate carboxylase activity and activation in intact chloroplasts from Spinacia oleracea L. leaves were not substantially inhibited by 10 millimolar glyoxylate. In the light, the ribulose bisphosphate pool decreased to half when 10 millimolar glyoxylate was present, whereas this pool doubled in the control. When 10 millimolar glyoxylate or formate was present during photosynthesis, the fructose bisphosphate pool in the chloroplasts doubled. Thus, glyoxylate appeared to inhibit the regeneration of ribulose bisphosphate, but not its utilization.

The fixation of CO2 by intact chloroplasts was inhibited by salts of several weak acids, and the inhibition was more severe at pH 6.0 than at pH 8.0. At pH 6.0, glyoxylate inhibited CO2 fixation by 50% at 50 micromolar, and glycolate caused 50% inhibition at 150 micromolar. This inhibition of CO2 fixation seems to be a general effect of salts of weak acids.

Radioactive glyoxylate was reduced to glycolate by chloroplasts more rapidly in the light than in the dark. Glyoxylate reductase (NADP+) from intact chloroplast preparations had an apparent Km (glyoxylate) of 140 micromolar and a Vmax of 3 micromoles per minute per milligram chlorophyll.

  相似文献   

17.
Intact chloroplasts were obtained from mesophyll protoplasts isolated from Mesembryanthemum crystallinum in the C3 or Crassulacean acid metabolism (CAM) photosynthetic mode, and examined for the influence of inorganic phosphate (Pi) on aspects of bicarbonate-dependent O2 evolution and CO2 fixation. While the chloroplasts from both modes responded similarly to varying Pi, some features appear typical of chloroplasts from species capable of CAM, including a relatively high capacity for photosynthesis in the absence of Pi, a short induction period, and resistance to inhibition of photosynthesis by high levels of Pi. In the absence of Pi the chloroplasts retained 75–85% of the 14CO2 fixed and the total export of dihydroxyacetone phosphate was low compared with the rate of photosynthesis. In CAM plants the ability to conduct photosynthesis and retain most of the fixed carbon in the chloroplasts at low external Pi concentrations may enable storage of carbohydrates which are essential for providing a carbon source for the nocturnal synthesis of malic acid. At high external Pi concentrations (e.g. 10 25 mM), the amount of total dihydroxyacetone phosphate exported to the assay medium relative to the rate of photosynthesis was high while the products of 14CO2 fixation were largely retained in the chloroplasts which indicates starch degradation is occurring at high Pi levels. Starch degradation normally occurs in CAM plants in the dark; high levels of Pi may induce starch degradation in the light which has the effect of limiting export of the immediate products of photosynthesis and thus the degree of Pi inhibition of photosynthesis with the isolated chloroplast.  相似文献   

18.
Klein U  Chen C  Gibbs M 《Plant physiology》1983,72(2):488-491
Chloroplasts isolated from synchronous cultures of the unicellular green alga Chlamydomonas reinhardii, SAG 11-32/b (−), fix CO2 at rates between 25 and 50 micromoles per milligram chlorophyll per hour. The upper value is approximately half of the rate of the intact cell.

During storage in the dark on ice, the chloroplast preparation loses 30 to 50% of its CO2 fixing capability per hour. Under reducing conditions (+ 1 millimolar dithiothreitol), this loss of activity is about twice as fast. The same reducing conditions stimulate CO2 fixation in the light.

High concentrations of inorganic phosphate (>2 millimolar) inhibit CO2 fixation. This inhibition is overcome by the addition of glycerate 3-phosphate. It is concluded that chloroplasts from C. reinhardii possess a higher plant type phosphate translocator. With respect to dependency upon light intensity, pH and Mg2+ concentration, the results were similar to that reported for chloroplasts from higher plants. However, in contrast to higher plant chloroplasts, maximum CO2 fixation is observed at the relatively low osmotic concentration of 0.12 molar mannitol in the reaction buffer.

  相似文献   

19.
Portis AR 《Plant physiology》1982,70(2):393-396
The effect of external inorganic phosphate (Pi) on starch synthesis in isolated spinach (Spinacia oleracea American Hybrid No. 424) chloroplasts in the presence of millimolar concentrations of 3-phosphoglycerate (PGA) and/or dihydroxyacetone phosphate (DAP) was examined. Whereas CO2 fixation was relatively constant as the ratio of the external phosphate to the PGA + DAP varied from 1:3 to 3:1, starch synthesis varied from 17% to 2% of the CO2 fixation rate. With DAP alone, maximal starch synthesis was about 10% of the CO2 fixation rate. The data demonstrate that the Pi/(PGA + DAP) ratio in the cytoplasm of plant cells could serve to regulate the flow of newly fixed carbon into starch without alterations in the rate of CO2 fixation.  相似文献   

20.
In isolated intact chloroplasts, maximal rates of photosynthetic O2 evolution (in saturating HCO?3) are associated with a critical transthylakoid proton gradient as a result of the stoichiometric consumption of 2 mol NADPH and 3 mol ATP/mol CO2 fixed. Studies with the fluorescent probe 9-aminoacridine reveal that in the illuminated steady state the critical ΔpH is 3.9.CO2-dependent O2 evolution is inhibited by increases of 0.1–0.2 in ΔpH that occur when catalase is omitted from the medium, NO?2 is included as an electron acceptor, or when chloroplasts are illuminated under low partial pressures of O2. Low concentrations of antimycin (0.33 μM) or NH4Cl (0.33 mM) decrease ΔpH and relieve this inhibition of electron flow. The energy transfer inhibitor quercetin lowers the high ATP/ADP ratio associated with these conditions, but does not lower ΔpH or relieve the inhibition.A decrease of ΔpH below 3.9 by weaker illumination, millimolar levels of NH4Cl or micromolar levels of antimycin, results in lower rates of photosynthesis owing to limitation by the phosphorylation rate.These findings show that in absence of rate limitation by the carbon cycle, the extent of thylakoid energization is related to the ratio of ATP to NADPH production and in turn, the rate of CO2 assimilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号