首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The blue copper protein rusticyanin isolated from the acidophilic proteobacterium Thiobacillus ferrooxidans displays a pH-dependent redox midpoint potential with a pK value of 7 on the oxidized form of the protein. The nature of the alterations of optical and EPR spectra observed above the pK value indicated that the redox-linked deprotonation occurs on the epsilon-nitrogen of the histidine ligands to the copper ion. Complex formation between rusticyanin and its probable electron transfer partner, cytochrome c(4), induced a decrease of rusticyanin's redox midpoint potential by more than 100 mV together with spectral changes similar to those observed above the pK value of the free form. Complex formation thus substantially modifies the pK value of the surface-exposed histidine ligand to the copper ion and thereby tunes the redox midpoint potential of the copper site. Comparisons with reports on other blue copper proteins suggest that the surface-exposed histidine ligand is employed as a redox tuning device by many members of this group of soluble electron carriers.  相似文献   

3.
It has recently been shown that transition metal cations Zn2+ and Cu2+ bind to histidine residues of nerve growth factor (NGF) and other neurotrophins (a family of proteins important for neuronal survival) leading to their inactivation. Experimental data and theoretical considerations indicate that transition metal cations may destabilize the ionic form of histidine residues within proteins, thereby decreasing their pK(a) values. Because the release of transition metal cations and acidification of the local environment represent important events associated with brain injury, the ability of Zn2+ and Cu2+ to bind to neurotrophins in acidic conditions may alter neuronal death following stroke or as a result of traumatic injury. To test the hypothesis that metal ion binding to neurotrophins is influenced by pH, the effects of Zn2+ and Cu2+ on NGF conformation, receptor binding and NGF tyrosine kinase (trkA) receptor signal transduction were examined under conditions mimicking cerebral acidosis (pH range 5.5-7.4). The inhibitory effect of Zn2+ on biological activities of NGF is lost under acidic conditions. Conversely, the binding of Cu2+ to NGF is relatively independent of pH changes within the studied range. These data demonstrate that Cu2+ has greater binding affinity to NGF than Zn2+ at reduced pH, consistent with the higher affinity of Cu2+ for histidine residues. These findings suggest that cerebral acidosis associated with stroke or traumatic brain injury could neutralize the Zn2+-mediated inactivation of NGF, whereas corresponding pH changes would have little or no influence on the inhibitory effects of Cu2+. The importance of His84 of NGF for transition metal cation binding is demonstrated, confirming the involvement of this residue in metal ion coordination.  相似文献   

4.
Light absorbed by bacteriorhodopsin (bR) leads to a proton being released at the extracellular surface of the purple membrane. Structural studies as well as studies of mutants of bR indicate that several groups form a pathway for proton transfer from the Schiff base to the extracellular surface. These groups include D85, R82, E204, E194, and water molecules. Other residues may be important in tuning the initial state pK(a) values of these groups and in mediating light-induced changes of the pK(a) values. A potentially important residue is R134: it is located close to E194 and might interact electrostatically to affect the pK(a) of E194 and light-induced proton release. In this study we investigated effects of the substitution of R134 with a histidine on light-induced proton release and on the photocycle transitions associated with proton transfer. By measuring the light-induced absorption changes versus pH, we found that the R134H mutation results in an increase in the pK(a) of the proton release group in both the M (0.6 pK unit) and O (0.7 pK unit) intermediate states. This indicates the importance of R134 in tuning the pK(a) of the group that, at neutral and high pH, releases the proton upon M formation (fast proton release) and that, at low pH, releases the proton simultaneously with O decay (slow proton release). The higher pK(a) of the proton release group found in R134H correlates with the slowing of the rate of the O --> bR transition at low pH and probably is the cause of this slowing. The pH dependence of the fraction of the O intermediate is altered in R134H compared to the WT but is similar to that in the E194D mutant: a very small amount of O is present at neutral pH, but the fraction of O increases greatly upon decreasing the pH. These results provide further support for the hypothesis that the O --> bR transition is controlled by the rate of deprotonation of the proton release group. These data also provide further evidence for the importance of the R134-E194 interaction in modulating proton release from D85 after light has led to its being protonated.  相似文献   

5.
The primary goal of this study was to gain a better understanding of the effect of environment and ionic strength on the pK values of histidine residues in proteins. The salt-dependence of pK values for two histidine residues in ribonuclease Sa (RNase Sa) (pI=3.5) and a variant in which five acidic amino acids have been changed to lysine (5K) (pI=10.2) was measured and compared to pK values of model histidine-containing peptides. The pK of His53 is elevated by two pH units (pK=8.61) in RNase Sa and by nearly one pH unit (pK=7.39) in 5K at low salt relative to the pK of histidine in the model peptides (pK=6.6). The pK for His53 remains elevated in 1.5M NaCl (pK=7.89). The elevated pK for His53 is a result of screenable electrostatic interactions, particularly with Glu74, and a non-screenable hydrogen bond interaction with water. The pK of His85 in RNase Sa and 5K is slightly below the model pK at low salt and merges with this value at 1.5M NaCl. The pK of His85 reflects mainly effects of long-range Coulombic interactions that are screenable by salt. The tautomeric states of the neutral histidine residues are changed by charge reversal. The histidine pK values in RNase Sa are always higher than the pK values in the 5K variant. These results emphasize that the net charge of the protein influences the pK values of the histidine residues. Structure-based pK calculations capture the salt-dependence relatively well but are unable to predict absolute histidine pK values.  相似文献   

6.
It is known that the pH dependence of conductance for the rat potassium channel Kv1.4 is susbstantially reduced upon mutation of either H508 or K532. These residues lie in the extracellular mouth of the channel pore. We have used continuum electrostatics to investigate their interactions with K(+) sites in the pore. The predicted scale of interactions between H508/K532 and potassium sites is sufficient to significantly alter potassium occupancy and thus channel function. We interpret the effect of K532 mutation as indicating that the pH-dependent effect requires not only an ionisable group with a suitable pK(a) value (i.e. histidine), but also that other charged groups set the potential profile at a threshold level. This hypothesis is examined in the context of pH dependence for other members of the Kv1 family, and may represent a general tool with which to study potassium channels.  相似文献   

7.
Proton NMR spectra of cytochrome c peroxidase (CcP) isolated from yeast (wild type) and two Escherichia coli expressed proteins, the parent expressed protein [CcP(MI)] and the site-directed mutant CcP(MI,D235N) (Asp-235----Asn-235), have been examined. At neutral pH and in the presence of only potassium phosphate buffer and potassium nitrate, wild-type Ccp and CcP(MI) demonstrate nearly identical spectra corresponding to normal (i.e., "unaged") high-spin ferric peroxidase. In contrast, the mutant protein displays a spectrum characteristic of a low-spin form, probably a result of hydroxide ligation. Asp-235 is hydrogen-bonded to the proximal heme ligand, His-175. Changing Asp-235 to Asn results in alteration of the pK for formation of the basic form of CcP. Thus, changes in proximal side structure mediate the chemistry of the distal ligand binding site. All three proteins bind F-, N3-, and CN- ions, although the affinity of the mutant protein (D235N) for fluoride ion appears to be much higher than that of the other two proteins. Analysis of proton NMR spectra of the cyanide ligated forms leads to the conclusion that the mutant protein (D235N) possesses a more neutral proximal histidine imidazole ring than does either wild-type CcP or CcP(MI). It confirms that an important feature of the cytochrome c peroxidase structure is at least partial, and probably full, imidazolate character for the proximal histidine (His-175).  相似文献   

8.
A competitive labelling method (Kaplan et al., 1971), using tritiated 1-fluoro-2,4-dinitrobenzene as the labelling reagent, is described for determining the ionization constants and reactivities of individual histidine residues in proteins. When this method was applied to the two histidines of alpha-chymotrypsin, histidine-57 was found to have pK(a) 6.8 and a reactivity ten times that of alpha-N-acetyl-l-histidine. Histidine-40 had pK(a) 6.7 and a reactivity approximately six times that of alpha-N-acetyl-l-histidine. Between pH7.5 and 8 the reactivities of both histidines decrease simultaneously to approximately that of alpha-N-acetyl-l-histidine. The high reactivities of the histidines are attributed to hydrogen bonding, which increases the nucleophilicity of the imidazole ring. The sharp decrease in reactivity between pH7.5 and 8 is attributed to a conformational change that disrupts the hydrogen bonding by these residues. The reactivity data support the proposal of a charge-relay mechanism involving histidine-57 (Blow et al., 1969), which makes serine-195 more nucleophilic but indicates that this system is fully operative only in the enzyme-substate complex.  相似文献   

9.
The acoustic absorption of protein solutions in the presence of phosphate and other buffering ions has been studied in the physiological pH range. Buffers containing hydroxyl residues as titratable groups cause a pronounced increase of protein sound absorption, which is attributed to relaxation processes of proton transfer reactions between buffer ions and accessible imidazole and -amino groups of the protein surface. Amino group based buffers like Good's buffers do not induce additional sound absorption. Measurement of the ultrasonic absorption as a function of pH and of buffer concentration, and corresponding parameter fitting of the equation describing proton transfer relaxation processes has been used to evaluate equilibrium parameters. For the imidazole group of the amino acid histidine a pK value of 6.22 and for the imidazole group of the protein lysozyme a pK value of 5.71 have been determined. In hemoglobin the ligand-linked pK changes have been monitored by recording ultrasonic titration curves.  相似文献   

10.
Four titrating histidine ring C2 and C4 proton resonances are observed in 220 MHz proton NMR spectra of human metmyoglobin as a function of pH. Values of ionization constants determined from the NMR titration data using an equation describing a simple proton association-dissociation equilibrium are curves (1) 6.6, (2) 7.0, (3) 5.8, and (4) 7.4. Four histidine residues have also been found to be solvent-accessible in human metmyoglobin by carboxymethylation studies (Harris, C.M., and Hill, R.L. (1969) J. Biol. Chem. 244, 2195-2203). Two of the titration curves (3 and 4) deviate significantly from the chemical shift values normally observed for histidine C2 proton resonances. Curve 3, with a low pKa, is shifted downfield at high values of pH and also exhibits a second minor inflection with a pKa value of 8.8. On the other hand, the high pKa curve, 4, is shifted upfield at all values of pH. The characteristics of the NMR titration curves with the lowest and highest pKa values (3 and4) are very similar to curves observed previously with sperm whale and horse metmyoglobins (Cohen, J.S., Hagenmaier, H., Pollard, H., and Schechter, A.N. (1972) J. Mol. Biol. 71, 513-519). These results indicate that the histidine residues from which these curves are derived have unusual and characteristic environments in this series of homologous proteins. The NMR spectra of all three metmyoglobins are changed extensively as a result of azide ion binding, indicating conformational changes affecting the environments of several imidazole side chains. The presence of azide ion causes a selective downfield chemical shift for the low pKa curve and a selective upfield chemical shift for the high pKa curve in all three proteins. Azide also abolishes the second inflection seen in the low pKa curve at high pH. In addition to these effects, the presence of azide ion permits the observation of two additional titrating proton resonances for all three metmyoglobins. Increasing the azide to protein ratio at several fixed values of pH yields results which show that a slow exchange process is occurring with each of the metmyoglobins. In the azide titration studies the maximum changes in the NMR spectra occurred at approximately equimolar concentrations. The NMR results for these proteins in the absence and presence of azide ion are related to x-ray crystallographic studies of sperm whale metmyoglobin and the known alkylation properties of the histidine residues. Tentative assignments of the titrating resonances observed are suggested.  相似文献   

11.
Klingen AR  Ullmann GM 《Biochemistry》2004,43(39):12383-12389
Rieske proteins carry a redox-active iron-sulfur cluster, which is bound by two histidine and two cysteine side chains. The reduction potential of Rieske proteins depends on pH. This pH dependence can be described by two pK(a) values, which have been assigned to the two iron-coordinating histidines. Rieske proteins are commonly grouped into two major classes: Rieske proteins from quinol-oxidizing cytochrome bc complexes, in which the ligand histidines titrate in the physiological pH range, and bacterial ferredoxin Rieske proteins, in which the ligand histidines are protonated at physiological pH. In the study presented here, we have calculated pK(a) values of the cluster ligand histidines using a combined density functional theory/continuum electrostatics approach. Experimental pK(a) values for a bc-type and a ferredoxin Rieske protein could be reproduced. We could identify functionally important differences between the two proteins: hydrogen bonds toward the cluster, which are present in bc-type Rieske proteins, and negatively charged residues, which are present in ferredoxin Rieske proteins. We removed these differences by mutating the proteins in our calculations. The Rieske centers in the mutated proteins have very similar pK(a) values. We thus conclude that the studied structural differences are the main reason for the different pH-titration behavior of the proteins. Interestingly, the shift caused by neutralizing the negative charges in ferredoxin Rieske proteins is larger than the shift caused by removing the hydrogen bonds toward the cluster in bc-type Rieske proteins.  相似文献   

12.
Secretin has a single histidine residue located at the amino terminus which plays a crucial role in its biological activity. The chemical properties, viz. pK and reactivity, of the alpha-amino and imidazole groups of this residue were determined at a secretin concentration of 10(-6) M in 0.1 M KCl at 37 degrees C. Competitive labelling using tritiated 1-fluoro-2,4-dinitrobenzene (DNP-F) as the labelling reagent was the experimental approach employed. The alpha-amino group was found to have a pK value of 8.83 and a reactivity 5-times that of the alpha-amino group in the model compound, histidylglycine. For the imidazole function a pK value of 8.24 and a reactivity 26-times that of the imidazole function in histidylglycine was found. Both these groups in secretin had pK values which were shifted one pK unit higher than in histidylglycine, but like the model compound the reactivity of the imidazole function was still linked to the state of ionization of the alpha-amino group. These observations are interpreted as evidence for the existence of a major conformational state in dilute aqueous solution in which the amino-terminal histidine of secretion is interacting with a negatively charged carboxyl group.  相似文献   

13.
The pH dependent activation of calcineurin by exogenous metal ion was studied over the pH range from 6.5 to 9.0 in increments of 0.5 pH units. Calcineurin activated by Co2+, Ni2+, or Mg2+ was characterized and compared to the pH dependency of the Mn(2+)-activated enzyme (Martin, B.L., and Graves, D.J. (1986) J. Biol. Chem. 261, 14545-14550). The pH dependency of the kinetic parameters varied with metal ion and subsequent analysis yielded estimates for the pKa values for the enzyme-metal ion and the enzyme-metal ion-substrate complexes with each of the exogenous metal ions characterized. The evaluated pK(a)s for enzyme-metal ion (EM) complexes showed an inverse relationship with the pK(a)s of the M(2+)-H2O complex. In contrast, variation of the pK(a)s for the enzyme-metal ion-substrate (EMS) complexes showed no trend. These data support the hypothesis that exogenous metal ion functions to facilitate a proton transfer before the turnover of substrate with the acidity of the exogenous metal ion as a primary determinant of its participation.  相似文献   

14.
Zu Y  Couture MM  Kolling DR  Crofts AR  Eltis LD  Fee JA  Hirst J 《Biochemistry》2003,42(42):12400-12408
Rieske [2Fe-2S] clusters can be classified into two groups, depending on their reduction potentials. Typical high-potential Rieske proteins have pH-dependent reduction potentials between +350 and +150 mV at pH 7, and low-potential Rieske proteins have pH-independent potentials of around -150 mV at pH 7. The pH dependence of the former group is attributed to coupled deprotonation of the two histidine ligands. Protein-film voltammetry has been used to compare three Rieske proteins: the high-potential Rieske proteins from Rhodobacter sphaeroides (RsRp) and Thermus thermophilus (TtRp) and the low-potential Rieske ferredoxin from Burkholderia sp. strain LB400 (BphF). RsRp and TtRp differ because there is a cluster to serine hydrogen bond in RsRp, which raises its potential by 140 mV. BphF lacks five hydrogen bonds to the cluster and an adjacent disulfide bond. Voltammetry measurements between pH 3 and 14 reveal that all the proteins, including BphF, have pH-dependent reduction potentials with remarkably similar overall profiles. Relative to RsRp and TtRp, the potential versus pH curve of BphF is shifted to lower potential and higher pH, and the pK(a) values of the histidine ligands of the oxidized and reduced cluster are closer together. Therefore, in addition to simple electrostatic effects on E and pK(a), the reduction potentials of Rieske clusters are determined by the degree of coupling between cluster oxidation state and histidine protonation state. Implications for the mechanism of quinol oxidation at the Q(O) site of the cytochrome bc(1) and b(6)f complexes are discussed.  相似文献   

15.
1. Despite the same methionine-sulfur:heme-iron:imidazole-nitrogen hemochrome structure observed by x-ray crystallography in four of the seven c-type eukaryotic and prokaryotic cytochromes examined, and the occurrence of the characteristic 695 nm absorption band correlated with the presence of a methionine-sulfur:heme-iron axial ligand in all seven proteins, they fall into two distinct classes on the basis of their EPR and optical spectra. The horse, tuna, and bakers' yeast iso-1 cytochromes c have a predominant neutral pH EPR form with g1=3.06, g2=2.26, and g3=1.25, while the bakers' yeast iso-2 and Euglena cytochromes c, the Rhodospirillum rubrum cytochrome c2, and the Paracoccus denitrificans cytochrome c550 all have a predominant neutral pH EPR form with g1=3.2, g2=2.05, and g3=1.39. The ferricytochromes with g1=3.06 have a B-Q splitting that is approximately 150 cm-1 larger than the ferricytochromes with g1=3.2. 2. Each of the cytochromes displays up to four low spin EPR forms that are in pH-dependent equilibrium and can all be observed at near neutral pH. As the pH is raised the predominant neutral pH form is converted into two forms with g1=3.4 and g1=3.6, identified by comparsion with model compounds and other heme proteins as epsilon-amino:heme-iron:imidazole and bis-epsilon-amino:heme-iron ferrihemochromes, respectively. 3. The pK for the conversion of the predominant neutral pH EPR form into the alkaline pH forms is the same as the pK for the disappearance of the 695 nm absorption band for the cytochromes, even though these pK values range over 2 pH units. This confirms that the g1=3.06 and g1=3.2 forms contain the methionine-sulfur:heme-iron axial ligand while the g1=3.4 and the g1=3.6 forms do not. 4. At extremes of pH, the horse and bakers' yeast iso-1 proteins display several high and low spin forms that are identified, showing that a variety of protein-derived ligands will coordinate to the heme iron including methionine and cysteine sulfur, histidine imidazole, and lysine epsilon-amine. 5. The spectrum of horse cytochrome c with added azide, cyanide, hydroxide, or imidazole as axial ligands has also been examined. 6. From a comparison of the EPR and optical spectral characteristics of these groups of cytochromes with model compounds, it is suggested that the difference between them is due to a change in the hydrogen bonding or perhaps even in the protonation of N-1 of the heme iron-bound histidine imidazole.  相似文献   

16.
The pK values of the histidine residues in ribonuclease T1 (RNase T1) are unusually high: 7.8 (His-92), 7.9 (His-40), and 7.3 (His-27) [Inagaki et al. (1981) J. Biochem. 89, 1185-1195]. In the RNase T1 mutant Glu-58----Ala, the first two pK values are reduced to 7.4 (His-92) and 7.1 (His-40). These lower pKs were expected since His-92 (5.5 A) and His-40 (3.7 A) are in close proximity to Glu-58 at the active site. The conformational stability of RNase T1 increases by over 4 kcal/mol between pH 9 and 5, and this can be entirely accounted for by the greater affinity for protons by the His residues in the folded protein (average pK = 7.6) than in the unfolded protein (pk approximately 6.6). Thus, almost half of the net conformational stability of RNase T1 results from a difference between the pK values of the histidine residues in the folded and unfolded conformations. In the Glu-58----Ala mutant, the increase in stability between pH 9 and 5 is halved (approximately 2 kcal/mol), as expected on the basis of the lower pK values for the His residues in the folded protein (average pK = 7.1). As a consequence, RNase T1 is more stable than the mutant below pH 7.5, and less stable above pH 7.5. These results emphasize the importance of measuring the conformational stability as a function of pH when comparing proteins differing in structure.  相似文献   

17.
Interacting effects of pH and temperature on ventilation in turtles and alligators have suggested that pH is monitored in terms of imidazole ionization, but the view that this is true in alligators and ectotherms generally has been attacked. Published evidence re-interpreted here indicates that this "alphastat control" could indeed operate in turtles, alligators, chickens (i.e. intrapulmonary chemoreceptors) and perhaps cats. Nevertheless, studies on temperature effects cannot distinguish with certainty between imidazole and some amino groups in this context.  相似文献   

18.
Diethyl pyrocarbonate (DEPC) has been useful in vitro as an agent relatively specific for binding to imidazole of histidine. Administered via the cisterna magna DEPC inhibits central chemosensitivity in conscious rabbits, supporting the alphastat hypothesis for central chemoreceptor function. In this study I have applied DEPC via 1 X 3 mm cottonoid pledgets to each of the three ventrolateral medulla (VLM) chemosensitive areas in glomectomized, vagotomized, paralyzed, and servo-ventilated alpha-chloralose-urethan-anesthetized cats. CO2 responses measured by integrated phrenic nerve output were evaluated before and after DEPC application. A dose of 40 mmol/l applied to the rostral chemosensitive area increased the CO2 threshold (5.3%) and significantly decreased (P less than 0.03; Wilcoxon sign rank test) the initial slope (-43%) and the maximum (-41%) of the CO2 response. No significant effects were observed with DEPC application in the intermediate or caudal areas. Treatment with 40 mmol/l hydroxylamine immediately after DEPC in the rostral area prevented the effects supporting the interpretation that imidazole was the reactant with DEPC. The results are consistent with the hypothesis that imidazole-histidine is involved in the mechanism of central chemoreception and indicate that only the rostral area utilizes a DEPC inhibitable mechanism.  相似文献   

19.
To better understand substrate recognition and catalysis by RNase III, we examined steady-state and pre-steady-state reaction kinetics, and changes in intrinsic enzyme fluorescence. The multiple turnover cleavage of a model RNA substrate shows a pre-steady-state burst of product formation followed by a slower phase, indicating that the steady-state reaction rate is not limited by substrate cleavage. RNase III catalyzed hydrolysis is slower at low pH, permitting the use of pre-steady-state kinetics to measure the dissociation constant for formation of the enzyme-substrate complex (K(d)=5.4(+/-0.6) nM), and the rate constant for phosphodiester bond cleavage (k(c)=1.160(+/-0.001) min(-1), pH 5.4). Isotope incorporation analysis shows that a single solvent oxygen atom is incorporated into the 5' phosphate of the RNA product, which demonstrates that the cleavage step is irreversible. Analysis of the pH dependence of the single turnover rate constant, k(c), fits best to a model for two or more titratable groups with pK(a) of ca 5.6, suggesting a role for conserved acidic residues in catalysis. Additionally, we find that k(c) is dependent on the pK(a) value of the hydrated divalent metal ion included in the reaction, providing evidence for participation of a metal ion hydroxide in catalysis, potentially in developing the nucleophile for the hydrolysis reaction. In order to assess whether conformational changes also contribute to the enzyme mechanism, we monitored intrinsic tryptophan fluorescence. During a single round of binding and cleavage by the enzyme we detect a biphasic change in fluorescence. The rate of the initial increase in fluorescence was dependent on substrate concentration yielding a second-order rate constant of 1.0(+/-0.1)x10(8) M(-1) s(-1), while the rate constant of the second phase was concentration independent (6.4(+/-0.8) s(-1); pH 7.3). These data, together with the unique dependence of each phase on divalent metal ion identity and pH, support the hypothesis that the two fluorescence transitions, which we attribute to conformational changes, correlate with substrate binding and catalysis.  相似文献   

20.
Emerging evidence suggests that GTP-binding proteins (G proteins) play important regulatory roles in physiological insulin secretion from the islet beta-cell. Such conclusions were drawn primarily from experimental data derived through the use of specific inhibitors of G protein function. Data from gene depletion experiments appear to further substantiate key roles for these signaling proteins in the islet metabolism. The first part of this review will focus on findings supporting the hypothesis that activation of specific G proteins is essential for insulin secretion, including regulation of their function by posttranslational modifications at their COOH-terminal cysteines (e.g., isoprenylation). The second part will overview novel, non-receptor-dependent mechanism(s) whereby glucose might activate specific G proteins via protein histidine phosphorylation. The third section will review findings that appear to link abnormalities in the expression and/or functional activation of these key signaling proteins to impaired insulin secretion. It is hoped that this review will establish a basis for future research in this area of islet signal transduction, which presents a significant potential, not only in identifying key signaling proteins that are involved in physiological insulin secretion, but also in examining potential abnormalities in this signaling cascade that lead to islet dysfunction and onset of diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号