首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Quercetin, a flavonoid molecule ubiquitously present in nature, has multiple effects on cancer cells, including the inhibition of cell proliferation and migration. However, the responsible molecular mechanisms are not fully understood. We found that quercetin induces the expression of NAG-1 (Non-steroidal anti-inflammatory drug activated gene-1), a TGF-β superfamily protein, during quercetin-induced apoptosis of HCT116 human colon carcinoma cells. Reporter assays using the luciferase constructs containing NAG-1 promoter region demonstrate that early growth response-1 (EGR-1) and p53 are required for quercetin-mediated activation of the NAG-1 promoter. Overexpression of NAG-1 enhanced the apoptotic effect of quercetin, but suppression of quercetin-induced NAG-1 expression by NAG-1 siRNA attenuated quercetin-induced apoptosis in HCT116 cells. Taken together, the present study demonstrates for the first time that quercetin induces apoptosis via NAG-1, providing a mechanistic basis for the apoptotic effect of quercetin in colon carcinoma cells.  相似文献   

4.
5.
Chondrosarcoma is a malignant primary bone tumor that responds poorly to both chemotherapy and radiation therapy. (-)-Epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, has been shown to inhibit tumorigenesis and cancer cell growth in animal models. The aim of this study was to elucidate the mechanism of EGCG-induced apoptosis of human chondrosarcoma cells. EGCG induced cell apoptosis in human chondrosarcoma cell lines but not primary chondrocytes. EGCG induced upregulation of Bax and Bak, downregulation of Bcl-2 and Bcl-XL, and dysfunction of mitochondria in chondrosarcoma. We also found that the accumulation of reactive oxygen species (ROS) is a critical mediator in EGCG-induced cell death. EGCG induced apoptosis signal-regulating kinase 1 (ASK1) dephosphorylation and its dissociation from 14-3-3. Treatment of chondrosarcoma cells with EGCG induced p38 and c-jun-NH2-kinase (JNK) phosphorylation. Transfection with ASK1 siRNA or p38 and JNK mutant antagonized the EGCG-induced cell apoptosis. Therefore, EGCG triggered ROS and activated the ASK1-p38/JNK pathway, resulting chondrosarcoma cell death. Importantly, animal studies revealed a dramatic reduction in tumor volume after 24 days of treatment. Thus, EGCG may be a novel anti-cancer agent for the treatment of chondrosarcoma.  相似文献   

6.
Rationale: Colorectal cancer (CRC) is a common malignant tumor of the digestive system. However, the efficacy of surgery and chemotherapy is limited. Ferroptosis is an iron- and reactive oxygen species (ROS)-dependent form of regulated cell death (RCD) and plays a vital role in tumor suppression. Ferroptosis inducing agents have been studied extensively as a novel promising way to fight against therapy resistant cancers. The aim of this study is to investigate the mechanism of action of tagitinin C (TC), a natural product, as a novel ferroptosis inducer in tumor suppression.Methods: The response of CRC cells to tagitinin C was assessed by cell viability assay, clonogenic assay, transwell migration assay, cell cycle assay and apoptosis assay. Molecular approaches including Western blot, RNA sequencing, quantitative real-time PCR and immunofluorescence were employed as well.Results: Tagitinin C, a sesquiterpene lactone isolated from Tithonia diversifolia, inhibits the growth of colorectal cancer cells including HCT116 cells, and induced an oxidative cellular microenvironment resulting in ferroptosis of HCT116 cells. Tagitinin C-induced ferroptosis was accompanied with the attenuation of glutathione (GSH) levels and increased in lipid peroxidation. Mechanistically, tagitinin C induced endoplasmic reticulum (ER) stress and oxidative stress, thus activating nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). As a downstream gene (effector) of Nrf2, heme oxygenase-1 (HO-1) expression increased significantly with the treatment of tagitinin C. Upregulated HO-1 led to the increase in the labile iron pool, which promoted lipid peroxidation, meanwhile tagitinin C showed synergistic anti-tumor effect together with erastin.Conclusion: In summary, we provided the evidence that tagitinin C induces ferroptosis in colorectal cancer cells and has synergistic effect together with erastin. Mechanistically, tagitinin C induces ferroptosis through ER stress-mediated activation of PERK-Nrf2-HO-1 signaling pathway. Tagitinin C, identified as a novel ferroptosis inducer, may be effective chemosensitizer that can expand the efficacy and range of chemotherapeutic agents.  相似文献   

7.
8.
9.
Hematopoietic stem cells (HSCs) reside in a quiescent niche to reserve their capacity of self‐renewal. Upon hematopoietic injuries, HSCs enter the cell cycle and encounter protein homeostasis problems caused by accumulation of misfolded proteins. However, the mechanism by which protein homeostasis influences HSC function and maintenance remains poorly understood. Here, we show that C/EBP homologous protein (CHOP), demonstrated previously to induces cell death upon unfolded protein response (UPR), plays an important role in HSCs regeneration. CHOP−/− mice showed normal hematopoietic stem and progenitor cell frequencies in steady state. However, when treated with 5‐FU, CHOP deficiency resulted in higher survival rates, associated with an increased number of HSCs and reduced level of apoptosis. In serial competitive transplantation experiments, CHOP−/− HSCs showed a dramatic enhancement of repopulation ability and a reduction of protein aggresomes. Mechanistically, CHOP deletion causes reduced ATF3 expression and further leads to decreased protein aggregation and ROS. In addition, CHOP−/− HSCs exhibited an increased resistance to IR‐induced DNA damage and improved HSCs homeostasis and function in telomere dysfunctional (G3Terc −/−) mice. In summary, these findings disclose a new role of CHOP in the regulation of the HSCs function and homeostasis through reducing ATF3 and ROS signaling.  相似文献   

10.
Objective: To determine the effects of esculetin, a plant phenolic compound with apoptotic activity in cancer cells, on 3T3‐L1 adipocyte apoptosis and adipogenesis. Research Methods and Procedures: 3T3‐L1 pre‐confluent preadipocytes and lipid‐filled adipocytes were incubated with esculetin (0 to 800 μM) for up to 48 hours. Viability was determined using the Cell Titer 96 Aqueous One Solution cell proliferation assay; apoptosis was quantified by measurement of single‐stranded DNA. Post‐confluent preadipocytes were incubated with esculetin for up to 6 days during maturation. Adipogenesis was quantified by measuring lipid content using Nile Red dye; cells were also stained with Oil Red O for visual confirmation of effects on lipid accumulation. Results: In mature adipocytes, esculetin caused a time‐ and dose‐related increase in adipocyte apoptosis and a decrease in viability. Apoptosis was increased after only 6 hours by 400 and 800 μM esculetin (p < 0.05), and after 48 hours, as little as 50 μM esculetin increased apoptosis (p < 0.05). In preadipocytes, apoptosis was detectable only after 48 hours (p < 0.05) with 200 μM esculetin and higher concentrations. However, results of the cell viability assay indicated a reduction in preadipocyte number in a time‐ and dose‐related manner, beginning as early as 6 hours with 400 and 800 μM esculetin (p < 0.05). Esculetin also inhibited adipogenesis of 3T3‐L1 preadipocytes. Esculetin‐mediated inhibition of adipocyte differentiation occurred during the early, intermediate, and late stages of the differentiation process. In addition, esculetin induced apoptosis during the late stage of differentiation. Discussion: These findings suggest that esculetin can alter fat cell number by direct effects on cell viability, adipogenesis, and apoptosis in 3T3‐L1 cells.  相似文献   

11.
Mitochondria are the most important sensor for apoptosis. Extracellular adenosine is well reported to induce apoptosis of tumor cells. Here we found that extracellular adenosine suppresses the cell growth by induction of apoptosis in BEL-7404 liver cancer cells, and identified a novel mechanism that extracellular adenosine triggers apoptosis by increasing Reactive Oxygen Species (ROS) production and mitochondrial membrane dysfunction in the cells. We observed that adenosine increases ROS production, activates c-Caspase-8 and -9 and Caspase effectors, c-Caspase-3 and c-PARP, induces accumulation of apoptosis regulator Bak, decreases Bcl-xL and Mcl-1, and causes the mitochondrial membrane dysfunction and the release of DIABLO, Cytochrome C, and AIF from mitochondria to cytoplasm in the cells; ROS inhibitor, NAC significantly reduces adenosine-induced ROS production; it also shows the same degree of blocking adenosine-induced loss of mitochondrial membrane potential (MMP) and apoptosis. Our study first observed that adenosine increases ROS production in tumor cells and identified the positive feedback loop for ROS-mediated mitochondrial membrane dysfunction which amplifies the death signals in the cells. Our findings indicated ROS production and mitochondrial dysfunction play a key role in adenosine-induced apoptosis of 7404 cells.  相似文献   

12.
The increased glycolysis and proton secretion in tumors is proposed to contribute to the proliferation and invasion of cancer cells during the process of tumorigenesis and metastasis. Here, treatment of human breast cancer cells with proton pump inhibitor (PPI) lansoprazole (LPZ) induces cell apoptosis in a dose-dependent manner. In the implantation of the MDA-MB-231 xenografts in nude mice, administration of LPZ significantly inhibits tumorigenesis and induces large-scale apopotosis of tumor cells. LPZ markedly inhibits intracellular proton extrusion, induces an increase in intracellular ATP level, lysosomal alkalinization and accumulation of reactive oxygen species (ROS) in breast cancer cells. The ROS scavenger N-acetyl-l-cysteine (NAC) and diphenyleneiodonium (DPI), a specific pharmacological inhibitor of NADPH oxidases (NOX), significantly abolish LPZ-induced ROS accumulation in breast cancer cells. Our results suggested that LPZ may be used as a new therapeutic drug for breast tumor.  相似文献   

13.
Several studies have substantiated the correlation between reactive oxygen species (ROS) and Sirtuin 1 (SIRT1). Normally, enterovirus 71 (EV71) is associated with severe clinical manifestations and death. However, the effect of EV71 on the induction of cellular death and the interplay between ROS/SIRT1 in cell death has not been confirmed yet. In the current study, an increase in the number of apoptotic cells was observed as soon as the EV71 infection was initiated in cells and mice. Furthermore, EV71 infection also promoted a rise in the levels of three commonly known proinflammatory cytokines, interleukin 1β (IL-1β), IL-6, and tumor necrosis factor-α. During EV71-induced apoptosis in the different cell lines, ROS generation and SIRT1 downregulation were observed. Further investigations showed that the administration of ROS inhibitor, N-acetyl- l -cysteine (NAC), reduced the level of apoptosis and inflammation, reduced EV71 propagation, and increased SIRT1 expression in EV71-infected cells. In addition, combined administration of NAC and EX527 (SIRT1 inhibitor) restored apoptosis in the EV71-infected cells, which was reduced due to NAC. This data demonstrated that ROS generation is positively associated with EV71-induced apoptosis and inflammation, while this effect could be reversed by SIRT1 inhibition. Collectively, we have shown that EV71 induces apoptosis and inflammation by promoting ROS generation and reducing SIRT1 expression.  相似文献   

14.
Severe side effects and complications such as gastrointestinal and hematological toxicities because of current anticancer drugs are major problems in the clinical management of gastric cancer, which highlights the urgent need for novel effective and less toxic therapeutic approaches. Hispolon, an active polyphenol compound, is known to possess potent antineoplastic and antiviral properties. In this study, we investigated the efficacy of hispolon in human gastric cancer cells and explored the cell death mechanism. Hispolon induced ROS-mediated apoptosis in gastric cancer cells and was more toxic toward gastric cancer cells than toward normal gastric cells, suggesting greater susceptibility of the malignant cells. The mechanism of hispolon-induced apoptosis was that hispolon abrogated the glutathione antioxidant system and caused massive ROS accumulation in gastric cancer cells. Excessive ROS caused oxidative damage to the mitochondrial membranes and impaired the membrane integrity, leading to cytochrome c release, caspase activation, and apoptosis. Furthermore, hispolon potentiated the cytotoxicity of chemotherapeutic agents used in the clinical management of gastric cancer. These results suggest that hispolon could be useful for the treatment of gastric cancer either as a single agent or in combination with other anticancer agents.  相似文献   

15.
A microbial secondary metabolite, arisostatins A (As-A), was originally discovered as a substance carrying the antibiotic activity against Gram-positive bacteria and shown to possess potent anti-tumor properties. The mechanism by which arisostatins A initiates apoptosis remains poorly understood. In the present report we investigated the effect of arisostatins A on activation of the apoptotic pathway in HN-4 cells. Arisostatins A was shown to be responsible for the inhibition of HN-4 cell growth by inducing apoptosis. Treatment with 4 microM arisostatins A for 24h produced morphological features of apoptosis and DNA fragmentation in HN-4 cells. Arisostatins A caused dose-dependent apoptosis and DNA fragmentation of HN-4 cells used as a model. Treatment with caspase inhibitor significantly reduced the arisostatins A-induced caspase 3 activation. In addition, arisostatins A-induced apoptosis was associated with the generation of reactive oxygen species (ROS), which was prevented by an antioxidant NAC (N-acetyl-cysteine). These data indicate that cytotoxic effect of arisostatins A on HN-4 cells is attributable to the induced apoptosis and that arisostatins A-induced apoptosis is mediated by caspase-3 activation pathway, loss of mitochondrial transmembrane potential (DeltaPsi(m)), and release of cytochrome c into cytosol.  相似文献   

16.
17.
18.
Long noncoding RNAs (lncRNAs) are found to be aberrantly expressed and pose significant impacts in colorectal cancer (CRC), the most prevalent type malignancy in the gastrointestinal tract. This study aimed to find out the regulation of lncRNA EIF3J antisense RNA 1 (EIF3J-AS1) on CRC progression. Expressions of EIF3J-AS1, microRNA-3163 (miR-3163), and Yes-associated protein 1 (YAP1) in tissues and cells were evaluated by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. Association of EIF3J-AS1 with CRC prognosis was analyzed through the online bioinformatics tool GEPIA. The biological function of EIF3J-AS1 in CRC was investigated by Cell Counting Kit-8, colony formation, caspase-3 activity, and TUNEL staining. Competitive endogenous RNA (ceRNA) network of EIF3J-AS1/miR-3163/YAP1 was determined by luciferase reporter and RNA immunoprecipitation assays. Results showed that EIF3J-AS1 was upregulated in CRC tissues and cell lines, indicating poor prognosis of CRC patients. The silence of EIF3J-AS1 led to reduced proliferation and facilitated apoptosis of CRC cells. Mechanistcally, EIF3J-AS1 was upregulated by cAMP-response element-binding protein-binding protein-mediated histone H3 on lysine 27 acetylation (H3K27ac) at the promoter region, and EIF3J-AS1 upregulated YAP1 expression through sponging miR-3163 in CRC cells. In conclusion, we first found that H3K27 acetylation-induced lncRNA EIF3J-AS1 improved proliferation and impeded apoptosis of colorectal cancer through the miR-3163/YAP1 axis, which might potentially provide a novel molecular-targeted strategy for CRC treatment.  相似文献   

19.
20.
Nasopharyngeal carcinoma (NPC) is a common malignant tumor with high invasive and metastatic potential. The hepatocyte growth factor (HGF)-Met signaling pathway has a critical role in mediating the invasive growth of many different types of cancer, including head and neck squamous cell carcinoma. HGF also stimulates NPC cell growth and invasion in the cell line model. In this study, we determined the inhibitory effect of Met, using a Met-targeting monoclonal antibody (SAIT301), on the invasive and growth potential of NPC cell lines. Met inhibition by SAIT301 resulted in highly significant inhibition of cell migration and invasion in both the HONE1 and HNE1 cell lines. In addition, we also found that co-treatment of SAIT301 and HGF decreased the anchorage-independent growth induced by HGF in HNE1 cell lines. After SAIT301 treatment, Met, together with its downstream signaling proteins, showed downregulation of p-Met and p-ERK, but not p-AKT, in both HONE1 and HNE1 cell lines. Interestingly, we found that HGF treatment of NPC cell lines induced early growth response protein (EGR-1) expression, which is involved in cell migration and invasion. In addition, co-treatment with SAIT301 and HGF inhibited the HGF-induced expression of EGR-1. Next, knockdown of EGR-1 using small-interfering RNA inhibited HGF-induced cell invasion in NPC cell lines, suggesting that the expression level of EGR-1 is important in HGF-induced cell invasion of NPC cells. Therefore, the results support that SAIT301 inhibited Met activation as well as the downstream EGR-1 expression and could have therapeutic potential in NPC. Taken together, we suggest that Met is an anticancer therapeutic target for NPC that warrants further investigation and clinical trials and SAIT301 may be a promising tool for NPC therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号