首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Steroid sulfatase, a membrane-bound enzyme present in many mammalian tissues, was extracted from rat liver microsomes by treatment with Miranol H2M, a zwitterion detergent, and sonication. It has been purified approximately 33-fold. All steps of the purification, which included salt and solvent fractionation, hydroxylapatite treatment, ion-exchange chromatography, and gel filtration were performed in the presence of Miranol H2M, most of which was removed from the final preparation by gel filtration. The final preparation did not contain any detectable NADPH-cytochrome c reductase or glucose-6-phosphate phophatase activities. According to the elution volume on a Sephadex G-200 column, steroid sulfatase has a molecular weight of approximately 130,000. Polyacrylamide-gel electrophoresis in the presence of Miranol H2M revealed one major protein band which was enzymatically active. Purified steroid sulfatase hydrolyzes all the sulfate esters of estrone, dehydroepiandrosterone, pregnenolone, testosterone, and cholesterol as well as p-nitrophenyl sulfate, the substrate for arylsulfatase C, during the purification. However, estrone sulfatase and arylsulfatase C activities were enriched more than the others. Analysis of kinetic data and the effects of different buffers and of Miranol H2M also suggested that estrone sulfatase and arylsulfatase C are identical but that they are distinct from the other sulfatases. Competitive inhibition studies suggest that estrone sulfatase also catalyzes the hydrolysis of the sulfate esters of other estrogens.  相似文献   

2.
L-Tyrosine O-sulfate was hydrolyzed by pure human arylsulfatase A (arylsufate sulfohydrolase, EC 3.1.6.1). The rate of hydrolysis was 1/20 of the rate with nitrocatechol sulfate, but was comparable to the rate with cerebroside sulfate. The reaction was optimal at pH 5.3--5.5 and displayed zero order kinetics with time and enzyme concentration. The Km was about 35 mM. The enzyme showed no stereospecificity and hydrolyzed D-tyrosine O-sulfate with Km and V similar to those for the L-isomer. Arylsulfatase B was less than 5% as effective as arylsulfatase A in catalyzing the hydrolysis of the tyrosine sulfates. The daily urinary excretion of tyrosine sulfate by a patient with metachromatic leukodystrophy (arylsulfatase A deficiency) was comparable to the excretion by control subjects. The biological relevance of the tyrosine sulfatase activity of arylsulfatase A remains uncertain.  相似文献   

3.
The human sulfatase family has 17 members, 13 of which have been characterized biochemically. These enzymes specifically hydrolyze sulfate esters in glycosaminoglycans, sulfolipids, or steroid sulfates, thereby playing key roles in cellular degradation, cell signaling, and hormone regulation. The loss of sulfatase activity has been linked to severe pathophysiological conditions such as lysosomal storage disorders, developmental abnormalities, or cancer. A novel member of this family, arylsulfatase K (ARSK), was identified bioinformatically through its conserved sulfatase signature sequence directing posttranslational generation of the catalytic formylglycine residue in sulfatases. However, overall sequence identity of ARSK with other human sulfatases is low (18–22%). Here we demonstrate that ARSK indeed shows desulfation activity toward arylsulfate pseudosubstrates. When expressed in human cells, ARSK was detected as a 68-kDa glycoprotein carrying at least four N-glycans of both the complex and high-mannose type. Purified ARSK turned over p-nitrocatechol and p-nitrophenyl sulfate. This activity was dependent on cysteine 80, which was verified to undergo conversion to formylglycine. Kinetic parameters were similar to those of several lysosomal sulfatases involved in degradation of sulfated glycosaminoglycans. An acidic pH optimum (∼4.6) and colocalization with LAMP1 verified lysosomal functioning of ARSK. Further, it carries mannose 6-phosphate, indicating lysosomal sorting via mannose 6-phosphate receptors. ARSK mRNA expression was found in all tissues tested, suggesting a ubiquitous physiological substrate and a so far non-classified lysosomal storage disorder in the case of ARSK deficiency, as shown before for all other lysosomal sulfatases.  相似文献   

4.
Our hypothesis is that the steroid sulfatase gene (Sts) may indirectly contribute to the modulation of blood pressure (BP) in rats with genetic hypertension. The steroid sulfatase enzyme (STS) catalyzes the conversion of estrone sulfate, dehydroepiandrosterone sulfate, cholesterol sulfate and glucocorticoid sulfates to their active nonconjugated forms. This causes the elevation of biologically active steroids, such as glucocorticoids, mineralcorticoids as well as testosterone, which may lead to increased BP. The main objective was to examine the effects of a steroid sulfatase inhibitor on blood pressure and steroid levels in rats with hypertensive genetic backgrounds. Three treatment groups, 5-15 weeks of age were used: controls, estrone and STS inhibitor (estrone-3-O-sulfamate), (n=8 per group). BP was taken weekly by tail cuff, and serum testosterone (T), estrogens (E), and plasma corticosterone (C) levels were measured by radioimmunoassay. BP was significantly reduced by the STS inhibitor in the strains with genetically elevated BP. Also the inhibitor alone significantly reduced plasma corticosterone in all strains compared to estrone treatment with a concomitant as well as significant rise in estrogens and reduction in testosterone and body weight.  相似文献   

5.
Rabbit liver aryl sulfatase A (aryl-sulfate sulfohydrolase, EC 3.1.6.1) is a glycoprotein containing 4.6% carbohydrate in the form of 25 residues of mannose, seven residues of N-acetylglucosamine, and three residues of sialic acid per enzyme monomer of molecular weight 140 000. Each monomer consists of two equivalent polypeptide chains. The protein has a relatively high content of proline, glycine and leucine, and the amino acid composition of rabbit liver aryl sulfatase A is similar to that of other known liver sulfatases. Rabbit liver aryl sulfatase A catalyzes the hydrolysis of a wide variety of sulfate esters, although it appears possible that cerebroside sulfate is a physiological substrate for the enzyme because the Km is very low (0.06 mM). The turnover rate for hydrolysis of nitrocatechol sulfate or related synthetic substrates is much higher than the rate with most naturally occurring sulfate esters such as cereroside sulfate, steroid sulfates, L-tyrosine sulfate or glucose 6-sulfate. However, the turnover rate with ascorbate 2-sulfate is comparable to the rates measured using most synthetic substrates. These results are discussed in relationship to several previously described sulfatase enzymes which were claimed to have unique specificities.  相似文献   

6.
The metabolism of estrone sulfate and dehydroisoandrosterone sulfate to the free, unconjugated steroids, estrone and dehydroisoandrosterone, was demonstrated in more than thirty different tissues from male and female BALB/c mice. The activity of steroid sulfatase, when expressed per mg tissue, was greatest in both the pituitary gland and the adrenal glands. The pituitary gland, however, had the lowest capacity for hydrolysis of steroid sulfates while the liver had the greatest capacity. 17 beta-Hydroxysteroid oxidoreductase activity also was demonstrated in all mouse tissues by the formation of estradiol-17 beta when using estrone sulfate as the substrate. The highest apparent activity for 17 beta-hydroxysteroid oxidoreductase was found in lung tissue, and the greatest capacity to form estradiol-17 beta from estrone sulfate was found in liver, lungs, kidneys and testes. This study demonstrates that the majority of mouse tissues have steroid sulfatase and 17 beta-hydroxysteroid oxidoreductase activities.  相似文献   

7.
Subcellular fractions of purified pig Leydig cells from 7 different animals have been investigated with respect to their abilities to catalyze the sulfation of several steroids and the hydrolysis of the sulfated forms of these same steroids. Considerable estrone sulfate sulfohydrolase of pH optimum 7.5 and high apparent Km was found to be concentrated in the 105,000 g pellet but no evidence was obtained, in any subcellular fraction, for the presence of any activity toward the 3-sulfate of pregnenolone, dehydroepiandrosterone (DHA) or delta 5-androstene-3 beta,17 beta-diol (androstenediol). Cytosolic sulfotransferase activity toward estrone, pregnenolone, DHA and androstenediol was present in each animal. The activity toward these 4 substrates was eluted from a gel filtration column as a single peak of apparent molecular weight 43 KDa. Upon chromatofocusing, a sharp estrogen sulfotransferase peak of apparent pI 6.1 and pH optimum 9.5, was clearly separated from the neutral steroid sulfotransferase which eluted over a more acidic pH range in a manner suggestive of the presence of several isozymes. This latter, which exhibited a wide pH optimum range between 6 and 8.5, was most active toward androstenediol, and least active toward pregnenolone. The estrogen sulfotransferase exhibited Michaelis-Menten kinetics (apparent Km = 4 microM). The neutral steroid sulfotransferase activity increased in velocity with increasing androstenediol or DHA concentration up to 1 microM beyond which considerable substrate inhibition occurred. It appears from these data that neutral steroid sulfates synthesized in the pig Leydig cell are not subject to enzymic desulfation in the same cells.  相似文献   

8.
Abstract— A comprehensive study has been undertaken on the subcellular and subsynaptosomal distribution of a number of markers for subcellular organelles in preparations from rat brain. Although the activity of most enzymatic markers was decreased by freezing and storage at - 70oC, no significant changes were noted in the distribution of these activities. This demonstrates that contamination of brain fractions by subcellular organelles can be accurately assessed after freezing and thawing. A marked discrepancy was noted between the distribution of three putative markers for endoplasmic reticulum. CDP-choline-diacylglycerol cholinephosphotransferase (EC 2.7.8.1) activity was mainly limited to the microsomal fraction and was present to a lesser extent in the synaptosomal fraction than the other putative markers for endoplasmic reticulum. Estrone sulfate sulfohydrolase (EC 3.1.6.2) activity demonstrated a bimodal distribution between the crude nuclear and microsomal fractions. However, considerable activity was associated with the synaptosomal fraction. NADPH-cytochrome c reductase (EC 2.3.1.15) activity sedimented in the microsomal and the synaptosomal fractions. Calculations based on the relative specific activities of the microsomal and synaptic plasma membrane fraction indicated that the contamination of the synaptic plasma membranes by endoplasmic reticulum was 44.5% (NADPH-cytochrome c reductase), 38.0% (estrone sulfatase) and 9.0% (cholinephosphotransferase). Since it is believed that virtually all of the synthesis of phosphatidylcholine by cholinephosphotransferase occurs in the neuronal and glial cell bodies, it was concluded that cholinephosphotransferase is a satisfactory marker for the endoplasmic reticulum derived from these sources. The results suggest that NADPH-cytochrome c reductase and estrone sulfatase may be present in the smooth endoplasmic reticulum system responsible for the fast transport of macromolecules along the axon to the nerve endings as well as in the endoplasmic reticulum of the cell bodies. The possible relation between that portion of the smooth endoplasmic reticulum involved in fast axonal transport and the GERL (Golgi, Endoplasmic Reticulum, Lysosomes) complex discovered by Novikoff and his coworkers (Novikoff , 1976) is discussed.  相似文献   

9.
Sulfatases are enzymes that hydrolyse a diverse range of sulfate esters. Deficiency of lysosomal sulfatases leads to human diseases characterized by the accumulation of either GAGs (glycosaminoglycans) or sulfolipids. The catalytic activity of sulfatases resides in a unique formylglycine residue in their active site generated by the post-translational modification of a highly conserved cysteine residue. This modification is performed by SUMF1 (sulfatase-modifying factor 1), which is an essential factor for sulfatase activities. Mutations in the SUMF1 gene cause MSD (multiple sulfatase deficiency), an autosomal recessive disease in which the activities of all sulfatases are profoundly reduced. In previous studies, we have shown that SUMF1 has an enhancing effect on sulfatase activity when co-expressed with sulfatase genes in COS-7 cells. In the present study, we demonstrate that SUMF1 displays an enhancing effect on sulfatases activity when co-delivered with a sulfatase cDNA via AAV (adeno-associated virus) and LV (lentivirus) vectors in cells from individuals affected by five different diseases owing to sulfatase deficiencies or from murine models of the same diseases [i.e. MLD (metachromatic leukodystrophy), CDPX (X-linked dominant chondrodysplasia punctata) and MPS (mucopolysaccharidosis) II, IIIA and VI]. The SUMF1-enhancing effect on sulfatase activity resulted in an improved clearance of the intracellular GAG or sulfolipid accumulation. Moreover, we demonstrate that the SUMF1-enhancing effect is also present in vivo after AAV-mediated delivery of the sulfamidase gene to the muscle of MPSIIIA mice, resulting in a more efficient rescue of the phenotype. These results indicate that co-delivery of SUMF1 may enhance the efficacy of gene therapy in several sulfatase deficiencies.  相似文献   

10.
Estrone and dehydroepiandrosterone (DHEA) sulfatases were studied in livers of normal and cirrhotic men. Their Km were 3.2μM and 1.2μM respectively. The musomal sulfatases were solubilized by Miranol H2M and ultrasound. After gel filtration, the soluble material gave a single peak of activity for both substrates with a molecular weight of approximately 330,000. In terms of pmol of product.min?1 per mg of fresh tissue, the mean (±SD) values of estrone and DHEA sulfatase activities were lower in cirrhotic livers [(n=7) (4.09±2.90 and 0.38±0.20)] than in normal livers [(n=13)(8.29±4.00 and 0.69±0.20)]. The differences were statistically significant: p<0.03 for estrone sulfatase and p<0.01 for DHEA sulfatase. In cirrhotic men, the mean level of plasma estrone is increased whereas that of estrone sulfate is decreased. The variations may be related to the decrease of serum albumin in cirrhotic subjects.  相似文献   

11.
Aryl sulfamates were originally developed as inhibitors of steroid sulfatase, and have recently been shown to be powerful inactivators of a bacterial sulfatase, PaAtsA from Pseudomonas aeruginosa. We demonstrate that a simple aryl sulfamate, 3-nitrophenyl sulfamate, can inactivate sulfatases from various sources including snail, limpet and abalone. In each case inactivation was time-dependent and active-site directed, as demonstrated by protection against inactivation by substrate. These results suggest that such easily acquired aryl sulfamates can be used as reliable biochemical reagents for the study of sulfatases from a diverse array of sources.  相似文献   

12.
Carbonic anhydrases (CA) catalyze activated ester hydrolysis in addition to the hydration of CO2 to bicarbonate. They also show phosphatase activity with 4-nitrophenyl phosphate as substrate but not sulfatase with the corresponding sulfate. Here we prove that the enzyme is catalyzing the synthesis of cyclic diols from sulfate esters. 5-, 6- and 8-membered ring cyclic sulfates incorporating a neighboring secondary alcohol moiety were treated with CA II and yielded the corresponding cyclic diols. Inhibitory properties of obtained cyclic and original sulfate esters were then investigated on human carbonic anhydrase I (hCA I), hCA II, hCA IV and hCA VI (h?=?human isoform). KI-s of these compounds ranged between 32.7–423 μM against hCA I, 2.13–32.4 μM against hCA II, 13.7–234 μM against hCA IV and 76–278 μM against CA VI, respectively. The sulfatase activity of CA with such esters is amazing considering the fact that 4-nitrophenyl-sulfate is not a substrate of these enzymes.  相似文献   

13.
Steroid sulfatase is a membrane-bound microsomal enzyme, present in various tissues. In this report, data on sulfatase activity in peripheral blood leukocytes isolated from normal women and the characterization of its enzyme are studied. In addition, sulfatase activities in placental sulfatase deficiency (PSD) and ichthyosis patients including ichthyosis vulgaris (IV) and recessive X-linked ichthyosis (RXLI) were analysed and were compared with normal subjects. Steroid sulfatase activity was measured by using tritium labeled steroid sulfate as the reaction substrate. It is demonstrated that human leukocytes contain a sulfatase activity for pregnenolone sulfate (P5-S), dehydroepiandrosterone sulfate (DHA-S) and estrone sulfate (E1-S) respectively. This enzyme has a greatest affinity for P5-S, but the activity for E1-S was the highest among the three substrates. The steroid sulfatase activity in female leukocytes is significantly stronger than that in normal males (p less than 0.001) as determined by the cleavage of DHA-S. Sulfatase in leukocytes obtained from the PSD babies and RXLI patients had lower sensitivity. In the case of the mother affected with PSD, the activity was less than half of that in normal men (p less than 0.001) and the levels did not overlap with that in normal women. In patients with IV, the activities were in the normal ranges for both males and females. The measurement of leukocyte sulfatase activity would be a clinically useful tool for the diagnosis of PSD carriers and pedigree analysis.  相似文献   

14.
Aryl sulfatase A (aryl sulfate sulfohydrolase EC 3.1.6.1) has been purified > 10,000-fold from rabbit liver; by disc gel electrophoresis the enzyme appears homogeneous. Various properties of the enzyme have been determined and comparisons are made with other aryl sulfatases. Sodium dodecyl sulfate gel electrophoresis indicates that the enzyme is made up of monomers of molecular weight ~ 70,000. At pH 7.4 the enzyme exists as a dimer whereas a tetrameric form predominates at pH 4.8.The enzyme exhibits the anomalous kinetics often observed with aryl sulfatase A from mammalian tissues (the enzyme is modified to an inactive form while degrading substrate and the inactive form can be reactivated by sulfate ion). The enzyme activity has been studied under a variety of reaction conditions. Two pH optima are observed and neither enzyme concentration or changes in ionic strength appear to have an effect on the relative magnitudes of the optima. Aryl sulfatase A is competitively inhibited by potassium sulfate, potassium phosphate, and sodium sulfite (Ki = 2.9 × 10?3 M, 3.4 × 10?5 M, and 1.1 × 10?6 M, respectively). Kinetic constants for some substituted phenyl sulfate esters have been determined. The variation in V is not consistent with a reaction mechanism involving a rate-limiting breakdown of a common intermediate.The inactive (modified) form of the enzyme has been isolated from reaction mixtures containing aryl sulfatase A and substrate. A procedure is presented for determining the relative amount of modified and native enzyme in these preparations. In the presence of substrate, sulfate displaces the equilibrium between native and modified enzyme in favor of native enzyme. In the absence of substrate neither sulfate or phosphate have an effect on the equilibrium. A study is made of the temperature dependence of the process in which the modified enzyme is converted back to native enzyme. The relatively small entropy of activation for the conversion of the modified to the native form (ΔS3 = ?8 cal/mole deg) does not seem to be consistent with a major modification of protein conformation.  相似文献   

15.
Substituted quinoline-2,4-dicarboxylates (QDCs) are conformationally-restricted mimics of glutamate that were previously reported to selectively block the glutamate vesicular transporters (VGLUTs). We find that expanding the QDC scaffold to benzoquinoline dicarboxylic acids (BQDC) and naphthoquinoline dicarboxylic acids (NQDCs) improves inhibitory activity with the NQDCs showing IC50  70 μM. Modeling overlay studies showed that the polycyclic QDCs resembled steroid structures and led to the identification and testing of estrone sulfate, pregnenolone sulfate and pregnanolone sulfate that blocked the uptake of l-Glu by 50%, 70% and 85% of control, respectively. Pregnanolone sulfate was further characterized by kinetic pharmacological determinations that demonstrated competitive inhibition and a Ki of ≈20 μM.  相似文献   

16.
In postmenopausal breast cancer tissue, steroid sulfatase (STS) activity is high and much estrone sulfate also exists; these facts reveal that estrone sulfate may be involved in the growth of breast cancer as an estrogen source. Steroid sulfatase is an enzyme, which catalyzes hydrolysis from estrone sulfate to estrone, and the development of steroid sulfatase inhibitors is expected as novel therapeutic drugs for postmenopausal breast cancer. We have developed a novel compound 2',4'-dicyanobiphenyl-4-O-sulfamate (TZS-8478), which has potent steroid sulfatase-inhibitory activity and exhibits no estrogenicity in vitro and in vivo. To elucidate its usefulness as a therapeutic drug for postmenopausal breast cancer, we examined the breast cancer cell proliferation- and breast tumor growth-inhibitory activity of TZS-8478 in postmenopausal breast cancer model rats. TZS-8478 dose-dependently suppressed the estrone sulfate-stimulated proliferation of MCF-7 cells. Regarding nitrosomethylurea (NMU)-induced postmenopausal breast cancer models, furthermore, TZS-8478 (0.5 mg/kg per day) markedly inhibited the estrone sulfate-stimulated growth of breast tumors similarly to estrone sulfate-depletion. TZS-8478 completely inhibited steroid sulfatase activity in tumor, uterus and liver, and also markedly lowered plasma concentrations of estrone and estradiol. The above mentioned results suggested that TZS-8478 may be useful as a therapeutic drug for estrogen-dependent postmenopausal breast cancer.  相似文献   

17.
Two estrogen sulfatases, arylsulfatase C-estrone sulfatase (ASC-ES) and d-equilenin sulfatase (EqS) were demonstrated histochemically in the normal human female breast, in benign breast diseases and in infiltrating mammary ductal carcinomas to study their significance in the pathogenesis of epithelial proliferations. By hydrolyzing estrone sulfate, the amount of which in female blood is about ten times greater than that of estradiol or estrone, estrogen sulfatases can produce a high local concentration of estrogens. A simultaneous azo-coupling method for histochemical demonstration of ASC-ES is described in the present study; EqS was demonstrated by a previously described method. Estrogen sulfatases were not found in the normal female breast. Both estrogen sulfatases were found in epithelial cells in some examples of mastopathic disease and in fibroadenomas, while ASC-ES was found in periductal fibroblasts. In some cases of infiltrating ductal carcinomas, estrogen sulfatases were present in carcinoma cells. In most of these tumors ASC-ES activity was observed in fibroblasts around infiltrative cell cords. There was no correlation between the presence of estrogen sulfatases and of hormone receptors in carcinomas. It is concluded that estrogen sulfatases play no role in the early stages of benign or malignant epithelial proliferations. However, the induction of estrogen sulfatases may promote epithelial proliferation in some cases if estrogen receptors are present in epithelial cells.  相似文献   

18.
An aryl sulfatase of unusual specificity has been isolated from the liver of marine mollusk Littorina kurila. It hydrolyzes p-nitrophenyl sulfate, does not affect the natural fucoidan, and catalyzes splitting off the sulfate group in position C4 of xylose residues within the carbohydrate chains of holostane triterpene glycosides from sea cucumbers. The properties of the enzyme were studied at pH 5.4. The protein is homogeneous according to electrophoresis and has M 45 ± 1 kDa. The semiinactivation time of the enzyme at 60°C is 20 min, and its K m value for the hydrolysis of p-nitrophenyl sulfate is 8.7 ± 1 mM. It was shown that natural sulfated polyhydroxysteroids inhibit activity of the sulfatase; their I 50 values depend on their structures and are within the range from 10?3 to 10?5 M.  相似文献   

19.
Characteristics and activities of estrone sulfate (E1S) and dehydroepiandrosterone sulfate (DHAS) sulfatases were studied in epithelium and stroma of benign hyperplastic tissues from human prostates. Tissues were obtained by suprapubic prostatectomy, and epithelium and stroma were separated mechanically by standard techniques. The assay procedure comprised homogenization in Tris-buffer, incubation of the homogenate with [3H]E1S or [3H]DHAS, separation of free steroids from nonhydrolyzed steroid sulfates by extraction with ether, and their final quantification by LSC. The main results were: (1) The pH-optimum of the sulfatase was found at pH 7.0. (2) The highest specific sulfatase activity was found in the epithelium and was associated with its nuclear fraction. (3) Michaelis-Menten constants Km (microM) were 8.7 +/- 1.4 (7) and 4.3 +/- 0.8 (5), maximum velocity rates Vmax (nmol/h x mgDNA) were 47.4 +/- 8.8 (7) and 8.4 +/- 1.5 (5) for E1S and DHAS, respectively (means +/- SEM (n]. (4) The enzymatic cleavage of E1-sulfate was competitively inhibited by DHA-sulfate and vice versa with inhibition constants Ki (microM) of 4.0 +/- 0.5 (2) for E1S and 2.7 +/- 0.4 (2) for DHAS. On the basis of these findings, possible roles of steroid sulfate-sulfatases in forming precursors of active androgens and estrogens from the high amounts of E1S and DHAS in blood are discussed.  相似文献   

20.
Steroids are primarily present in human fluids in their sulfated forms. Profiling of these compounds is important from both diagnostic and physiological points of view. Here, we present a novel method for the quantification of 11 intact steroid sulfates in human serum by LC-MS/MS. The compounds analyzed in our method, some of which are quantified for the first time in blood, include cholesterol sulfate, pregnenolone sulfate, 17-hydroxy-pregnenolone sulfate, 16-α-hydroxy-dehydroepiandrosterone sulfate, dehydroepiandrosterone sulfate, androstenediol sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and dihydrotestosterone sulfate. The assay was conceived to quantify sulfated steroids in a broad range of concentrations, requiring only 300 μl of serum. The method has been validated and its performance was studied at three quality controls, selected for each compound according to its physiological concentration. The assay showed good linearity (R2 > 0.99) and recovery for all the compounds, with limits of quantification ranging between 1 and 80 ng/ml. Averaged intra-day and between-day precisions (coefficient of variation) and accuracies (relative errors) were below 10%. The method has been successfully applied to study the sulfated steroidome in diseases such as steroid sulfatase deficiency, proving its diagnostic value. This is, to our best knowledge, the most comprehensive method available for the quantification of sulfated steroids in human blood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号