首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cheng K  Ip NY 《Neuro-Signals》2003,12(4-5):180-190
Cdk5 is a member of the cyclin-dependent kinase family. Unlike other conventional Cdks that are major regulators of eukaryotic cell cycle progression, Cdk5 displays diverse functions in neuronal as well as non-neuronal tissues. In particular, accumulating evidence points to the roles of this kinase in CNS development and other cellular processes. In this article, we summarize the functional roles of Cdk5 pertaining to the formation and functions of synapse, a specialized structure for the fundamental functions of neurons.  相似文献   

2.
Neuronal Cdc2-like kinase (Nclk) plays an important role in a variety of cellular processes, including neuronal cell differentiation, apoptosis, neuron migration, and formation of neuromuscular junction. The active kinase consists of a catalytic subunit, Cdk5, and an essential regulatory subunit, neuronal Cdk5 activator (p35(nck5a) or p25(nck5a)), which is expressed primarily in neurons of central nervous tissue. In our previous study using the yeast two-hybrid screening method, three novel p35(nck5a)-associated proteins were isolated. Here we show that one of these proteins, called C42, specifically inhibits the activation of Cdk5 by Nck5a. Co-immunoprecipitation data suggested that C42 and p35(nck5a) could form a complex within cultured mammalian cells. Deletion analysis has mapped the inhibitory domain of C42 to a region of 135 amino acids, which is conserved in Pho81, a yeast protein that inhibits the yeast cyclin-dependent protein kinase Pho85. The Pho85.Pho80 kinase complex has been shown to be the yeast functional homologue of the mammalian Cdk5/p35(nck5a) kinase.  相似文献   

3.
Cyclin-dependent kinase 5 (Cdk5), a complex of Cdk5 and its activator p35 (Cdk5/p35), phosphorylates diverse substrates which have multifunctional roles in the nervous system. During development, it participates in neuronal differentiation, migration, axon outgrowth and synaptogenesis. Cdk5, acting together with other kinases, phosphorylates numerous KSPXK consensus motifs in diverse cytoskeletal protein target molecules, including neurofilaments, and microtubule associated proteins, tau and MAPs. Phosphorylation regulates the dynamic interactions of cytoskeletal proteins with one another during all aspects of neurogenesis and axon radial growth. In this review we shall focus on Cdk5 and its regulation as it modulates neurofilament metabolism in axon outgrowth, cytoskeletal stabilization and radial growth. We suggest that Cdk5/p35 forms compartmentalized macromolecular complexes of cytoskeletal substrates, other neuronal kinases, phosphatases and activators ('phosphorylation machines') which facilitate the dynamic molecular interactions that underlie these processes.  相似文献   

4.
Lim AC  Qu D  Qi RZ 《Neuro-Signals》2003,12(4-5):230-238
Cdk5 is a unique member of the cyclin-dependent kinase (Cdk) family of small protein kinases. In association with its neuron-specific activator p35 or p39, Cdk5 displays many regulatory properties distinct from other Cdks. A growing body of evidence has suggested that Cdk5-p35 has important implications in a variety of neuronal activities occurring in the central nervous system. In brain, Cdk5-p35 appears to exist as large molecular complexes with other proteins, and protein-protein interactions appear to be a molecular principle for Cdk5-p35 to conduct its physiological functions. Over the past decade, a number of proteins have been identified to associate with Cdk5-p35. While the majority of these proteins mediate their interaction with Cdk5 through p35, implying that p35 may act not only as an activator of Cdk5 but also as an adaptor to associate Cdk5 with its regulators and physiological targets, a small group of other proteins are found to link directly with Cdk5. In addition, Cdk5 has been found to phosphorylate a diverse list of substrates, further implicating its regulatory roles in a wide range of cellular processes. In this review, we present an updated inventory of the interacting proteins of Cdk5-p35 kinase and its substrates as well as a discussion on the implicated effects of these interactions.  相似文献   

5.
6.
Regulation of N-cadherin-mediated adhesion by the p35-Cdk5 kinase   总被引:7,自引:0,他引:7  
BACKGROUND: The p35-Cdk5 kinase has been implicated in a variety of functions in the central nervous system (CNS), including axon outgrowth, axon guidance, fasciculation, and neuronal migration during cortical development. In p35(-/-) mice, embryonic cortical neurons are unable to migrate past their predecessors, leading to an inversion of cortical layers in the adult cortex. RESULTS: In order to identify molecules important for p35-Cdk5-dependent function in the cortex, we screened for p35-interacting proteins using the two-hybrid system. In this study, we report the identification of a novel interaction between p35 and the versatile cell adhesion signaling molecule beta-catenin. The p35 and beta-catenin proteins interacted in vitro and colocalized in transfected COS cells. In addition, the p35-Cdk5 kinase was associated with a beta-catenin-N-cadherin complex in the cortex. In N-cadherin-mediated aggregation assays, inhibition of Cdk5 kinase activity using the Cdk5 inhibitor roscovitine led to the formation of larger aggregates of embryonic cortical neurons. This finding was recapitulated in p35(-/-) cortical neurons, which aggregated to a greater degree than wild-type neurons. In addition, introduction of active p35-Cdk5 kinase into COS cells led to a decreased beta-catenin-N-cadherin interaction and loss of cell adhesion. CONCLUSIONS: The association between p35-Cdk5 and an N-cadherin adhesion complex in cortical neurons and the modulation of N-cadherin-mediated aggregation by p35-Cdk5 suggests that the p35-Cdk5 kinase is involved in the regulation of N-cadherin-mediated adhesion in cortical neurons.  相似文献   

7.
The role of the Cdk5--p35 kinase in neuronal development.   总被引:2,自引:0,他引:2  
Cyclin-dependent kinase 5 (Cdk5) plays a key role in proper development of the nervous system. To be activated, Cdk5 associates with regulatory subunits not related to cyclins, such as p35 (the regulatory subunit of Cdk5). In this article, we review some of the experimental evidence supporting a central role for the Cdk5/p35 kinase in neuronal migration and process formation.  相似文献   

8.
《Developmental neurobiology》2017,77(10):1175-1187
Cyclin‐dependent kinase 5 (Cdk5) is recognized as a unique member among other Cdks due to its versatile roles in many biochemical processes in the nervous system. The proper development of neuronal dendrites is required for the formation of complex neural networks providing the physiological basis of various neuronal functions. We previously reported that sparse dendrites were observed on cultured Cdk5‐null Purkinje cells and Purkinje cells in Wnt1cre‐mediated Cdk5 conditional knockout (KO) mice. In the present study, we generated L7cre‐mediated p35; p39 double KO (L7cre‐p35f/f; p39–/–) mice whose Cdk5 activity was eliminated specifically in Purkinje cells of the developing cerebellum. Consequently, these mice exhibited defective Purkinje cell migration, motor coordination deficiency and a Purkinje dendritic abnormality similar to what we have observed before, suggesting that dendritic growth of Purkinje cells was cell‐autonomous in vivo . We found that mixed and overlay cultures of WT cerebellar cells rescued the dendritic deficits in Cdk5‐null Purkinje cells, however, indicating that Purkinje cell dendritic development was also supported by non‐cell‐autonomous factors. We then again rescued these abnormalities in vitro by applying exogenous brain‐derived neurotrophic factor (BDNF). Based on the results from culture experiments, we attempted to rescue the developmental defects of Purkinje cells in L7cre‐p35f/f; p39–/– mice by using a TrkB agonist. We observed partial rescue of morphological defects of dendritic structures of Purkinje cells. These results suggest that Cdk5 activity is required for Purkinje cell dendritic growth in cell‐autonomous and non‐cell‐autonomous manners. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1175–1187, 2017  相似文献   

9.
10.
细胞周期素依赖性蛋白激酶5(cyclin dependent kinase-5,Cdk5)是细胞周期素蛋白激酶之一,具有很多磷酸化底物,其激动剂p35和p39特异存在于神经系统(CNS)。因此,Cdk5在神经系统中的功能尤为突出,成为神经科学研究热点。目前研究较多的是Cdk5在可卡因诱导的药物成瘾中的作用。在可卡因所致药物成瘾过程中,多巴胺系统,ΔFosB,神经元突触可塑性等发挥重要作用。Cdk5与这些分子相互作用,所以,Cdk5与可卡因诱导所致药物成瘾密切相关。阐明其与药物成瘾的联系,探索新的以Cdk5为靶向的药物,将可能成为成瘾治疗的有效手段。综述了在可卡因诱导的药物成瘾中Cdk5作用,以及Cdk5与相关的信号转导分子之间的相互调节。  相似文献   

11.
Cyclin‐dependent kinases (CDKs) generally regulate cell proliferation in dividing cells, including neural progenitors. In contrast, an unconventional CDK, Cdk5, is predominantly activated in post‐mitotic cells, and involved in various cellular events, such as microtubule and actin cytoskeletal organization, cell–cell and cell–extracellular matrix adhesions, and membrane trafficking. Interestingly, recent studies have indicated that Cdk5 is associated with several cell cycle‐related proteins, Cyclin‐E and p27kip1. Taking advantage of multiple functionality, Cdk5 plays important roles in neuronal migration, layer formation, axon elongation and dendrite arborization in many regions of the developing brain, including cerebral cortex and cerebellum. Cdk5 is also required for neurogenesis at least in the cerebral cortex. Furthermore, Cdk5 is reported to control neurotransmitter release at presynaptic sites, endocytosis of the NMDA receptor at postsynaptic sites and dendritic spine remodeling, and thereby regulate synaptic plasticity and memory formation and extinction. In addition to these physiological roles in brain development and function, Cdk5 is associated with many neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. In this review, I will introduce the physiological and pathological roles of Cdk5 in mammalian brains from the viewpoint of not only in vivo phenotypes but also its molecular and cellular functions.  相似文献   

12.
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase predominantly active in the nervous system where it regulates several processes such as neuronal migration, cytoskeletal dynamics, axonal guidance, and neurotransmission.We constructed a position specific scoring matrix (PSSM) based on a dataset of sites shown to be phosphorylated both in vivo and in vitro by Cdk5. This dataset was curated manually through an exhaustive search of published experimental data. We then used this PSSM to perform a search in the mouse proteome through Scansite, a web-based tool for matching sequence patterns in large databases. Considering a stringent cut-off score of 0.5, we identified 354 new putative sites present in 291 proteins. In order to assess the robustness of our results, ten random subsets (of 80 sites each) of the original dataset were used to construct new PSSMs, which were then used as input for a new Scansite search, leading to the recovery of 81% of the 354 sites by at least 5 PSSMs.In order to reduce the number of false positives in our sequence-based approach, we evaluated which of these predicted sites were phosphorylated in vivo as determined by multiple phosphoproteomics studies carried out through mass spectrometry and available in the PhosphoSitePlus database. This step resulted in a very promising list of 132 putative phosphorylation sites for Cdk5, of which, 51 are specifically phosphorylated in brain tissue, and some are involved in functions regulated by Cdk5 such as axonal growth, synaptic plasticity and neurotransmission. Other phosphorylation sites in our list suggest that Cdk5 might regulate processes through mechanisms not previously recognized such as the control of mRNA splicing.  相似文献   

13.
The Cdk-related protein kinase Pctaire1/Cdk16 is abundantly expressed in brain, testis and skeletal muscle. Functional roles of Pctaire1 such as regulation of neuron migration and neurite outgrowth thus far have been mainly elucidated in the field of nervous system development. Although these regulations based on cytoskeletal rearrangements evoke a possible role of Pctaire1 in the development of skeletal muscle, little is known in this regard. In this study, we demonstrated that myogenic differentiation and subsequent fusion is promoted in Pctaire1 overexpressing cells, and conversely, is inhibited in the knockdown cells. Furthermore, our findings suggest that Pctaire1 exerts promyogenic effects by regulating myoblast migration and process formation during skeletal myogenesis.  相似文献   

14.
Learning and memory are processes by which organisms acquire, retain and retrieve information. They result in modifications of behavior in response to new or previously encountered stimuli thereby enabling adaptation to a permanently changing environment. Protein phosphorylation has long been known to play a key role in triggering synaptic changes underlying learning and memory. Although intracellular phosphorylation and dephosphorylation is orchestrated by a complex network of interactions between a number of protein kinases and phosphatases, significant advances in the understanding of neuronal mechanisms underlying learning and memory have been achieved by investigating the actions of individual molecules under defined experimental conditions, brain areas, neuronal cells and their subcellular compartments. On the basis of these approaches, the cyclic AMP protein kinase (PKA), protein kinase C (PKC) and extracellularly regulated protein kinases 1 and 2 (Erk-1/2) have been identified as the core signaling pathways in memory consolidation. Here we review recent findings demonstrating an important novel role for Cdk5 in learning and memory. We suggest that some of the well-characterized roles of Cdk5 during neurodevelopmental processes, such as interactions with distinct cytoplasmic and synaptic target molecules, may be also involved in synaptic plasticity underlying memory consolidation within the adult central nervous system.  相似文献   

15.
Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase that plays important roles during central nervous system development. Cdk5 kinase activity depends on its regulatory partners, p35 or p39, which are prominently expressed in the central nervous system. We have previously demonstrated the involvement of Cdk5 in the regulation of acetylcholine receptor expression at the neuromuscular junction, suggesting a novel functional role of Cdk5 at the synapse. Here we report the identification of Pctaire1, a member of the Cdk-related kinase family, as a p35-interacting protein in muscle. Binding of Pctaire1 to p35 can be demonstrated by in vitro binding assay and co-immunoprecipitation experiments. Pctaire1 is associated with p35 in cultured myotubes and skeletal muscle, and is concentrated at the neuromuscular junction. Furthermore, Pctaire1 can be phosphorylated by the Cdk5/p25 complex, and serine 95 is the major phosphorylation site. In brain and muscle of Cdk5 null mice, Pctaire1 activity is significantly reduced. Moreover, Pctaire1 activity is increased following preincubation with brain extracts and phosphorylation by the Cdk5/p25 complex. Taken together, our findings demonstrate that Pctaire1 interacts with p35, both in vitro and in vivo, and that phosphorylation of Pctaire1 by Cdk5 enhances its kinase activity.  相似文献   

16.
Many cell cycle genes are known to play important roles in regulating proliferation in the nervous system, however, a growing body of research has proposed that these genes have diverse functions beyond cell cycle regulation. Through the study of new genetic models, cell cycle regulatory genes have been shown to impact on a number of processes during nervous system development including apoptosis, differentiation, and, most recently, neuronal migration. Here we emphasize that the proposed roles for cell cycle genes in neuronal differentiation and migration are not the consequence of deregulated cell cycle, but represent truly novel functions for cell cycle genes.  相似文献   

17.
Cyclin-dependent kinase 5 (cdk5) is a proline-directed serine/threonine kinase that is activated mostly by association with its activators, p35 and p39. Initially projected as a neuron-specific kinase, cdk5 is expressed ubiquitously and its kinase activity solely depends on the presence of its activators, which are also found in some non-neuronal tissues. As a multifunctional protein, cdk5 has been linked to axonogenesis, cell migration, exocytosis, neuronal differentiation and apoptosis. Cdk5 plays a critical role in functions other than normal physiology, especially in neurodegeneration. Its contribution to both normal physiological as well as pathological processes is mediated by its specific substrates. Cdk5-null mice are embryonically lethal, therefore making it difficult to study precisely what cdk5 does to the nervous system at early stages of development, be it neuron development or programmed cell death. Zebrafish model system bypasses the impediment, as it is amenable to reverse genetics studies. One of the functions that we have followed for the cdk5 ortholog in zebrafish in vivo is its effect on the Rohon-Beard (RB) neurons. RB neurons are the primary sensory spinal neurons that die during the first two days of zebrafish development eventually to be replaced by the dorsal root ganglia (DRG). Based on ours studies and others’, here we discuss possible mechanisms that may be involved in cdk5’s role in RB neuron development and survival.  相似文献   

18.
Low voltage-activated (LVA) T-type Ca2+ channels activate in response to subthreshold membrane depolarizations and therefore represent an important source of Ca2+ influx near the resting membrane potential. In neurons, these proteins significantly contribute to control relevant physiological processes including neuronal excitability, pacemaking and post-inhibitory rebound burst firing. Three subtypes of T-type channels (Cav3.1 to Cav3.3) have been identified, and using functional expression of recombinant channels diverse studies have validated the notion that T-type Ca2+ channels can be modulated by various endogenous ligands as well as by second messenger pathways. In this context, the present study reveals a previously unrecognized role for cyclin-dependent kinase 5 (Cdk5) in the regulation of native T-type channels in N1E-115 neuroblastoma cells, as well as recombinant Cav3.1channels heterologously expressed in HEK-293 cells. Cdk5 and its co-activators play critical roles in the regulation of neuronal differentiation, cortical lamination, neuronal cell migration and axon outgrowth. Our results show that overexpression of Cdk5 causes a significant increase in whole cell patch clamp currents through T-type channels in N1E-115 cells, while siRNA knockdown of Cdk5 greatly reduced these currents. Consistent with this, overexpression of Cdk5 in HEK-293 cells stably expressing Cav3.1channels upregulates macroscopic currents. Furthermore, using site-directed mutagenesis we identified a major phosphorylation site at serine 2234 within the C-terminal region of the Cav3.1subunit. These results highlight a novel role for Cdk5 in the regulation of T-type Ca2+ channels.  相似文献   

19.
B-lymphocytes produce protective antibodies but also contribute to autoimmunity. In particular, marginal zone (MZ) B cells recognize both microbial components and self-antigens. B cell trafficking is critical for B cell activation and is controlled by chemoattactants such as CXCL13 and sphingosine 1-phosphate (S1P). The related tyrosine kinases focal adhesion kinase (FAK) and proline-rich tyrosine kinase (Pyk2) regulate cell migration and adhesion but their roles in B cells are not fully understood. Using a novel Pyk2-selective inhibitor described herein (PF-719), as well as a FAK-selective inhibitor, we show that both Pyk2 and FAK are important for CXCL13- and S1P-induced migration of B-2 cells and MZ B cells. In contrast, LFA-1-mediated adhesion required only Pyk2 whereas activation of the Akt pro-survival kinase required FAK but not Pyk2. Thus Pyk2 and FAK mediate critical processes in B cells and these inhibitors can be used to further elucidate their functions in B cells.  相似文献   

20.
Cdk5 (cyclin-dependent kinase 5 or initially NCLK for neuronal CDC2-like kinase) was switched twice at its birth nearly twenty years ago: first it was thought to be cyclin-dependent, second it was assumed to be primarily of importance in neuronal cells—both turned out not to be the case. In this review we want to discuss issues of pharmacological inhibition, to highlight the versatile roles, and to summarize the growing evidence for the functional importance of Cdk5 in non-neuronal tissues, such as blood cells, tumor cells, epithelial cells, the vascular endothelium, testis, adipose and endocrine tissues. The organizing principles we follow are apoptosis/cell death, migration/motility, aspects of inflammation, and, finally, secretion/metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号