首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Activated neutrophils play an important role in the pathogenesis of sepsis, glomerulonephritis, acute renal failure, and other inflammatory processes. The resolution of neutrophil-induced inflammation relies, in large part, on removal of apoptotic neutrophils. Neutrophils are constitutively committed to apoptosis, but inflammatory mediators, such as GM-CSF, slow neutrophil apoptosis by incompletely understood mechanisms. We addressed the hypothesis that GM-CSF delays neutrophil apoptosis by activation of extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI 3-kinase) pathways. GM-CSF (20 ng/ml) significantly inhibited neutrophil apoptosis (GM-CSF, 32 vs 65% of cells p < 0. 0001). GM-CSF activated the PI 3-kinase/Akt pathway as determined by phosphorylation of Akt and BAD. GM-CSF-dependent Akt and BAD phosphorylation was blocked by the PI 3-kinase inhibitor LY294002. A role for the PI 3-kinase/Akt pathway in GM-CSF-stimulated delay of apoptosis was indicated by the ability of LY294002 to attenuate apoptosis delay. GM-CSF-dependent inhibition of apoptosis was significantly attenuated by PD98059, an ERK pathway inhibitor. LY294002 and PD98059 did not produce additive inhibition of apoptosis delay. To determine whether PI 3-kinase and ERK are used by other ligands that delay neutrophil apoptosis, we examined the role of these pathways in IL-8-induced apoptosis delay. LY294002 blocked IL-8-dependent Akt phosphorylation. PD98059 and LY294002 significantly attenuated IL-8 delay of apoptosis. These results indicate IL-8 and GM-CSF act, in part, to delay neutrophil apoptosis by stimulating PI 3-kinase and ERK-dependent pathways.  相似文献   

2.
Platelet-derived growth factor (PDGF) has multiple functions including inhibition of apoptosis and promotion of cell proliferation. In this study, we show that Na(+)/H(+) exchanger regulatory factor 2 (NHERF2) binds to the carboxyl-terminal PDZ domain-binding motif of the PDGF receptor through a PDZ domain-mediated interaction, and evaluate the consequence on PDGF-induced proliferation. Stable transfection with NHERF2 increased the PDGF-induced phosphorylation of ERK and Akt in Rat1 embryonic fibroblasts. The phosphorylation of Akt was blocked by pretreatment with LY294002, a PI-3-kinase inhibitor, in both Rat1/NHERF2 and Rat1/vector cells. In Rat1/vector cells, PDGF-induced phosphorylation of ERK was completely inhibited by pretreatment with PD98059, a MEK inhibitor. In contrast, the NHERF2-dependent increase of ERK phosphorylation was not affected by pretreatment with PD98059 in Rat1/NHERF2 cells. Thus, the NHERF2-dependent increase of ERK phosphorylation occurs in a MEK-independent fashion. Pretreatment with PP2, a specific inhibitor of Src family tyrosine kinase, completely blocked the NHERF2-dependent increase of the phosphorylation of ERK and Akt, suggesting that NHERF2 up-regulates Erk phosphorylation through a Src family kinase-dependent pathway. Consistent with these results, the PDGF-induced thymidine incorporation was increased in Rat1/NHERF2 cells, and the NHERF2-dependent increase of thymidine incorporation was prevented by treatment with LY294002 and PP2 but not with PD98059. These results suggest that NHERF2 stimulates PDGF-induced proliferation by increasing PI-3-kinase/Akt, MEKindependent ERK, and Src family kinase-mediated signaling pathways.  相似文献   

3.
The ubiquitin ligase Cbl-b is a negative regulator of the PI3K/Akt pathway, the survival pathway implicated in chemotherapy resistance. However, it remains unclear whether Cbl-b can regulate chemosensitivity through modulating Akt activation. In this study, VP-16-induced RBL-2H3 cells apoptosis was accompanied by the activation of Akt and ERK. The PI3K inhibitor LY294002, not the ERK inhibitor PD98059, enhanced the apoptosis. In addition, down-regulation of Cbl-b was also detected. Over expression of Cbl-b significantly enhanced VP-16-induced cell apoptosis with inhibition of Akt activity, while a dominant negative (DN) RING Finger domain mutation completely abolished this enhancement. On the other hand, ERK activity was enhanced by Cbl-b, and the ERK inhibitor PD98059 reversed Cbl-b-enhanced apoptosis. The consistent results were also showed in the process of Ara-c treatment. These observations indicate that Cbl-b promotes RBL-2H3 apoptosis induced by VP-16 or Ara-c, probably through inhibition of Akt and activation of ERK.  相似文献   

4.
PI3K/Akt and ERK pathways are important for growth and proliferation of many types of cancers. Therefore, PI3K inhibitor LY294002 (LY) and MEK1/2 inhibitor PD98059 (PD) are used to sensitize many types of cancer cell lines to chemotherapeutic agents, where AKT and ERK pathways are over activated. However, in this study, we show for the first time that PD could protect the leukemia cells independent of ERK pathway inhibition, besides, we also report a detailed mechanism for antiapoptotic effect of LY in HL-60 cells against the cytotoxicity induced by a boswellic acid analog BA145. Apoptosis induced by BA145 is accompanied by downregulation of PI3K/Akt and ERK pathways in human myelogenous leukemia HL-60 cells, having activating N-Ras mutation. Both LY and PD protected the cells against mitochondrial stress caused by BA145, and reduced the release of cytochrome c and consequent activation of caspase-9. LY and PD also diminished the activation of caspase-8 without affecting the death receptors. Besides, LY and PD also reversed the caspase dependent DNA damage induced by BA145. Further studies revealed that LY and PD significantly reversed the inhibitory effect of BA145 on cell cycle regulatory proteins by upregulating hyperphosphorylated retinoblastoma, pRB (S795) and downregulating p21 and cyclin E. More importantly, all these events were reversed by caspase inhibition by Z-VAD-fmk, suggesting that both LY and PD act at the level of caspases to diminish the apoptosis induced by BA145. These results indicate that inhibitors of PI3K/Akt and ERK pathways can play dual role and act against chemotherapeutic agents.  相似文献   

5.
Fibroblast-like synovial cells play a crucial role in the pathophysiology of rheumatoid arthritis (RA), as these cells are involved in inflammation and joint destruction. Apigenin, a dietary plant-flavonoid, is known to have many functions in animal cells including anti-proliferative and anticancer activities, but its role in human rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs) has not been reported. In this study, we investigated the roles of apigenin in RA-FLSs. The survival rate decreased, and apoptotic cell death was induced by apigenin treatment in RA-FLSs. Apigenin treatment resulted in activation of the mitogen-activated protein kinase (MAPK) ERK1/2, and pretreatment with an ERK inhibitor PD98059 dramatically reduced apigenin-induced apoptosis. We found that apigenin-mediated production of a large amount of intracellular reactive oxygen species (ROS) caused activation of ERK1/2 and apoptosis; treatment with the antioxidant Tiron strongly inhibited the apigenin-induced generation of ROS, phosphorylation of ERK1/2, and apoptotic cell death. Apigenin-induced apoptotic cell death was mediated through activation of the effectors caspase-3 and caspase-7, and was blocked by pretreatment with Z-VAD-FMK (a pan-caspase inhibitor). These results showed that apigenin-induced ROS and oxidative stress-activated ERK1/2 caused apoptotic cell death in apigenin-treated RA-FLSs.  相似文献   

6.
Regulation of rheumatoid synovial cell growth by ceramide   总被引:3,自引:0,他引:3  
Overgrowth of rheumatoid synoviocytes, which results in joint destruction, is due to impaired balance between cell proliferation and cell death (apoptosis). Ceramide is an important lipid messenger involved in mediating a variety of cell functions including apoptosis. We investigated the effects of ceramide on growth-promoting anti-apoptotic signals in rheumatoid synovial cells. Human synovial cells isolated from patients with rheumatoid arthritis (RA) were stimulated with platelet-derived growth factor (PDGF) in the presence or absence of C2-ceramide. The kinase activity of Akt, MEK, and ERK1/2 was analyzed in PDGF-stimulated synovial cells by Western blot analysis. Pretreatment with C2-ceramide completely inhibited PDGF-induced cell cycle progression of rheumatoid synovial cells. PDGF stimulation induced phosphorylation and activation of Akt, MEK, and ERK1/2 in rheumatoid synovial cells. C2-ceramide inhibited the activation of Akt, MEK and ERK1/2 in PDGF-stimulated synovial cells. Our data demonstrated that inhibition of anti-apoptotic kinases, such as Akt and ERK1/2, may play an important role in ceramide-mediated apoptosis of rheumatoid synovial cells.  相似文献   

7.
Little is known about whether there is a relationshipbetweenPI3K/AKT, ERK1/2 and an inverted CCAAT box binding protein (ICBP90) in biological behaviours of tumour cells. The aim of this study was to determine thisusing Jurkat T cells. Compared to PD98059 (an ERK1/2 signaling inhibitor), DAPT (a Notch signaling inhibitor) or adriamycin (a classical anti-tumour drug), the inhibition of Jurkat T cell growth by LY294002 (a PI3K/Akt signaling inhibitor) was more obvious. LY294002 combined with adriamycin appeared to have a synergistic effect. LY294002 strongly blocked Jurkat T cells at each phase of cell cycle with a decrease of DNA content, superior to adriamycin. Consistent with these changes, the expression of phosphorylated ERK1/2 was markedly decreased in the LY294002-treated Jurkat T cells, leading to the reduction of ICBP90 production, followed by moderate attenuation of TGF-β secretion. The results suggest that deactivation of PI3K/Akt signalling can surpress Jurkat T cell growth through inhibiting cell proliferation and blocking the cell cycle. ICBP90 may mediate the PI3K/AKT-ERK1/2 signalling to regulate leukemia cell growth.  相似文献   

8.
目的:用低血清培养液来模拟肾脏供血不足的营养不良状态,研究低浓度哇巴因对低血清培养下OK细胞(负鼠肾小管上皮细胞)增殖的影响。方法:用低浓度哇巴因(1-30n M)处理0.2%血清培养下OK细胞,MTT实验和Brdu掺入法检测哇巴因对OK细胞增殖的影响;Western blot检测Akt和ERK1/2的磷酸化水平;用LY294002和PD98059分别抑制PI3K/Akt和ERK1/2蛋白激酶活性,观察抑制PI3K/Akt和ERK1/2对哇巴因促进OK细胞增殖的影响。结果:低浓度哇巴因(1-30n M)促进OK细胞的增值,上调OK细胞中Akt和ERK1/2磷酸化水平。用LY294002和PD98059特异抑制Akt和ERK1/2的活化能够抑制哇巴因的促增殖作用。结论:低浓度哇巴因(1-10n M)能够促进OK细胞的增值,PI3K/Akt和ERK1/2信号通路参与哇巴因对OK细胞促增殖作用的调节。  相似文献   

9.
Insulin-like growth factor-1 (IGF-1) is a neurotrophic factor and plays an important role in promoting axonal growth from dorsal root ganglion (DRG) neurons. Whether IGF-1 influences growth-associated protein 43 (GAP-43) expression and activates the extracellular signal-regulated protein kinase (ERK1/2) and the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways in DRG neurons with excitotoxicity induced by glutamate (Glu) remains unknown. In this study, embryonic 15-day-old rat DRG explants were cultured for 48 h and then exposed to IGF-1, Glu, Glu + IGF-1, Glu + IGF-1 + PD98059, Glu + IGF-1 + LY294002, Glu + IGF-1 + PD98059 + LY294002 for additional 12 h. The DRG explants were continuously exposed to growth media as control. The levels of GAP-43 mRNA were detected by real time-PCR analysis. The protein levels of GAP-43, phosphorylated ERK1/2, phosphorylated Akt, total ERK1/2, and total Akt were detected by Western blot assay. GAP-43 expression in situ was determined by immunofluorescent labeling. Apoptotic cell death was monitored by Hoechst 33342 staining. IGF-1 alone increased GAP-43 and its mRNA levels in the absence of Glu. The decreased GAP-43 and its mRNA levels caused by Glu could be partially reversed by the presence of IGF-1. IGF-1 rescued neuronal cell death caused by Glu. Neither the ERK1/2 inhibitor PD98059 nor the PI3K inhibitor LY294002 blocked the effect of IGF-1, but both inhibitors together were effective. To validate the impact of GAP-43 expression by IGF-1, GAP-43 induction was blocked by administration of dexamethasone (DEX). IGF-1 partially rescued the decrease of GAP-43 and its mRNA levels induced by DEX. DEX induced an increase of cell apoptosis. IGF-1 may play an important role in neuroprotective effects on DRG neurons through regulating GAP-43 expression with excitotoxicity induced by Glu and the process was involved in both ERK1/2 and PI3K/Akt signaling pathways.  相似文献   

10.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers tumor-specific apoptosis. However, some tumors and cancer cell lines are resistant to TRAIL. Here, the effect of the non-steroidal anti-inflammatory drug aspirin on sensitization of human cervical cancer cells to TRAIL and the underlying mechanism(s) of the effect were explored. Combination treatment with aspirin and TRAIL markedly enhanced apoptotic cell death, as assessed by lactate dehydrogenase (LDH) assay and analysis of cell cycle sub-G1 phase. The two agents together activated the several caspases and mitochondrial signaling pathway. Whereas Mcl-1 protein level was increased and extracellular signal-related kinase (ERK)1/2 was activated in cells treated with TRAIL alone, combination treatment dramatically inhibited ERK1/2 activation and down-regulated Mcl-1 protein level. An inhibitor of ERK1/2 activation, PD98059, also augmented TRAIL-induced apoptosis. Combination treatment with PD98059 and TRAIL showed the activation of caspases and mitochondrial pathway, and the down-regulation of Mcl-1 level. These results suggest that cancer cells can be sensitized to TRAIL-induced apoptosis by pre-treatment with aspirin via suppression of ERK1/2 activation. These findings provide a basis for further exploring the potential applications of this combination approach for the treatment of cancer, including cervical cancer.  相似文献   

11.
Wang L  Chen Q  Li G  Ke D 《Peptides》2012,33(1):92-100
Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor (GHSR), is thought to exert a protective effect on the cardiovascular system, specifically by promoting vascular endothelial cell function such as cell proliferation, migration, survival and angiogenesis. However, the effect of ghrelin on angiogenesis and the corresponding mechanisms have not yet been extensively studied in cardiac microvascular endothelial cells (CMECs) isolated from left ventricular myocardium of adult Sprague-Dawley (SD) rats. In our study, we found that ghrelin and GHSR are constitutively expressed in CMECs. Ghrelin significantly increases CMECs proliferation, migration, and in vitro angiogenesis. The ghrelin-induced angiogenic process was accompanied by phosphorylation of ERK and Akt. MEK inhibitor PD98059 abolished ghrelin-induced phosphorylation of ERK, but had no effect on Akt phosphorylation. PI3K inhibitor LY294002 abolished ghrelin-induced phosphorylation of Akt, but had no effect on ERK phosphorylation. Ghrelin-induced angiogenesis was partially blocked by treatment with PD98059 or LY294002. In addition, this angiogenic effect was almost completely inhibited by PD98059+LY294002. Pretreatment with GHSR1a blocker [D-Lys3]-GHRP-6 abolished ghrelin-induced phosphorylation of ERK, Akt and in vitro angiogenesis. In conclusion, this is the first demonstration that ghrelin stimulates CMECs angiogenesis through GHSR1a-mediated MEK/ERK and PI3K/Akt signal pathways, indicating that two pathways are required for full angiogenic activity of ghrelin. This study suggests that ghrelin may play an important role in myocardial angiogenesis.  相似文献   

12.
6-Hydroxydopamine (6-OHDA), a metabolite of dopamine is known to induce dopaminergic cell toxicity which makes that a suitable agent inducing an experimental model of Parkinson’s disease (PD). Agmatine has been shown to protect against some cellular and animal PD models. This study was aimed to assess whether agmatine prevents 6-OHDA-induced SH-SY5Y cell death and if yes, then how it affects Akt/glycogen synthesis kinase-3β (GSK-3β) and extracellular signal-regulated kinases (ERK) signals. The cells were treated with different drugs, and their viability was examined via MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay and morphological observation. Western blot studies were done to assess cleaved caspase-3, Akt/GSK-3β, and ERK proteins. 6-OHDA-induced cell death and caspase-3 cleavage, while agmatine prevented those changes. 6-OHDA also decreased the amount of phosphorylated Akt (pAkt)/Akt while increased GSK-3β activity which was prevented by agmatine. Additionally, this toxin increased pERK/ERK ratio which was averted again by agmatine. The PI3/Akt inhibitor, LY294002, impeded the changes induced by agmatine, while ERK inhibitor (PD98059) did not disturb the effects of agmatine, and by itself, it preserved the cells against 6-OHDA toxicity. This study revealed that agmatine is protective in 6-OHDA model of PD and affects Akt/GSK-3β and ERK pathways.  相似文献   

13.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a type II transmembrane cytokine and a potent inducer of apoptosis. Epidermal growth factor (EGF) signaling is well known to involve in tumor survival and overexpression of EGF receptor (EGF-R) attributes to decreased responsiveness to many available therapies in cancer treatment. We investigated whether EGF-R inhibitors enhance TRAIL-induced apoptosis. We exposed A549 cells to Genistein, PD153035, and PD158780 for 12h and then treated with recombinant TRAIL protein. TRAIL alone induced 25% cell death after a 3-h treatment, but in cells pretreated with EGF-R inhibitors, TRAIL induced cell death to more than 70% after 3h treatment. Genistein enhanced TRAIL-induced apoptosis in a time- and dose-dependent manner. Western blot analyses showed that pretreatment with Genistein down-regulated the protein levels of total Akt and phosphorylated active Akt. Genistein also decreased the protein level of Bcl-XL that is regulated by Akt. These molecules are well characterized to act against induction of apoptotic cell death. Therefore, our data suggest that EGF-R inhibitor may sensitize A549 cells to TRAIL-induced apoptosis by regulating expression of these proteins. EGF-R inhibitors may play an important role in the anti-cancer activity of TRAIL protein, especially in TRAIL-resistant tumors that arise by expressing constitutively active Akt.  相似文献   

14.
Thioridazine has been known as an antipsychotic agent, but it also has anticancer activity. However, the effect of thioridazine on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitization has not yet been studied. Here, we investigated the ability of thioridazine to sensitize TRAIL-mediated apoptosis. Combined treatment with thioridazine and TRAIL markedly induced apoptosis in various human carcinoma cells, including renal carcinoma (Caki, ACHN, and A498), breast carcinoma (MDA-MB231), and glioma (U251MG) cells, but not in normal mouse kidney cells (TMCK-1) and human normal mesangial cells. We found that thioridazine downregulated c-FLIP(L) and Mcl-1 expression at the post-translational level via an increase in proteasome activity. The overexpression of c-FLIP(L) and Mcl-1 overcame thioridazine plus TRAIL-induced apoptosis. We further observed that thioridazine inhibited the Akt signaling pathway. In contrast, although other phosphatidylinositol-3-kinase/Akt inhibitors (LY294002 and wortmannin) sensitized TRAIL-mediated apoptosis, c-FLIP(L) and Mcl-1 expressions were not altered. Furthermore, thioridazine increased the production of reactive oxygen species (ROS) in Caki cells, and ROS scavengers (N-acetylcysteine, glutathione ethyl ester, and trolox) inhibited thioridazine plus TRAIL-induced apoptosis, as well as Akt inhibition and the downregulation of c-FLIP(L) and Mcl-1. Collectively, our study demonstrates that thioridazine enhances TRAIL-mediated apoptosis via the ROS-mediated inhibition of Akt signaling and the downregulation of c-FLIP(L) and Mcl-1 at the post-translational level.  相似文献   

15.

Background

TRAIL/Apo2L is a pro-apoptotic ligand of the TNF family that engages the apoptotic machinery through two pro-apoptotic receptors, TRAIL-R1 and TRAIL-R2. This cell death program is tightly controlled by two antagonistic receptors, TRAIL-R3 and TRAIL-R4, both devoid of a functional death domain, an intracellular region of the receptor, required for the recruitment and the activation of initiator caspases. Upon TRAIL-binding, TRAIL-R4 forms a heteromeric complex with the agonistic receptor TRAIL-R2 leading to reduced caspase-8 activation and apoptosis.

Methodology/Principal Findings

We provide evidence that TRAIL-R4 can also exhibit, in a ligand independent manner, signaling properties in the cervical carcinoma cell line HeLa, through Akt. Ectopic expression of TRAIL-R4 in HeLa cells induced morphological changes, with cell rounding, loss of adherence and markedly enhanced cell proliferation in vitro and tumor growth in vivo. Disruption of the PI3K/Akt pathway using the pharmacological inhibitor LY294002, siRNA targeting the p85 regulatory subunit of phosphatidylinositol-3 kinase, or by PTEN over-expression, partially restored TRAIL-mediated apoptosis in these cells. Moreover, the Akt inhibitor, LY294002, restituted normal cell proliferation index in HeLa cells expressing TRAIL-R4.

Conclusions/Significance

Altogether, these results indicate that, besides its ability to directly inhibit TRAIL-induced cell death at the membrane, TRAIL-R4 can also trigger the activation of signaling pathways leading to cell survival and proliferation in HeLa cells. Our findings raise the possibility that TRAIL-R4 may contribute to cervical carcinogenesis.  相似文献   

16.
Mesonephric cell migration and seminiferous cord formation are critical processes in embryonic testis development at the time of male sex determination. Extracellular growth factors shown to influence seminiferous cord formation such as neurotropin-3 utilize in part the phosphotidylinositol 3-kinase (PI3K) signal transduction pathway. The current study investigates the hypothesis that the PI3K pathway is critical in seminiferous cord formation and testis development. The role of the PI3K signaling pathway in testicular cord formation was examined using an Embryonic Day 13 organ culture system and a PI3K-specific inhibitor LY294002. The actions of a mitogen-activated protein (MAP) kinase-specific inhibitor PD98059 was also examined. The PI3K inhibitor blocked cord formation or reduced the number of cords in a concentration-dependent manner. The actions of LY294002 were found to have a developmental stage specificity in that cord inhibition was observed in organs from embryos with 16-17 tail somites, while organs from embryos with 19 or more tail somites had no block in cord formation and only a small reduction in cord number. In contrast, the MAP kinase inhibitor PD98059 did not block cord formation and only caused a slight reduction in cord number. Neither PI3K or MAP kinase inhibitor altered apoptotic cell number, suggesting apoptosis was not the reason for the inhibition of cord formation. Embryonic testis cell migration assays showed that the PI3K inhibitor LY294002 blocked mesonephros cell migration into the testis, while the MAP kinase inhibitor had no effect. Observations suggest the interference of cell migration is the cause for the inhibition of cord formation. Western blot analysis confirmed that LY294002 and PD98509 inhibited phosphorylation of Akt and ERK1/ERK2, respectively. Combined observations demonstrate that the PI3K signaling pathway is involved in embryonic testis cord formation and mesonephros cell migration.  相似文献   

17.
A hallmark of rheumatoid arthritis (RA) is the pseudo-tumoral expansion of fibroblast-like synoviocytes (FLSs), and the RA FLS has therefore been proposed as a therapeutic target. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has been described as a pro-apoptotic factor on RA FLSs and, therefore, suggested as a potential drug. Here we report that exposure to TRAIL-induced apoptosis in a portion (up to 30%) of RA FLSs within the first 24 h. In the cells that survived, TRAIL induced RA FLS proliferation in a dose-dependent manner, with maximal proliferation observed at 0.25 nm. This was blocked by a neutralizing anti-TRAIL antibody. RA FLSs were found to express constitutively TRAIL receptors 1 and 2 (TRAIL-R1 and TRAIL-R2) on the cell surface. TRAIL-R2 appears to be the main mediator of TRAIL-induced stimulation, as RA FLS proliferation induced by an agonistic anti-TRAIL-R2 antibody was comparable with that induced by TRAIL. TRAIL activated the mitogen-activated protein kinases ERK and p38, as well as the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway with kinetics similar to those of TNF-alpha. Moreover, TRAIL-induced RA FLS proliferation was inhibited by the protein kinase inhibitors PD98059, SB203580, and LY294002, confirming the involvement of the ERK, p38, and PI3 kinase/Akt signaling pathways. This dual functionality of TRAIL in stimulating apoptosis and proliferation has important implications for its use in the treatment of RA.  相似文献   

18.
19.
目的:探讨血小板来源的生长因子(PDGF)对体外培养的人视网膜色素上皮细胞(RPE)增殖和迁移的影响,并对参与其中的信号通路做初步研究.方法:体外培养的人视网膜色素上皮细胞与含有重组人血小板来源的生长因子的培养基(含有或不含2%(v/v)胎牛血清)共培养,用MTT法检测PDGF对RPE细胞增殖的影响,利用细胞爬片和免疫荧光技术检测PDGF对RPE细胞迁移等影响;另外分别向细胞培养物中添加PD98059,SB203580和PI3K等不同的信号通路分子抑制剂,判断参与PDGF激活的细胞活动相关的信号通路.结果:外源性PDGF能促进体外培养的人RPE的增殖和迁移.ERK1/2选择性抑制剂PD98059和PI3K抑制剂LY294002能显著的降低PDGF-BB诱导的人RPE细胞的增殖(P<0.05),p38抑制剂SB203580没有明显的抑制作用.而对PDGF-BB诱导的RPE细胞的迁移,SB203580和LY294002有显著的抑制作用(P<0.05),PD98059抑制作用不显著.结论:PDGF对RPE细胞的影响提示其在增生性玻璃体视网膜病变(PVR)的发展中有重要的作用,其可能为PVR提供一种新的毒副作用小的治疗手段.  相似文献   

20.
We examined the roles of the PI3K-AKT signalling pathway in fetal lung development. By Western blotting, phosphorylated AKT (pAKT) was highly expressed in fetal days 12 and 14 with decreased expression thereafter. By immunohistochemistry, pAKT was expressed mainly in the respiratory epithelium of early fetal days. We examined the effects of fibroblast growth factor 1 (FGF1), PI3K inhibitors (LY294002 and wortmannin), MAPK inhibitor (PD98059) and both of FGF1 and each inhibitor on lung morphogenesis, BrdU incorporation and apoptosis. In the FGF1-treated explants, the number of terminal buds and BrdU-labelled cells increased significantly, while the LY294002-, wortmannin-, PD98059-treated explants demonstrated obvious decreases. The effects by FGF1 were inhibited by LY294002, wortmannin and PD98059. Regardless of the presence of FGF1, the LY294002-, wortmannin- and PD98059-treated explants increased apoptosis revealed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling assay in the mesenchyme of the explants. At the same time, the effect of LY294002, wortmannin, PD98059 on expression of surfactant apoprotein C (SPC) were also studied. The LY294002 and wortmannin treatments showed decreased expression of SPC. These findings suggest that the PI3K-AKT signalling pathway plays a pivotal role in mouse lung development through various biological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号