首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C Narasimhan  C S Lai 《Biochemistry》1989,28(12):5041-5046
Changes in local environment of the free sulfhydryl groups in plasma fibronectin upon adsorption of the protein to polystyrene beads have been examined by electron spin resonance (ESR) spin-label spectroscopy. The two free sulfhydryl groups per subunit of plasma fibronectin were modified chemically with an [15N, 2H]maleimide spin-label. For soluble fibronectin, both free sulfhydryl groups are shown to be in confined environments as evidenced from the labeled protein exhibiting a strongly immobilized ESR spectrum as described previously using [14N, 1H]maleimide spin-labels [Lai, C.-S., & Tooney, N. M. (1984) Arch. Biochem. Biophys. 228, 465-473]. When the labeled protein was adsorbed to the beads, half of the strongly immobilized component was found to convert into a weakly immobilized component, a result indicating that one of the two labeled sites becomes exposed and exhibit a fast tumbling motion. Experiments conducted using various spin-labeled fibronectin fragments suggest that the newly exposed labeled site is located between the DNA-binding and the cell-binding regions of the molecule. The data obtained indicate that, upon adsorption to polystyrene beads, plasma fibronectin undergoes a conformational change through which the buried free sulfhydryl group near the cell-binding region of the molecule is exposed. This observation may have important implications regarding the expression of cell adhesive properties of the fibronectin molecule.  相似文献   

2.
C S Lai  N M Tooney  E G Ankel 《FEBS letters》1984,173(2):283-286
The local environment of the free sulfhydryl groups in plasma fibronectin has been investigated by ESR techniques using a series of maleimide spin labels, varying in chain length between the maleimide and nitroxide free radical groups. Chemical modification with these analogs does not affect either the CD spectra or the cell adhesion activity of the protein molecule. The ESR results show that the free sulfhydryl group of plasma fibronectin is in a cleft about 10.5 A in length. The significance of this finding is discussed.  相似文献   

3.
Hamster cell fibronectin is a glycoprotein consisting of two 230,000-dalton subunits in a disulfide-bonded dimer. The molecule is composed of domains which can be separated by partial proteolytic cleavage. The carbohydrates, disulfide bonds, and a single free sulfhydryl group per chain are distributed nonuniformly among these regions. All the interchain disulfides are within 10,000 daltons of the end of the molecule and are removed by mild proteolysis which also generates 200,000- and 25,000-dalton fragments which do not contain interchain disulfides. The 200,000-dalton fragment contains all or most of the carbohydrate side chains, and the free sulfhydryl group, but is relatively poor in cystine. The 25,000-dalton fragment is carbohydrate-free and cystine-rich but has no free sulfhydryl groups. There is heterogeneity in carbohydrate content among the monomeric chains of intact fibronectin and the 200,000-dalton fragments. The gelatin binding site of fibronectin is in the 200,000 fragment. Intact disulfide bonds are required for binding of fibronectin to cells and to gelatin and blockage of the free sulfhydryl groups prevents binding of fibronectin to cells, suggesting that intermolecular disulfide bonding may be important.  相似文献   

4.
Aspartase (L-aspartate ammonia-lyase, EC 4.3.1.1) of Escherichia coli W contains 38 half-cystine residues per tetrameric enzyme molecule. Two sulfhydryl groups were modified with N-ethylmaleimide or 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) per subunit, while 8.3 sulfhydryl groups were titrated with p-mercuribenzoic acid. In the presence of 4 M guanidine - HCl, 8.6 sulfhydryl groups reacted with DTNB per subunit. Aspartase was inactivated by various sulfhydryl reagents following pseudo-first-order kinetics. Upon modification of one sulfhydryl group per subunit with N-Ethylmaleimide, 85% of the original activity was lost; a complete inactivation was attained concomitant with the modification of two sulfhydryl groups. These results indicate that one or two sulfhydryl groups are essential for enzyme activity. L-Aspartate and DL-erythro-beta-hydroxyaspartate markedly protected the enzyme against N-ethylmaleimide-inactivation. Only the compounds having an amino group at the alpha-position exhibited protection, indicating that the amino group of the substrate contributes to the protection of sulfhydryl groups of the enzyme. Examination of enzymatic properties after N-ethylmaleimide modification revealed that 5-fold increase in the Km value for L-aspartate and a shift of the optimum pH for the activity towards acidic pH were brought about by the modification, while neither dissociation into subunits nor aggregation occurred. These results indicate that the influence of the sulfhydryl group modification is restricted to the active site or its vicinity of the enzyme.  相似文献   

5.
We report here the changes in intramolecular distances in human plasma fibronectin (Fn) detected, upon adsorption of the protein to the surface of the Cytodex dextran microcarrier, using a fluorescence energy transfer technique. The glutamine-3 residue, near the amino terminus of each chain, was labeled enzymatically with either monodansylcadaverine (dansyl) or monofluoresceinyl-cadaverine (fluorescein) by use of coagulation factor XIIIa. Using this donor (dansyl)-acceptor (fluorescein) pair, and steady-state measurements, we demonstrated previously that the two amino termini of plasma fibronectin in solution were juxtaposed and separated by 23 A (C. Wolff and C.-S. Lai (1988) Biochemistry 27, 3483-3487). Upon adsorption to the microcarrier, the energy transfer was found to be completely abolished, suggesting that the surface binding induces a conformational change by which the distance between the two amino termini is increased to more than 70 A. Moreover, we have labeled the amino terminus of each chain with fluorescein and the two free sulfhydryl groups of each chain with coumarinyl-phenylmaleimide which serves as an energy donor. The emission spectra of the double-labeled protein in solution showed the occurrence of energy transfer, indicating that the relative distances between the amino termini and the free sulfhydryl group(s) are within 70 A. Upon surface binding, a decrease in the energy transfer between this donor-acceptor pair was also noted. The results presented here are consistent with the notion that plasma Fn undergoes a drastic conformational change upon surface binding, perhaps changing from a compact form to an extended form. This process may be important for the surface activation of the fibronectin molecule.  相似文献   

6.
Plasma fibronectin (FN) of buffalo (Babulis babulis) was purified to apparent homogeneity, using gelatin-Sepharose and heparin-Sepharose affinity columns. It was found to have two subunits of molecular mass 246 kDa and 228 kDa, on SDS-gel. Its immunological cross-reactivity with anti-human plasma FN was confirmed by Western blotting. The amino acid composition was found to be similar to that of human and bovine plasma FNs. Buffalo plasma FN contained 2.23% neutral hexoses and 1.18% sialic acids. No titrable sulfhydryl group could be detected in the absence of denaturant. Reaction with DTNB indicated 3.4 sulfhydryl groups in the molecule, whereas BDC-OH titration gave a value of 3.8 -SH groups in buffalo plasma FN. Stoke's radius, intrinsic viscosity, diffusion coefficient and frictional ratio indicated that buffalo plasma FN did not have a compact globular conformation at physiological pH and ionic strength. Molecular dimensions (average length, 120 nm; molar mass to length ratio, 3950 nm(-1) and mean diameter, 2.4 nm) as revealed by rotary shadowing electron microscopy further supported the extended conformation of buffalo plasma FN. These results show that buffalo plasma FN has similar properties as that of human plasma FN.  相似文献   

7.
C Narasimhan  C S Lai 《Biopolymers》1991,31(10):1159-1170
We report here a novel approach to label specifically one of the two cryptic, free sulfhydryl groups per subunit of human plasma fibronectin with either an 15N,2H-maleimide spin label or a coumarinylphenyl maleimide fluorescent label. This permits the use of electron spin resonance (ESR) or fluorescence techniques to study molecular dynamics of fibronectin with the label attached to a single site per chain on the protein molecule. The method is based on our observation that upon adsorption of fibronectin to a gelatin-coated surface, the SH1 site, located between the DNA-binding and the cell-binding domains, is partially exposed, while the SH2 site, located within the carboxyl-terminal fibrin-binding domain, remains buried and unreactive. The procedures for the preparation of the selectively labeled fibronectins are described in detail. The physicochemical properties of these single-site labeled fibronectins, particularly as affected by high salt, heparin, surface binding, and temperature, were characterized by ESR spin-label and steady-state fluorescence techniques. The steady-state fluorescence measurement indicates that both local environments of SH1 and SH2 sites are relatively hydrophobic, and that the SH2 site is more hydrophobic than the SH1 site. The ESR results show that heparin or high salt induces an increase in the domainal flexibility in both SH1 and SH2 regions, perhaps through the disruption of domain-domain interactions in the fibronectin molecule, and that the former is more effective than the latter in producing such an effect. The observed heparin effect is reversible by addition of calcium ions in the SH2 regions but not in the SH1 regions. In addition, at temperatures above 44 degrees C, both type III homologous regions containing the free sulfhydryl groups are shown to undergo denaturation and aggregation processes. The data presented here suggest that the newly developed method for differential labeling of the free sulfhydryl groups in fibronectin should be useful for mapping the spatial arrangement of structural domains in the protein molecule using spin-label-spin-probe and fluorescence energy transfer techniques.  相似文献   

8.
Plasma fibronectin was chemically modified by 4-maleimido-2,2,6,6-tetramethylpiperidinooxyl (maleimide spin label). Only the free sulfhydryl groups of plasma fibronectin were modified by the label under the experimental conditions. The ESR spectrum of spin-labeled fibronectin showed that the sites of labeling were highly immobilized, suggesting that the sulfhydryl groups of the protein are in small, confined environments. The conversion of the strongly immobilized ESR spectrum into a weakly immobilized one was observed when the spin-labeled protein was heated from 30 to 60 degrees C, indicating the thermal unfolding of the protein molecules. The midpoint temperature for the thermal unfolding of plasma fibronectin is about 50 degrees C. The results suggest that plasma fibronectin is stable to about 40 degrees C and starts unfolding above this temperature. The rotational correlation time estimated from the ESR spectrum of spin-labeled fibronectin at 21 degrees C was about 2.0 X 10(-8) s. The rotational correlation time calculated from the Stokes-Einstein equation, assuming a rigid globular configuration for fibronectin with a Stokes radius of 10 nm, was about 7.8 X 10(-7) s. The differences in rotational correlation time by a factor of 39 between experimental and calculated values do not support a globular configuration for plasma fibronectin.  相似文献   

9.
An extramitochondrial acetyl-CoA hydrolase (EC 3.1.2.1) purified from rat liver was inactivated by heavy metal cations (Hg2+, Cu2+, Cd2+ and Zn2+), which are known to be highly reactive with sulfhydryl groups. Their order of potency for enzyme inactivation was Hg2+ greater than Cu2+ greater than Cd2+ greater than Zn2+. This enzyme was also inactivated by various sulfhydryl-blocking reagents such as p-hydroxymercuribenzoate (PHMB), N-ethylmaleimide (NEM), 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), and iodoacetate (IAA). DL-Dithiothreitol (DTT) reversed the inactivation of this enzyme by DTNB markedly, and that by PHMB slightly, but did not reverse the inactivations by NEM, DTNB and IAA. Benzoyl-CoA (a substrate-like competitive inhibitor) and ATP (an activator) greatly protected acetyl-CoA hydrolase from inactivation by PHMB, NEM, DTNB and IAA. These results suggest that the essential sulfhydryl groups are on or near the substrate binding site and nucleotide binding site. The enzyme contained about four sulfhydryl groups per mol of monomer, as estimated with DTNB. When the enzyme was denatured by 4 M guanidine-HCl, about seven sulfhydryl groups per mol of monomer reacted with DTNB. Two of the four sulfhydryl groups of the subunit of the native enzyme reacted with DTNB first without any significant inactivation of the enzyme, but its subsequent reaction with the other two sulfhydryl groups seemed to be involved in the inactivation process.  相似文献   

10.
Aminoacylase I from porcine kidney (EC 3.5.1.14) contains seven cysteine residues per subunit. Three sulfhydryl groups are accessible to modification by 4-hydroxymercuribenzoate (p-MB). The kinetics of the reaction suggest that only one of these groups affects acylase activity when modified by p-MB. Its reaction rate increases 2-3-fold when the essential metal ion of aminoacylase is removed. Modification of metal-free apoenzyme by N-ethylmaleimide (NEM) abolishes its activity without impairing Zn2+ binding. This indicates that the sulfhydryl group reacting with NEM is not directly coordinated to the metal. DTNB (5,5'-Dithio-bis(2-nitrobenzoate), Ellman's reagent) also modifies three sulfhydryl groups per subunit. In this case, the reactivities of native aminoacylase and apoenzyme are not significantly different. N-Hydroxy-2-aminobutyrate, a strong aminoacylase inhibitor, substantially increases the reactivity of the slowest reacting sulfhydryl in both native enzyme and metal-free aminoacylase. It appears that binding of the inhibitor or removal of the metal ion induces conformational changes of the amino-acylase active site that render a buried sulfhydryl group more accessible to modification.  相似文献   

11.
The effect of protein conformations on the reaction rate of Ellman's reagent, 5,5-dithiobis (2-nitrobenzoic acid) (DTNB) with sulfhydryl (SH) groups of proteins was examined. The stopped-flow method was applied to follow the reaction of DTNB with SH group of two proteins, bovine serum albumin (BSA) and ovalbumin (OVA), at various concentrations of guanidine hydrochloride and urea. The rates for both the proteins were faster in guanidine than in urea. The rate sharply depended on the protein conformations, which were monitored by changes of helix contents on the basis of the circular dichroism measurements. The reaction rate of DTNB with SH groups of BSA was maximal around 2 M guanidine and 5 M urea. On the other hand, the reaction rate of DTNB with OVA was maximal at 3.5 M guanidine, while it gradually increased with an increase in the urea concentration. The amount of reactive SH group participating in the reaction with DTNB was also estimated by the absorbance change at 412 nm. The magnitudes of absorbance change for the reaction with free SH groups of OVA at low concentrations of the denaturants were appreciably smaller than those for BSA with one free SH group. Most of the four SH groups of OVA might react with DTNB above 5 M guanidine, although only a part of them did even at 9 M urea.  相似文献   

12.
Formaldehyde dehydrogenase from Pseudomonas putida C-83 was found to contain 7 halfcystine residues per subunit monomer, as checked by the method of performic acid oxidation. Approximately 7 sulfhydryl groups per subunit monomer were titrated with 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) after denaturation with 8 m urea. In the native enzyme, modification of three sulfhydryl groups per subunit with p-chloromercuribenzoate (PCMB) led to the complete loss of enzyme actiyities for both formaldehyde and n-butanol. Hydrogen-peroxide competitively inhibited the enzyme activity for formaldehyde, while it was only slightly inhibitory to the activity for n-butanol. Both formaldehyde and hydrogen-peroxide protected one sulfhydryl group per subunit monomer from modification with PCMB. Moreover, hydrogen-peroxide was hardly reactive to the enzyme which was preincubated with formaldehyde.

From these observations, we conclude that one of three PCMB-reactive sulfhydryl groups is essential for the binding of formaldehyde, and hydrogen-peroxide modifies this sulfhydryl group.  相似文献   

13.
The concentration of reduction equivalents in serum was studied in a cohort of healthy individuals, in a group of multiple sclerosis (MS) patients undergoing treatment with interferon beta-1b and another group of MS patients who refused treatment with interferon beta-1b. Two classes of sulfhydryl groups were detectable in serum: (1) the uncovered sulfhydryls, accessible to the oxidation-reduction substrate 5,5-dithiobis-(-2-nitrobenzoic acid) (DTNB); and (2) the hidden sulfhydryls that required previous heat denaturation of serum proteins to become accessible to DTNB. The concentration of the reduced form of both the uncovered- and hidden-type of sulfhydryls was higher in the serum of MS patients than in healthy individuals. Interferon beta-1b lowered the plasma concentration of the uncovered reduced sulfhydryls after 3 months of treatment. This was in contrast to a minor effect of interferon beta-1b in the hidden-form of sulfhydryl groups. The results suggest that the concentration of reduced sulfhydryls is a biochemical marker of the in vivo oxidation/reduction reactions in MS.  相似文献   

14.
C E Wolff  C S Lai 《Biochemistry》1990,29(13):3354-3361
Human plasma fibronectin, a dimeric glycoprotein, contains two cryptic free sulfhydryl groups per chain. Recent observations revealed that upon binding to a gelatin-coated surface the SH1 site, located between the DNA-binding and cell-binding domains, is partially exposed, while the SH2 site, situated within the carboxyl-terminal fibrin-binding domain, remains buried. Utilizing this newly discovered property of plasma fibronectin, we have developed a procedure to introduce maleimide derivatives of fluorescent probes such as N-(1-pyrenyl)maleimide, 7-(diethylamino)-3-(4'-maleimidylphenyl)-4-methylcoumarin, or fluorescein 5-maleimide selectively into either the SH1 or SH2 site of the fibronectin molecule and have measured the inter-sulfhydryl distances in fibronectin by fluorescence energy transfer methods. The results show that the distance between the SH1 site of one subunit and the SH1 site of the other subunit is between 35 and 44 A, indicating the close proximity of the two subunits near the SH1-containing regions. On the other hand, the distance between the SH2 site of one subunit and the SH2 site of the other subunit is found to be greater than 95 A, suggesting that the two SH2-containing regions are well separated. Additionally, the distance between the SH1 and SH2 sites within each subunit is estimated to be 42-53 A, assuming no intersubunit energy transfer between the probes. Heparin or high salt, which drastically affects the hydrodynamic properties of fibronectin, had virtually no effect on the distance between the SH1-SH1 or the SH1-SH2 pair.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The dibucaine number (DN) was determined for serum cholinesterase (EC 3.1.1.8, SChE) in plasma samples. The ones with a DN of 79-82 were used, because they had the "usual" SChE variant. The enzyme was assayed colorimetrically by the reaction of 5,5'-dithiobis-[2-nitrobenzoic acid] (DTNB) with the free sulfhydryl groups of thiocholine that were produced by the enzyme reaction with butrylthiocholine (BuTch) or acetylthiocholine (AcTch) substrates, and measured at 412 nm. Dibucaine, a quaternary ammonium compound, inhibited SChE to a minimum within 2 min in a reversible manner. The inhibition was very potent. It had an IC(50) of 5.3 microM with BuTch or 3.8 microM with AcTch. The inhibition was competitive with respect to BuTch with a K(i) of 1.3 microM and a linear-mixed type (competitive/noncompetitive) with respect to AcTch with inhibition constants, K(i) and K(I) of 0.66 and 2.5 microM, respectively. Dibucaine possesses a butoxy side chain that is similar to the butryl group of BuTch and longer by an ethylene group from AcTch. This may account for the difference in inhibition behavior. It may also suggest the existence of an additional binding site, other than the anionic binding site, and of a hydrophobic nature.  相似文献   

16.
The inhibition by some thiol reagents of partly purified mitochondrial monoamine oxidase (MAO) (EC 1.4.3.4) from rat liver was studied, and the molar content of sulfhydryl groups in the enzyme determined. Sodium nitroprusside and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) inhibited the enzyme, apparently reversibly, while sodium arsenite was not inhibitory. Concentrations of the respective inhibitors causing 50% inhibition after 15 min of preincubation with the enzyme at pH 7.0 and 37 degrees C are 5.80 times 10(-4) M and 4.35 times 10(-5) M. The thiol compounds cysteine, dithiothreitol, and 2-mercaptoethanol did not inhibit MAO. The average number of sulfhydryl groups per mole of enzyme, determined by reaction with DTNB, increased from 3.6 +/- 0.2 freely reacting sulfhydryl groups (n = 4) to 18.4 to total sulfhydryl groups (n = 2) on denaturation with 8 M urea.  相似文献   

17.
NADP-linked malic enzyme from Escherichia coli W contains 7 cysteinyl residues per enzyme subunit. The reactivity of sulfhydryl (SH) groups of the enzyme was examined using several SH reagents, including 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and N-ethylmaleimide (NEM). 1. Two SH groups in the native enzyme subunit reacted with DTNB (or NEM) with different reaction rates, accompanied by a complete loss of the enzyme activity. The second-order modification rate constant of the "fast SH group" with DTNB coincided with the second-order inactivation rate constant of the enzyme by the reagent, suggesting that modification of the "fast SH group" is responsible for the inactivation. When the enzyme was denatured in 4 M guanidine HCl, all the SH groups reacted with the two reagents. 2. Althoug the inactivation rate constant was increased by the addition of Mg2+, an essential cofactor in the enzyme reaction, the modification rate constant of the "fast SH group" was unaffected. The relationship between the number of SH groups modified with DTNB or NEM and the residual enzyme activity in the absence of Mg2+ was linear, whereas that in the presence of Mg2+ was concave-upwards. These results suggest that the Mg2+-dependent increase in the inactivation rate constant is not the result of an increase in the rate constant of the "fast FH group" modification. 3. The absorption spectrum of the enzyme in the ultraviolet region was changed by addition of Mg2+. The dissociation constant of the Mg2+-enzyme complex obtained from the Mg2+- dependent increment of the difference absorption coincided with that obtained from the Mg2+- dependent enhancement of NEM inactivation. 4. Both the inactivation rate constant and the modification rate constant of the "fast SH group" were decreased by the addition of NADP+. The protective effect of NADP+ was increased by the addition of Mg2+. Based on the above results, the effects of Mg2+ on the SH-group modification are discussed from the viewpoint of conformational alteration of the enzyme.  相似文献   

18.
The effects of specific sulfhydryl reagents, N-ethylmaleimide (NEM), p-chloromercuribenzoic acid (PCMB) and 5-5'-dithiobis(2-nitrobenzoic acid) (DTNB), were tested on the vasoactive intestinal peptide (VIP) receptor binding capacity of the human superficial melanoma-derived IGR39 cells. On intact cell monolayers NEM and PCMB inhibit the specific [125I]VIP binding in a time and dose-dependent manner while DTNB has no effect at any concentration tested. Inhibitory effects of NEM and PCMB on high and low affinity VIP receptor are not identical. With NEM-treated cells, only low affinity sites remained accessible to the ligand. Their affinity constant is not modified. With PCMB-treated cells, the binding capacity of high affinity sites is reduced by 56% while the binding capacity of low affinity sites is not significantly affected. For both types of binding sites, the affinity constants remain in the same range of that of untreated cells. On cells made permeable by lysophosphatidylcholine, DTNB is able to inhibit the specific [125I]VIP binding in a time and dose-dependent manner. The three sulfhydryl reagents stabilize the preformed [125I]VIP receptor complex whose dissociation in the presence of native VIP is significantly reduced. Labeling of free SH groups with tritiated NEM after preincubation of cells with DTNB and VIP made possible the characterization of reacting SH groups which probably belong to the receptor. Taken together, these data allow us to define three classes of sulfhydryl groups. In addition, it is shown that high and low affinity sites have different sensibility to sulfhydryl reagents.  相似文献   

19.
D W Pettigrew 《Biochemistry》1986,25(16):4711-4718
Glycerol kinase (EC 2.7.1.30, ATP:glycerol 3-phosphotransferase) from Escherichia coli is inactivated by 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and by N-ethylmaleimide (NEM) in 0.1 M triethanolamine at pH 7 and 25 degrees C. The inactivation by DTNB is reversed by dithiothreitol. In the cases of both reagents, the kinetics of activity loss are pseudo first order. The dependencies of the rate constants on reagent concentration show that while the inactivation by NEM obeys second-order kinetics (k2app = 0.3 M-1 s-1), DTNB binds to the enzyme prior to the inactivation reaction; i.e., the pseudo-first-order rate constant shows a hyperbolic dependence on DTNB concentration. Complete inactivation by each reagent apparently involves the modification of two sulfhydryl groups per enzyme subunit. However, analysis of the kinetics of DTNB modification, as measured by the release of 2-nitro-5-thiobenzoate, shows that the inactivation is due to the modification of one sulfhydryl group per subunit, while two other groups are modified 6 and 15 times more slowly. The enzyme is protected from inactivation by the ligands glycerol, propane-1,2-diol, ATP, ADP, AMP, and cAMP but not by Mg2+, fructose 1,6-bisphosphate, or propane-1,3-diol. The protection afforded by ATP or AMP is not dependent on Mg2+. The kinetics of DTNB modification are different in the presence of glycerol or ATP, despite the observation that the degree of protection afforded by both of these ligands is the same.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
R S Lane  E E Snell 《Biochemistry》1976,15(19):4175-4179
Two classes of sulfhydryl groups in histidine decarboxylase from Lactobacillus 30 a can be differentiated by their reaction with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB). Five cysteinyl residues (class I) of the native enzyme are titrated by DTNB as the pH of the reaction medium is increased from 6.5 to 7.5; the pH-rate profile for their reaction is described by a pKa of 9.2. An additional five thiol groups (class II) are titrated only when denaturing agents are added above neutral pH. Histidine decarboxylase is completely inactivated by DTNB in a kinetically second-order process (Kapp = 660 +/- 20 M-1 min-1 at pH 7.6 and 25 degrees C) which occurs coincident with and at the same rate as modification of the five class-I SH groups of the enzyme, i.e., one thiol group per pyruvoyl prosthetic group. The competitive inhibitors, histamine and imidazole, markedly enhanced the reactivity of these cysteinyl residues toward DTNB; this enhancement is accompanied by a concomitant increase in the rate of inactivation. A single SH group in each of the five catalytic units of histidine decarboxylase is thus implicated as being critical for the expression of enzymatic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号