首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Glucagon is important for regulating lipid metabolism in part through its inhibition of fatty acid synthesis in adipocytes. Acetyl-CoA carboxylase 1 (ACC1) is the rate-limiting enzyme for fatty acid synthesis. Glucagon has been proposed to activate cAMP-dependent protein kinase A (PKA), which phosphorylates ACC1 to attenuate the lipogenic activity of ACC1. Because AMP-activated protein kinase (AMPK) also inhibits fatty acid synthesis by phosphorylation of ACC1, we examined the involvement of AMPK and its upstream kinase in the glucagon-elicited signaling in adipocytes in vitro and in vivo. LC-MS-MS analysis suggested that ACC1 was phosphorylated only at Ser(79), an AMPK-specific site, in glucagon-treated adipocytes. Pharmacological inhibitors and siRNA knockdown of AMPK or PKA in adipocytes demonstrate that glucagon regulates ACC1 and ACC2 activity through AMPK but not PKA. By using Ca(2+)/calmodulin-dependent protein kinase kinase-β knockout (CaMKKβ(-/-)) mice and cultured adipocytes, we further show that glucagon activates the CaMKKβ/AMPK/ACC cascade. Additionally, fasting increases the phosphorylation of AMPK and ACC in CaMKKβ(+/+) but not CaMKKβ(-/-) mice. These results indicate that CaMKKβ/AMPK signaling is an important molecular component in regulating lipid metabolism in adipocytes responding to glucagon and could be a therapeutic target for the dysregulation of energy storage.  相似文献   

2.
Acetyl-CoA carboxylase (ACC) is regarded in liver and adipose tissue to be the rate-limiting enzyme for fatty acid biosynthesis; however, in heart tissue it functions as a regulator of fatty acid oxidation. Because the control of fatty acid oxidation is important to the functioning myocardium, the regulation of ACC is a key issue. Two cardiac isoforms of ACC exist, with molecular masses of 265 kDa and 280 kDa (ACC265 and ACC280). In this study, these proteins were purified from rat heart and used in subsequent phosphorylation and immunoprecipitation experiments. Our results demonstrate that 5' AMP-activated protein kinase (AMPK) is able to phosphorylate both ACC265 and ACC280, resulting in an almost complete loss of ACC activity. Although cAMP-dependent protein kinase phosphorylated only ACC280, a dramatic loss of ACC activity was still observed, suggesting that ACC280 contributes most, if not all, of the total heart ACC activity. ACC280 and ACC265 copurified under all experimental conditions, and purification of heart ACC also resulted in the specific copurification of the alpha2 isoform of the catalytic subunit of AMPK. Although both catalytic subunits of AMPK were expressed in crude heart homogenates, our results suggest that alpha2, and not alpha1, is the dominant isoform of AMPK catalytic subunit regulating ACC in the heart. Immunoprecipitation studies demonstrated that specific antibodies for both ACC265 and ACC280 were able to coimmunoprecipitate the alternate isoform along with the alpha2 isoform of AMPK. Taken together, the immunoprecipitation and the purification studies suggest that the two isoforms of ACC in the heart exist in a heterodimeric structure, and that this structure is tightly associated with the alpha2 subunit of AMPK.  相似文献   

3.
The purpose of this study was to investigate the effects of long-chain fatty acids (LCFAs) on AMP-activated protein kinase (AMPK) and acetyl-coenzyme A carboxylase (ACC) phosphorylation and beta-oxidation in skeletal muscle. L6 rat skeletal muscle cells were exposed to various concentrations of palmitate (1-800 microM). Subsequently, ACC and AMPK phosphorylation and fatty acid oxidation were measured. A 2-fold increase in both AMPK and ACC phosphorylation was observed in the presence of palmitate concentrations as low as 10 microM, which was also accompanied by a significant increase in fatty acid oxidation. The effect of palmitate on AMPK and ACC phosphorylation was dose-dependent, reaching maximum increases of 3.5- and 4.5-fold, respectively. Interestingly, ACC phosphorylation was coupled with AMPK activation at palmitate concentrations ranging from 10 to 100 microM; however, at concentrations >200 microM, ACC phosphorylation and fatty acid oxidation remained high even after AMPK phosphorylation was completely prevented by the use of a selective AMPK inhibitor. This indicates that LCFAs regulate ACC activity by AMPK-dependent and -independent mechanisms, based on their abundance in skeletal muscle cells. Here, we provide novel evidence that the AMPK/ACC pathway may operate as a mechanism to sense and respond to the lipid energy charge of skeletal muscle cells.  相似文献   

4.
5.
AMP-activated protein kinase (AMPK) is a metabolic stress-sensing protein kinase responsible for coordinating metabolism and energy demand. In rodents, exercise accelerates fatty acid metabolism, enhances glucose uptake, and stimulates nitric oxide (NO) production in skeletal muscle. AMPK phosphorylates and inhibits acetyl-coenzyme A (CoA) carboxylase (ACC) and enhances GLUT-4 translocation. It has been reported that human skeletal muscle malonyl-CoA levels do not change in response to exercise, suggesting that other mechanisms besides inhibition of ACC may be operating to accelerate fatty acid oxidation. Here, we show that a 30-s bicycle sprint exercise increases the activity of the human skeletal muscle AMPK-alpha1 and -alpha2 isoforms approximately two- to threefold and the phosphorylation of ACC at Ser(79) (AMPK phosphorylation site) approximately 8.5-fold. Under these conditions, there is also an approximately 5.5-fold increase in phosphorylation of neuronal NO synthase-mu (nNOSmu;) at Ser(1451). These observations support the concept that inhibition of ACC is an important component in stimulating fatty acid oxidation in response to exercise and that there is coordinated regulation of nNOSmu to protect the muscle from ischemia/metabolic stress.  相似文献   

6.
AMP-activated protein kinase (AMPK) is an energy-sensing enzyme that has been implicated as a key factor for controlling intracellular lipids and glucose metabolism. β-Sitosterol, a plant sterol known to prevent cardiovascular disease was identified from Schizonepeta tenuifolia to an AMPK activator. In L6 myotube cells, β-sitosterol significantly increased phosphorylation of the AMPKα subunit and acetyl-CoA carboxylase (ACC) with stimulating glucose uptake. In contrast, β-sitosterol treatment reduced intracellular levels of triglycerides and cholesterol in L6 cells. These effects were all reversed by pretreatment with AMPK inhibitor Compound C or LKB1 destabilizer radicicol. Similarly, β-sitosterol-induced phosphorylation of AMPK and ACC was not increased in HeLa cells lacking LKB1. These results together suggest that β-sitosterol-mediated enhancement of glucose uptake and reduction of triglycerides and cholesterol in L6 cells is predominantly accomplished by LKB1-mediated AMPK activation. Our findings further reveal a molecular mechanism underlying the beneficial effects of β-sitosterol on glucose and lipid metabolism.  相似文献   

7.
C75, a synthetic inhibitor of fatty acid synthase (FAS), is hypothesized to alter the metabolism of neurons in the hypothalamus that regulate feeding behavior to contribute to the decreased food intake and profound weight loss seen with C75 treatment. In the present study, we characterize the suitability of primary cultures of cortical neurons for studies designed to investigate the consequences of C75 treatment and the alteration of fatty acid metabolism in neurons. We demonstrate that in primary cortical neurons, C75 inhibits FAS activity and stimulates carnitine palmitoyltransferase-1 (CPT-1), consistent with its effects in peripheral tissues. C75 alters neuronal ATP levels and AMP-activated protein kinase (AMPK) activity. Neuronal ATP levels are affected in a biphasic manner with C75 treatment, decreasing initially, followed by a prolonged increase above control levels. Cerulenin, a FAS inhibitor, causes a similar biphasic change in ATP levels, although levels do not exceed control. C75 and cerulenin modulate AMPK phosphorylation and activity. TOFA, an inhibitor of acetyl-CoA carboxylase, increases ATP levels, but does not affect AMPK activity. Several downstream pathways are affected by C75 treatment, including glucose metabolism and acetyl-CoA carboxylase (ACC) phosphorylation. These data demonstrate that C75 modulates the levels of energy intermediates, thus, affecting the energy sensor AMPK. Similar effects in hypothalamic neurons could form the basis for the effects of C75 on feeding behavior.  相似文献   

8.
S-Allyl cysteine (SAC), a nontoxic garlic compound, has a variety of pharmacological properties, including antioxidant and hepatoprotective properties. In this report, we provide evidence that SAC prevented free fatty acid (FFA)-induced lipid accumulation and lipotoxicity in hepatocytes. SAC significantly reduced FFA-induced generation of reactive oxygen species, caspase activation and subsequent cell death. Also, SAC mitigated total cellular lipid and triglyceride accumulation in steatotic HepG2 cells. SAC significantly increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in HepG2 cells. Additionally, SAC down-regulated the levels of sterol regulatory element binding protein-1 (SREBP-1) and its target genes, including ACC and fatty acid synthase. Use of a specific inhibitor showed that SAC activated AMPK via calcium/calmodulin-dependent kinase kinase (CaMKK) and silent information regulator T1. Our results demonstrate that SAC activates AMPK through CaMKK and inhibits SREBP-1-mediated hepatic lipogenesis. Therefore, SAC has therapeutic potential for preventing nonalcoholic fatty liver disease.  相似文献   

9.
Wan Lee 《FEBS letters》2010,584(5):968-214
C1qTNF-related proteins (CTRPs) are involved in diverse processes including metabolism, inflammation host defense, apoptosis, cell differentiation, autoimmunity, hibernation, and organogenesis. However, the physiological role of CTRP6 remains poorly understood. Here we demonstrate that the globular domain of CTRP6 mediates the phosphorylation and activation of the 5′-AMP-activated protein kinase (AMPK) in skeletal muscle cells. In parallel with the activation of AMPK, CTRP6 induces the phosphorylation of acetyl coenzyme A carboxylase (ACC) and fatty acid oxidation in myocytes. Thus, CTRP6 plays a role in fatty acid metabolism via the AMPK-ACC pathway.  相似文献   

10.
11.
Fatty acid transport proteins are integral membrane acyl-CoA synthetases implicated in adipocyte fatty acid influx and esterification. FATP-dependent production of AMP was evaluated using FATP4 proteoliposomes, and fatty acid-dependent activation of AMP-activated protein kinase (AMPK) was assessed in 3T3-L1 adipocytes. Insulin-stimulated fatty acid influx (palmitate or arachidonate) into cultured adipocytes resulted in an increase in the phosphorylation of AMPK and its downstream target acetyl-CoA carboxylase. Consistent with the activation of AMPK, palmitate uptake into 3T3-L1 adipocytes resulted in an increase in intracellular [AMP]/[ATP]. The fatty acid-induced increase in AMPK activation was attenuated in a cell line expressing shRNA targeting FATP1. Taken together, these results demonstrate that, in adipocytes, insulin-stimulated fatty acid influx mediated by FATP1 regulates AMPK and provides a potential regulatory mechanism for balancing de novo production of fatty acids from glucose metabolism with influx of preformed fatty acids via phosphorylation of acetyl-CoA carboxylase.  相似文献   

12.
一磷酸腺苷激活蛋白激酶(AMPK)是调节体内代谢平衡的丝氨酸/苏氨酸蛋白激酶。应用酵母双杂交系统,以AMPKβ1亚基作为"诱饵"蛋白,筛选均一化的人源cDNA文库,寻找与AMPK相互作用的蛋白。通过对150个阳性克隆进行验证,最终得到了63个与AMPKβ1亚基相互作用的蛋白。其中,包括代谢酶、转录因子或转录相关蛋白、蛋白转运相关蛋白、GTP结合蛋白、支架蛋白、细胞周期调节蛋白、RNA结合蛋白等以及一些未知功能的蛋白。从酵母双杂交的结果来看,AMPK不仅在代谢领域,而且在许多非代谢领域,如核受体及其它转录因子的调节、信号转导、DNA修复及细胞周期调节等,可能都起到非常重要的作用。  相似文献   

13.
AMP-activated protein kinase (AMPK) has previously been demonstrated to phosphorylate and inactivate skeletal muscle acetyl-CoA carboxylase (ACC), the enzyme responsible for synthesis of malonyl-CoA, an inhibitor of carnitine palmitoyltransferase 1 and fatty acid oxidation. Contraction-induced activation of AMPK with subsequent phosphorylation/inactivation of ACC has been postulated to be responsible in part for the increase in fatty acid oxidation that occurs in muscle during exercise. These studies were designed to answer the question: Does phosphorylation of ACC by AMPK make palmitoyl-CoA a more effective inhibitor of ACC? Purified rat muscle ACC was subjected to phosphorylation by AMPK. Activity was determined on nonphosphorylated and phosphorylated ACC preparations at acetyl-CoA concentrations ranging from 2 to 500 microM and at palmitoyl-CoA concentrations ranging from 0 to 100 microM. Phosphorylation resulted in a significant decline in the substrate saturation curve at all palmitoyl-CoA concentrations. The inhibitor constant for palmitoyl-CoA inhibition of ACC was reduced from 1.7 +/- 0.25 to 0.85 +/- 0.13 microM as a consequence of phosphorylation. At 0.5 mM citrate, ACC activity was reduced to 13% of control values in response to the combination of phosphorylation and 10 muM palmitoyl-CoA. Skeletal muscle ACC is more potently inhibited by palmitoyl-CoA after having been phosphorylated by AMPK. This may contribute to low-muscle malonyl-CoA values and increasing fatty acid oxidation rates during long-term exercise when plasma fatty acid concentrations are elevated.  相似文献   

14.
Acetyl-CoA carboxylases (ACCs) have been highlighted as therapeutic targets for obesity and diabetes, as they play crucial roles in fatty acid metabolism. ACC activity is regulated through the short-term mechanism of inactivation by reversible phosphorylation. Here, we report the crystal structures of the biotin carboxylase (BC) domain of human ACC2 phosphorylated by AMP-activated protein kinase (AMPK). The phosphorylated Ser222 binds to the putative dimer interface of BC, disrupting polymerization and providing the molecular mechanism of inactivation by AMPK. We also determined the structure of the human BC domain in complex with soraphen A, a macrocyclic polyketide natural product. This structure shows that the compound binds to the binding site of phosphorylated Ser222, implying that its inhibition mechanism is the same as that of phosphorylation by AMPK.  相似文献   

15.
AMP-activated protein kinase (AMPK) plays a key role in maintaining intracellular and whole-body energy homeostasis. Activation of AMPK has been shown to ameliorate the symptoms of metabolic diseases, such as type 2 diabetes and obesity. Here we show that gambogic acid (GB), a known antitumor agent, activates AMPK by increasing the phosphorylation of AMPKα and its downstream substrate ACC in various cell lines. Further study revealed that GB stimulated AMPK activity independent of upstream kinases. Moreover, the AMPK inhibitor, compound C, has no effects on the GB-induced AMPK activation. We also found that GB promptly increased intracellular ROS level, and antioxidants attenuated the ROS production. Interestingly, only the thiol antioxidants significantly abolished GB-enhanced AMPK activation. In addition, analysis of binding and dissociation kinetics indicated that GB bound to the AMPKα subunit. Collectively, these results suggest that GB may be a novel direct activator of AMPK.  相似文献   

16.
The AMP-activated protein kinase (AMPK) plays an important role in fuel metabolism in exercising skeletal muscle and possibly in the islet cell with respect to insulin secretion. Some of these effects are due to AMPK-mediated regulation of cellular malonyl-CoA content, ascribed to the ability of AMPK to phosphorylate and inactivate acetyl-CoA carboxylase (ACC), reducing malonyl-CoA formation. It has been suggested that AMPK may also regulate malonyl-CoA content by activation of malonyl-CoA decarboxylase (MCD). We have investigated the potential regulation of MCD by AMPK in exercising skeletal muscle, in an islet cell line, and in vitro. Three rat fast-twitch muscle types were studied using two different contraction methods or after exposure to the AMPK activator AICAR. Although all muscle treatments resulted in activation of AMPK and phosphorylation of ACC, no stimulus had any effect on MCD activity. In 832/13 INS-1 rat islet cells, two treatments that result in the activation of AMPK, namely low glucose and AICAR, also had no discernable effect on MCD activity. Last, AMPK did not phosphorylate in vitro either recombinant MCD or MCD immunoprecipitated from skeletal muscle or heart. We conclude that MCD is not a substrate for AMPK in fast-twitch muscle or the 832/13 INS-1 islet cell line and that the principal mechanism by which AMPK regulates malonyl-CoA content is through its regulation of ACC.  相似文献   

17.
Certain amino acids, like glutamine and leucine, induce an anabolic response in liver. They activate p70 ribosomal protein S6 kinase (p70S6K) and acetyl-CoA carboxylase (ACC) involved in protein and fatty acids synthesis, respectively. In contrast, the AMP-activated protein kinase (AMPK), which senses the energy state of the cell and becomes activated under metabolic stress, inactivates by phosphorylation key enzymes in biosynthetic pathways thereby conserving ATP. In this paper, we studied the effect of AMPK activation and of protein phosphatase inhibitors, on the amino-acid-induced activation of p70S6K and ACC in hepatocytes in suspension. AMPK was activated under anoxic conditions or by incubation with 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAr) or oligomycin, an inhibitor of mitochondrial oxidative phosphorylation. Incubation of hepatocytes with amino acids activated p70S6K via multiple phosphorylation. It also activated ACC by a phosphatase-dependent mechanism but did not modify AMPK activation. Conversely, the amino-acid-induced activation of both ACC and p70S6K was blocked or reversed when AMPK was activated. This AMPK activation increased Ser79 phosphorylation in ACC but decreased Thr389 phosphorylation in p70S6K. Protein phosphatase inhibitors prevented p70S6K activation when added prior to the incubation with amino acids, whereas they enhanced p70S6K activation when added after the preincubation with amino acids. It is concluded that (a) AMPK blocks amino-acid-induced activation of ACC and p70S6K, directly by phosphorylating Ser79 in ACC, and indirectly by inhibiting p70S6K phosphorylation, and (b) both activation and inhibition of protein phosphatases are involved in the activation of p70S6K by amino acids. p70S6K adds to an increasing list of targets of AMPK in agreement with the inhibition of energy-consuming biosynthetic pathways.  相似文献   

18.
The AMP-activated protein kinase (AMPK) and cAMP signaling systems are both key regulators of cellular metabolism. In this study, we show that AMPK activity is attenuated in response to cAMP-elevating agents through modulation of at least two of its alpha subunit phosphorylation sites, viz. alpha-Thr(172) and alpha1-Ser(485)/alpha2-Ser(491), in the clonal beta-cell line INS-1 as well as in mouse embryonic fibroblasts and COS cells. Forskolin, isobutylmethylxanthine, and the glucose-dependent insulinotropic peptide inhibited AMPK activity and reduced phosphorylation of the activation loop alpha-Thr(172) via inhibition of calcium/calmodulin-dependent protein kinase kinase-alpha and -beta, but not LKB1. These agents also enhanced phosphorylation of alpha-Ser(485/491) by the cAMP-dependent protein kinase. AMPK alpha-Ser(485/491) phosphorylation was necessary but not sufficient for inhibition of AMPK activity in response to forskolin/isobutylmethylxanthine. We show that AMPK alpha-Ser(485/491) can be a site for autophosphorylation, which may play a role in limiting AMPK activation in response to energy depletion or other regulators. Thus, our findings not only demonstrate cross-talk between the cAMP/cAMP-dependent protein kinase and AMPK signaling modules, but also describe a novel mechanism by which multisite phosphorylation of AMPK contributes to regulation of its enzyme activity.  相似文献   

19.
We have studied the mechanism of A-769662, a new activator of AMP-activated protein kinase (AMPK). Unlike other pharmacological activators, it directly activates native rat AMPK by mimicking both effects of AMP, i.e. allosteric activation and inhibition of dephosphorylation. We found that it has no effect on the isolated alpha subunit kinase domain, with or without the associated autoinhibitory domain, or on interaction of glycogen with the beta subunit glycogen-binding domain. Although it mimics actions of AMP, it has no effect on binding of AMP to the isolated Bateman domains of the gamma subunit. The addition of A-769662 to mouse embryonic fibroblasts or primary mouse hepatocytes stimulates phosphorylation of acetyl-CoA carboxylase (ACC), effects that are completely abolished in AMPK-alpha1(-/-)alpha2(-/-) cells but not in TAK1(-/-) mouse embryonic fibroblasts. Phosphorylation of AMPK and ACC in response to A-769662 is also abolished in isolated mouse skeletal muscle lacking LKB1, a major upstream kinase for AMPK in this tissue. However, in HeLa cells, which lack LKB1 but express the alternate upstream kinase calmodulin-dependent protein kinase kinase-beta, phosphorylation of AMPK and ACC in response to A-769662 still occurs. These results show that in intact cells, the effects of A-769662 are independent of the upstream kinase utilized. We propose that this direct and specific AMPK activator will be a valuable experimental tool to understand the physiological roles of AMPK.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号