首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of thermogenic activity and uncoupling protein1 (UCP1) expression in brown adipose tissue (BAT) were studied in euthermic Daurian ground squirrel after acute and chronic cold exposure at 4 degrees C. The UCP1 concentration was indirectly determined by titration with its specific ligand [3H]-labeled GTP, and Ucp1 mRNA was detected by using a [32P]-labeled antisense oligonucleotide probe. Both acute and chronic cold exposure stimulated up-regulation of Ucp1 mRNA. Although UCP1 concentration is not significantly increased after 24 h of cold exposure, it is markedly elevated by 75% in squirrels after 4-week cold adaptation compared with controls raised at 22 degrees C. Changes in T4 5'-deiodinase activity were closely associated with variations of Ucp1 mRNA level. Ucp1 gene expression is significantly affected by cold exposure in BAT from euthermic Daurian ground squirrels. In addition, the activation of T4 5'-deiodinase may be an important regulatory factor in cold-induced Ucp1 expression.  相似文献   

2.
The mRNA level of uncoupling protein (UCP) specific for brown adipose tissue (BAT) in Daurian ground squirrel, was detected by using a [32P]-labeled oligonucleotide probe. The UCP concentration in mitochondria was indirectly determined by titration with its specific ligand [3H]-labeled GTP. Type II T4 5′-deiodinase of BAT was assayed concomitantly. We found two species of mRNA for UCP with lengths of about 1.9 and 1.5 kb, respectively, both occurring in almost the same concentration. UCP mRNA content was elevated significantly during hibernation, but the UCP concentration did not change compared with that of nonhibernating controls kept at room temperature. When hibernating squirrels were aroused, the UCP mRNA remained at the elevated level as during hibernation, but the UCP concentration increased in comparison with that of nonhibernating controls or during hibernating. Changes in T4 5′-deiodinase activity in BAT were similar to the variations of the UCP mRNA level. These results suggest that the activation of T4 5′-deiodinase in BAT may be an important factor for the up-regulation and maintenance of UCP mRNA content needed for the synthesis of sufficient UCP to acquire the thermogenic capacity for arousal from hibernation.  相似文献   

3.
Uncoupling protein (UCP) 1 (UCP1) catalyzes a proton leak in brown adipose tissue (BAT) mitochondria that results in nonshivering thermogenesis (NST), but the extent to which UCP homologs mediate NST in other tissues is controversial. To clarify the role of UCP3 in mediating NST in a hibernating species, we measured Ucp3 expression in skeletal muscle of arctic ground squirrels in one of three activity states (not hibernating, not hibernating and fasted for 48 h, or hibernating) and housed at 5 degrees C or -10 degrees C. We then compared Ucp3 mRNA levels in skeletal muscle with Ucp1 mRNA and UCP1 protein levels in BAT in the same animals. Ucp1 mRNA and UCP1 protein levels were increased on cold exposure and decreased with fasting, with the highest UCP1 levels in thermogenic hibernators. In contrast, Ucp3 mRNA levels were not affected by temperature but were increased 10-fold during fasting and >3-fold during hibernation. UCP3 protein levels were increased nearly fivefold in skeletal muscle mitochondria isolated from fasted squirrels compared with nonhibernators, but proton leak kinetics in the presence of BSA were unchanged. Proton leak in BAT mitochondria also did not differ between fed and fasted animals but did show classical inhibition by the purine nucleotide GDP. Levels of nonesterified fatty acids were highest during hibernation, and tissue temperatures during hibernation were related to Ucp1, but not Ucp3, expression. Taken together, these results do not support a role for UCP3 as a physiologically relevant mediator of NST in muscle.  相似文献   

4.
The mRNA level of uncoupling protein (UCP) specific for brown adipose tissue (BAT) in Daurian ground squirrel, was detected by using a [32P]-labeled oligonucleotide probe. The UCP concentration in mitochondria was indirectly determined by titration with its specific ligand [H3]-labeled GTP. Type II T4 5'-deiodinase of BAT was assayed concomitantly. We found two species of mRNA for UCP with lengths of about 1.9 and 1.5 kb, respectively, both occurring in almost the same concentration. UCP mRNA content was elevated significantly during hibernation, but the UCP concentration did not change compared with that of nonhibernating controls kept at room temperature. When hibernating squirrels were aroused, the UCP mRNA remained at the elevated level as during hibernation, but the UCP concentration increased in comparison with that of nonhibernating controls or during hibernating. Changes in T4 5'-deiodinase activity in BAT were similar to the variations of the UCP mRNA level. These results suggest that the activation of T4 5'-deiodinase in BAT may be an important factor for the up-regulation and maintenance of UCP mRNA content needed for the synthesis of sufficient UCP to acquire the thermogenic capacity for arousal from hibernation.  相似文献   

5.
The thermogenic activity of brown adipose tissue (BAT) largely depends on the mitochondrial uncoupling protein 1 (UCP1), which is up-regulated by environmental alterations such as cold. Recently, CIDEA (cell death-inducing DNA fragmentation factor-α-like effector A) has also been shown to be expressed at high levels in the mitochondria of BAT. Here we examined the effect of cold on the mRNA and protein levels of CIDEA in interscapular BAT of conscious rats with regard to the sympathetic nervous system. Cold exposure (4 °C for 3 h) elevated the plasma norepinephrine level and increased norepinephrine turnover in BAT. Cold exposure resulted in down-regulation of the mRNA and protein levels of CIDEA in BAT, accompanied by up-regulation of mRNA and protein levels of UCP1. The cold exposure-induced changes of CIDEA and UCP1 were attenuated by intraperitoneal pretreatment with propranolol (a non-selective β-adrenoreceptor antagonist) (2 mg/animal) or SR59230A (a selective β3-adrenoreceptor antagonist) (2 mg/animal), respectively. These results suggest that acute cold exposure resulted in down-regulation of CIDEA in interscapular BAT by sympathetically activated β3-adrenoreceptor-mediated mechanisms in rats.  相似文献   

6.
The aim of the present study was to determine whether the antiobesity effects of tea catechins (TCs) are associated with the expression of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT). Male Sprague–Dawley rats were fed a high-fat (HF; 35% fat) diet for 5 weeks, then divided into four groups and fed an HF, HF with 0.5% TC (HFTC), normal-fat (NF; 5% fat) or NF with 0.5% TC (NFTC) diet for 8 weeks. At the end of the experimental period, perirenal and epididymal white adipose tissues (WATs) and interscapular BAT were isolated. The NFTC group had significantly lower perirenal WAT weights than the NF group (NF: 12.7±0.53 g; NFTC: 10.2±0.43 g; P<.01), but the HF and HFTC groups did not differ significantly. TC intake had no effects on epididymal WAT weights. The NFTC and HFTC groups had significantly lower BAT weights than the NF and HF groups, respectively. The NFTC group had significantly higher UCP1 mRNA levels in BAT than the NF group (NF: 0.35±0.02; NFTC: 0.60±0.11; P<.05), but the HF and HFTC groups did not differ significantly. Thus, TC intake in the context of the NF diet reduced perirenal WAT weight and up-regulated UCP1 mRNA expression in BAT. These results suggest that the suppressive effect of TC on body fat accumulation is associated with UCP1 expression in BAT.  相似文献   

7.
1. The fat mouse Steatomys pratensis natalensis (mean body mass 37.4±0.43 (se)) has a low euthermic body temperature Tb=30.1–33.8 °C and a low basal metabolic rate (BMR)=0.50 ml O2 g−1 h−1.
2. Below an ambient temperature (Ta)=15 °C, the mice were hypothermic.
3. The lowest survivable Ta=10 °C.
4. Torpor is efficient in conserving energy between Ta=15–30 °C, below Ta=15 °C, the mice arouse.
5. Euthermic and torpid mice were hyperthermic at Ta=35 °C.
6. Thermal conductance was 0.159 ml O2 g−1 h−1 °C−1, 98.8% of the expected value.
7. Non-shivering thermogenesis (NST) was 2.196 ml O2 g−1 h−1 (3.69×BMR).
8. Maximal oxygen consumption, however, was 3.83 ml O2 g−1 h−1 (6.44×BMR), indicating that other methods of heat production are additive.
9. Because fat mice conserve energy by torpor only between Ta=15–30 °C, we suggest that torpor may be a more important mechanism for surviving food shortages than for surviving cold weather.
Keywords: Steatomys pratensis natalensis; Metabolism; Torpor; Fat mouse  相似文献   

8.
Suzuki D  Murata Y  Oda S 《Zoological science》2006,23(11):1009-1015
The house musk shrew (Suncus murinus), or suncus, is a unique experimental animal. We recently showed that this mammal is cold intolerant and hypothesized that its sensitivity to cold is caused by low thermogenic activity in brown adipose tissue (BAT). Thermogenesis in BAT is performed by a unique mitochondrial protein, uncoupling protein 1 (UCP1). Interestingly, only eutherians possess UCP1, and some traits in the suncus resemble those in the Ucp1-ablated mouse, including cold intolerance, histology of BAT, and obesity resistance. In a previous study, we hypothesized that UCP1 may not be present in BAT of the suncus or may be dysfunctional. Therefore, we performed cDNA cloning of suncus Ucp1 and compared it to homologs from other species. The deduced amino acid sequence showed high similarity to other mammalian UCP1. Northern blot analysis revealed mRNA in BAT, as in other mammals. However, a difference in an amino acid residue was observed in an important residue for thermogenesis. Genomic sequence analysis showed that this difference existed in our two genetically distant laboratory colonies. These results suggest that cold intolerance in the suncus is derived from low thermogenic activity of UCP1 and may exist in wild house musk shrews.  相似文献   

9.
Thyroid hormone (T3) has been demonstrated to inhibit the action of aldosterone on sodium transport in toad urinary bladder and rat kidney. We have exammined the effect of T3 on aldosterone action and specific nuclear binding in cultured epithelial cells derived from toad urinary bladder. In cell line TB6-C, addition of 5·10−8 M T3 to culture media for up to 3 days results in no change in short-circuit current or transepithelial resistance. This concentration of T3 completely inhibits the maximal increase in short-circuit current in response to 1·10−7 M aldosterone. The inhibition can be demonstrated with 18 h preincubation or with simultaneous addition of T3 and aldosterone. The half-maximal concentration for the inhibition of the aldosterone effect is approx. 5·10−9 M T3. T3 has no effect on cyclic AMP-stimulated short-circuit current in these cells. The effect of T3 on nuclear binding of [3H]aldosterone was examined using a filtration assay with data analysis by at least-squares curve-fitting program. Best fit was obtained with a model for two binding sites. The dissociation constants for the binding were Kd1 = (0.82 ± 0.36)·10−10 M and Kd2 = (3.2±0.60)·10−8 M.The half-maximal concentration for aldosterone-stimulated sodium transport in these cells is approx. 1·10−8 M. Analysis of nuclear aldosterone binding in cells preincubated for 18 h with 5·10−8 M T3 showed a Kd1 = (0.15 ± 0.10)·10−10 M and Kd2 = (3.5 ± 0.10)·10−8 M. We conclude that T3 i action of aldosterone on sodium transport at a site after receptor binding in the nucleus.  相似文献   

10.
The house musk shrew (Suncus murinus), or so-called suncus, is a cold-intolerant mammal, but it is unclear why it is susceptible to low temperatures. Cold-intolerance may be the result of lower thermogenic activity in brown adipose tissue (BAT). The early phase of severe cold exposure is a critical period for suncus. Therefore, we exposed suncus to mildly cold temperatures (10-12 degrees C) for 1 to 48 h to increase non-shivering thermogenesis without causing stress and measured changes in the expression of uncoupling protein 1 (Ucp1), type II iodothyronine 5'-deiodinase (Dio2=D2), and glucose transporter 4 (Slc2a4=Glut4) in BAT. These mRNAs play a major role in non-shivering thermogenesis and are mainly regulated by the sympathetic nervous system via direct beta-noradrenergic innervation of BAT. During cold exposure, Ucp1 expression in BAT increased steadily over time, albeit only slightly. Neither D2 nor Glut4 expression in BAT increased immediately; however, they had increased significantly after 24 h and 48 h of cold exposure. These findings suggest that the responsiveness of mRNA regulation is weak and thus may be involved in cold-intolerance in suncus.  相似文献   

11.
Uncoupling protein 1 (UCP1) mediated nonshivering thermogenesis (NST) in brown adipose tissue (BAT) is an important avenue of thermoregulatory heat production in many mammalian species. Until recently, UCP1 was thought to occur exclusively in eutherians. In the light of the recent finding that UCP1 is already present in fish, it is of interest to investigate when UCP1 gained a thermogenic function in the vertebrate lineage. We elucidated the basis of NST in the rock elephant shrew, Elephantulus myurus (Afrotheria: Macroscelidea). We sequenced Ucp1 and detected Ucp1 mRNA and protein restricted to brown fat deposits. We found that cytochrome c oxidase activity was highest in these deposits when compared with liver and skeletal muscle. Consistent with a thermogenic function of UCP1 isolated BAT mitochondria showed increased state 4 respiration in the cold, as well as palmitate-induced, GDP-sensitive proton conductance, which was absent in liver mitochondria. On the whole animal level, evidence of thermogenic function was further corroborated by an increased metabolic response to norepinephrine (NE) injection. Cold acclimation (18 degrees C) led to an increased basal metabolic rate relative to warm acclimation (28 degrees C) in E. myurus, but there was no evidence of additional recruitment of NE-induced NST capacity in response to cold acclimation. In summary, we showed that BAT and functional UCP1 are already present in a member of the Afrotheria, but the seasonal regulation and adaptive value of NST in Afrotherians remain to be elucidated.  相似文献   

12.
Brandt's voles (Lasiopodomys brandti) exposed to cold (5±1 °C) or warm (23±1 °C) showed some physiological and biochemical variations which might be important in adaptation to their environments. Cold acclimation induced increases in resting metabolic rate (RMR) and the serum triiodothyronine (T3) level, the state-4 respiration of liver and muscle mitochondria were activated after 7 days when animals exposed to cold, and the activity of cytochrome c oxidase (COX) of liver and muscle mitochondria tended to rise with cold exposure. RMR and T3 level decreased during warm acclimation. The state-4 respiration of liver mitochondria declined after 3 days and muscle after 7 days when animals exposed to warm, and the activities of COX of liver and muscle mitochondria tended to decrease with warm acclimation. The cold activation of liver and muscle mitochondrial respiration (regulated by T3) was one of the cytological mechanisms of elevating RMR. Both state-4 respiration and COX activity of brown adipose tissue (BAT) mitochondria increased significantly during cold acclimation and decreased markedly after acclimated to warm. The uncoupling protein 1 (UCP1) contents in BAT increased after exposure to cold and decreased after warm acclimation. Nonshivering thermogenesis (NST) plays an important role in the process of thermoregulation under cold acclimation for Brandt's voles. Changes in thermogenesis is a important way to cold adaptation for Brandt's voles in natural environments.  相似文献   

13.
14.
During cold-exposure ‘beige’ adipocytes with increased mitochondrial content are activated in white adipose tissue (WAT). These cells, similarly to brown adipose tissue (BAT), dissipate stored chemical energy in the form of heat with the help of uncoupling protein 1 (UCP1). We investigated the effect of tissue transglutaminase (TG2) ablation on the function of ATs in mice. Although TG2+/+ and TG2−/− mice had the same amount of WAT and BAT, we found that TG2+/+ animals could tolerate acute cold exposure for 4 h, whereas TG2−/− mice only for 3 h. Both TG2−/− and TG2+/+ animals used up half of the triacylglycerol content of subcutaneous WAT (SCAT) after 3 h treatment; however, TG2−/− mice still possessed markedly whiter and higher amount of gonadal WAT (GONAT) as reflected in the larger size of adipocytes and lower free fatty acid levels in serum. Furthermore, lower expression of ‘beige’ marker genes such as UCP1, TBX1 and TNFRFS9 was observed after cold exposure in GONAT of TG2−/− mice, paralleled with a lower level of UCP1 protein and a decreased mitochondrial content. The detected changes in gene expression of Resistin and Adiponectin did not provoke glucose intolerance in the investigated TG2−/− mice, and TG2 deletion did not influence adrenaline, noradrenaline, glucagon and insulin production. Our data suggest that TG2 has a tissue-specific role in GONAT function and browning, which becomes apparent under acute cold exposure.  相似文献   

15.
CRISPR/Cas9 has enabled inducible gene knockout in numerous tissues; however, its use has not been reported in brown adipose tissue (BAT). Here, we developed the brown adipocyte CRISPR (BAd-CRISPR) methodology to rapidly interrogate the function of one or multiple genes. With BAd-CRISPR, an adeno-associated virus (AAV8) expressing a single guide RNA (sgRNA) is administered directly to BAT of mice expressing Cas9 in brown adipocytes. We show that the local administration of AAV8-sgRNA to interscapular BAT of adult mice robustly transduced brown adipocytes and ablated expression of adiponectin, adipose triglyceride lipase, fatty acid synthase, perilipin 1, or stearoyl-CoA desaturase 1 by >90%. Administration of multiple AAV8 sgRNAs led to simultaneous knockout of up to three genes. BAd-CRISPR induced frameshift mutations and suppressed target gene mRNA expression but did not lead to substantial accumulation of off-target mutations in BAT. We used BAd-CRISPR to create an inducible uncoupling protein 1 (Ucp1) knockout mouse to assess the effects of UCP1 loss on adaptive thermogenesis in adult mice. Inducible Ucp1 knockout did not alter core body temperature; however, BAd-CRISPR Ucp1 mice had elevated circulating concentrations of fibroblast growth factor 21 and changes in BAT gene expression consistent with heat production through increased peroxisomal lipid oxidation. Other molecular adaptations predict additional cellular inefficiencies with an increase in both protein synthesis and turnover, and mitochondria with reduced reliance on mitochondrial-encoded gene expression and increased expression of nuclear-encoded mitochondrial genes. These data suggest that BAd-CRISPR is an efficient tool to speed discoveries in adipose tissue biology.  相似文献   

16.
Expression of brown adipose tissue (BAT) associated proteins like uncoupling protein 1 (UCP1) in inguinal WAT (iWAT) has been suggested to alter iWAT metabolism. The aim of this study was to investigate the role of interleukin-6 (IL-6) in exercise training and cold exposure-induced iWAT UCP1 expression. The effect of daily intraperitoneal injections of IL-6 (3 ng/g) in C57BL/6 mice for 7 days on iWAT UCP1 expression was examined. In addition, the expression of UCP1 in iWAT was determined in response to 3 days of cold exposure (4°C) and 5 weeks of exercise training in wild type (WT) and whole body IL-6 knockout (KO) mice. Repeated injections of IL-6 in C57BL/6 mice increased UCP1 mRNA but not UCP1 protein content in iWAT. Cold exposure increased iWAT UCP1 mRNA content similarly in IL-6 KO and WT mice, while exercise training increased iWAT UCP1 mRNA in WT mice but not in IL-6 KO mice. Additionally, a cold exposure-induced increase in iWAT UCP1 protein content was blunted in IL-6 KO mice, while UCP1 protein content in iWAT was lower in both untrained and exercise trained IL-6 KO mice than in WT mice. In conclusion, repeated daily increases in plasma IL-6 can increase iWAT UCP1 mRNA content and IL-6 is required for an exercise training-induced increase in iWAT UCP1 mRNA content. In addition IL-6 is required for a full induction of UCP1 protein expression in response to cold exposure and influences the UCP1 protein content iWAT of both untrained and exercise trained animals.  相似文献   

17.
Jakus PB  Sipos K  Kispal G  Sandor A 《FEBS letters》2002,519(1-3):210-214
Earlier we reported a 14-fold increase of glycogen in the brown adipose tissue (BAT) in rats when the animals were placed back from cold to neutral temperature. To elucidate the mechanism, here we compared the level of glucose transporter 4 (GLUT4) protein, uncoupling protein (UCP) 1 and UCP3 mRNA and protein expressions in the BAT under the same conditions. We found that the increased GLUT4 level in cold was maintained during the reacclimation. After 1 week cold exposure the mRNA and protein content of UCP1 increased parallel, while the protein level of UCP3 decreased, contrary to its own mRNA level.  相似文献   

18.
In eutherian mammals, uncoupling protein 1 (UCP1) mediated non-shivering thermogenesis from brown adipose tissue (BAT) provides a mechanism through which arousal from torpor and hibernation is facilitated. In order to directly assess the magnitude by which the presence or absence of UCP1 affects torpor patterns, rewarming and arousal rates within one species we compared fasting induced torpor in wildtype (UCP1+/+) and UCP1-ablated mice (UCP−/−). Torpor was induced by depriving mice of food for up to 48 h and by a reduction of ambient temperature (T a) from 30 to 18°C at four different time points after 18, 24, 30 and 36 h of food deprivation. In most cases, torpor bouts occurred within 20 min after the switch in ambient temperature (30–18°C). Torpor bouts expressed during the light phase lasted 3–6 h while significantly longer bouts (up to 16 h) were observed when mice entered torpor during the dark phase. The degree of hypometabolism (5–22 ml h−1) and hypothermia (19.5–26.7°C) was comparable in wildtype and UCP1-ablated mice, and both genotypes were able to regain normothermia. In contrast to wildtype mice, UCP1-ablated mice did not display multiple torpor bouts per day and their peak rewarming rates from torpor were reduced by 50% (UCP1+/+: 0.24 ± 0.08°C min−1; UCP1−/−: 0.12 ± 0.04°C min−1). UCP1-ablated mice therefore took significantly longer to rewarm from 25 to 32°C (39 vs. 70 min) and required 60% more energy for this process. Our results demonstrate the energetic benefit of functional BAT for rapid arousal from torpor. They also suggest that torpor entry and maintenance may be dependent on endogenous rhythms.  相似文献   

19.
Objective: The aim of this study was to determine the sex‐dependent differences in the response of key parameters involved in thermogenesis and control of body weight in brown adipose tissue (BAT) and white adipose tissue (WAT) in postcafeteria‐fed rats, a model of dietary obesity. Research Methods and Procedures: BAT and WAT were obtained from male and female control and postcafeteria‐fed Wistar rats. Postcafeteria‐fed rats were initially fed with cafeteria diet from day 10 of life until day 110 (cafeteria period) and with standard chow diet from then until day 180 of life (postcafeteria period). Body mass and energy intake were evaluated. Biometric parameters were analyzed in interscapular BAT (IBAT). Levels of uncoupling protein 1 (UCP1), α2‐adrenergic receptor (AR), and β3‐AR proteins and UCP1, UCP2, UCP3, β3‐AR, and leptin mRNAs, in IBAT or WAT, were studied by Western blot and Northern blot analyses, respectively. Results: Rats attained 59% (females) and 39% (males) increase in body weight at the end of the cafeteria period. During the postcafeteria period, the rats showed a loss of body weight, which was higher in females. Postcafeteria‐fed female rats also presented higher activation of thermogenic parameters in IBAT, including UCP1, UCP2, and UCP3 mRNAs. Female control rats showed lower levels of both α2 and β3‐ARs in BAT compared with male rats, but these levels in postcafeteria‐fed female and male rats were the same, because males tended to down‐regulate them. Levels of leptin mRNA in response to the postcafeteria state depended on gender and the specific WAT depot studied. Discussion: It is suggested that in postcafeteria‐fed female rats, BAT thermogenic capacity becomes more efficiently activated than in males. Female rats also showed a bigger weight loss. The parallel regulation of the levels of UCP2 and UCP3 mRNAs, with respect to UCP1 mRNA, with higher activation in female postcafeteria‐fed rats, suggests a possible role of both UCP2 and UCP3 in the regulation of energy expenditure and in the control of body weight. The distinct responses to overweight of α2 and β3‐ARs—which were sex dependent—and leptin mRNA—which depended on both sex and WAT depot—also support the different response of thermogenesis‐related parameters between overweight males and females.  相似文献   

20.
Three series of new cannabinoids were prepared and their affinities for the CB1 and CB2 cannabinoid recptors were determined. These are the 1-methoxy-3-(1′,1′-dimethylalkyl)-, 1-deoxy-11-hydroxy-3-(1′,1′-dimethylalkyl)- and 11-hydroxy-1-methoxy-3-(1′,1′-dimethylalkyl)-Δ8-tetrahydrocannabinols, which contain alkyl chains from dimethylethyl to dimethylheptyl appended to C-3 of the cannabinoid. All of these compounds have greater affinity for the CB2 receptor than for the CB1 receptor, however only 1-methoxy-3-(1′,1′-dimethylhexyl)-Δ8-THC (JWH-229, 6e) has effectively no affinity for the CB1 receptor (Ki=3134±110 nM) and high affinity for CB2 (Ki=18±2 nM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号