首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Silicon has been considered to be important for normal growthand development of the rice plant (Oryza sativa L.). To investigatethe physiological function of deposited silica in rice leaves,the hypothesis that silica bodies in the leaf epidermal systemmight act as a ‘window’ to facilitate the transmissionof light to photosynthetic mesophyll tissue was tested. Thesilica content of leaves increased with supplied silicon andwas closely correlated with the number of silica bodies perunit leaf area in the epidermal system. There was a significantdifference in silica deposition and formation of silica bodiesbetween Si-treated and non-treated leaves; silicon was polymerizedinside the silica cells and bulliform cells of the epidermis,in Si-treated leaves. Although the ‘windows’ wereonly formed in leaves with applied silicon, optical propertiesof leaf transmittance, reflectance and absorptance spectra inSi-treated and non-treated leaves were almost equal. Furthermore,light energy use efficiency and quantum yield of Si-treatedleaves were less than in leaves not containing silica bodies.Thus, silica bodies, at least based on the data, do not functionas windows in rice leaves. Key words: Silicon, window hypothesis, rice, optical property, quantum yield  相似文献   

2.
Characteristic opal phytolith (‘silica body’) formationwas demonstrated in detached leaves of Sieglingia decumbens(Heath Grass), cultured in 100 ppm dissolved silicon (silicondioxide), previously, the leaves were free from intracellulardeposits as a result of silica-minimal tiller growth. The formertechnique allowed the study of the leaf deposition processesindependently of apical and root tissues, under growth-cabinetand glasshouse conditions. Deposition in excised leaves wascompletely suppressed by a surface, monomolecular coating, thusindicating that total net water loss was a limiting factor,however, evaporation from the recipient, epidermal tissues perse was not a requirement for this in situ deposition Generally,apart from an apparent, cell site shift in one treatment, phytolith-formationwas unaffected by the presence of the metabolic inhibitor 2,4-dinitrophenol. Also, some evidence was obtained of the influxof germanium dioxide into epidermal ldioblasts, which indicateda non-specificity of the host cell for silica. These results and those of earlier studies suggest that passive,non-metabolic mechanisms could account for the transport, influx,and cell lumen polymerization of silica in the grass leaf.  相似文献   

3.
Ash and silica contents and their depositional patterns in differenttissues of 27 plants growing in the Ocean Springs area of Mississippi(many grow elsewhere), were determined. Silica content of driedplant parts varied from no more than 0 per cent in Borrichiafrutescens (L.) D.C. stems to 18.76 per cent in Arundinariagigantea (Walt.) Muhl. leaves. Ash content varied from 0·73per cent in Cliftonia monophylla (Lam.) Britt. ex Sarg. stemsto 44·02 per cent in Batis maritima L. leaves. Plantssuch as Batis maritima L., Borrichia frutescens (L.) D.C., Salicorniabigelovii Torr. and Salicornia virginica L. which grew in salinemarshes had high ash contents due NaCl in their tissues. Morusrubra L. leaves had a high silica content for a dicotyledonousplant (3·12 per cent). Energy-dispersive X-ray analysisshows that the distribution of the element silicon is clearlyrelated to certain epidermal structures such as ridges, cellwalls, rows of irregular shaped structures lengthwise of theleaf, dumb-bell shaped ones and especially in trichomes. Therewas a high concentration of silica containing trichomes alongthe veins on the underside of Morus rubra L. leaves and thiswould protect them from insects. The outer parts of the inflorescencesof Ctenium aromaticum (Walt.) Wood, Elymus virginicus L., Juncuspolycephalus Michx. and phragmites communis Trin. were highlysilicified. This should give the seed some protection from insects.The sharp particles would be irritating to oesophageal tissuesand might be implicated in such a cancer.  相似文献   

4.
Zhuo  Tian-Su 《Annals of botany》1995,75(6):605-607
Small particles along the veins of leaves in Phalaenopsis containsilicon. The silica bodies are spherical in shape and 5-20 µmin diameter. In the in vitro cultured plantlets, they grow differentlyin size, depending on the developmental stage of the plantletsand the concentration of silicon added to the medium. The growthof the silica body was increased by increasing the concentrationof CaSiO3 from 0·01 to 0·5 mg l-1 and was maximizedfrom 0·5 to 1·0 mg l-1. In the medium with 1·0mg l-1 CaSiO3, they grew to a size larger than that of the greenhouseplants after 6 months in culture. The sensitivity of the growthof the silica bodies to the environmental concentration of siliconwas then suggested to be a useful indicator for studying theuptake of silicon in plants.Copyright 1995, 1999 Academic Press Phalaenopsis, Orchidaceae, silica body, stegmata  相似文献   

5.
Nitrate Accumulation and its Relation to Leaf Elongation in Spinach Leaves   总被引:6,自引:0,他引:6  
The leaf elongation rate (LER) of spinach leaves during theday was twice that during the night when grown at a photon fluxdensity of 145 µmol m–2 s–1. All leaves showedthe same LER-pattern over 24 h. Due to low turgor, LER was lowin the afternoon and in the first hours of the night until wateruptake restored full turgor. Osmotic potential remained constantdue to increased nitrate uptake and starch degradation in thisperiod. LER increased to high rates in the second part of thenight and in the morning. The lower rate in the dark comparedto the light was not caused by the lower night temperatures,as increased photon flux density during growth resulted in equalrates in the light and the dark. Increased relative humiditydecreased LER and afternoon rates were most sensitive to waterstress. A ‘low light’ night period did not changeLER-pattern during the night or on the following day. We concludethat nitrate is not an obligatory osmoticum during the nightand can be exchanged for organic osmotica without decreasingLER. During the night the turgor is first restored by increasingwater uptake, nitrate uptake and starch degradation. This resultedin increased leaf fresh weight in this period. Thereafter, elongationincreased by simultaneous uptake of nitrate and water. Nitrateconcentration was, therefore, constant in the older leaves.In the younger leaves nitrate concentration increased to replacesoluble carbohydrates. The vacuoles of the old leaves were filledwith nitrate before those of the young leaves. Key words: Spinacia oleracea L., nitrate accumulation, osmotic potential, organic acids  相似文献   

6.
Some Factors in Relation to Bulliform Cell Silicification in the Grass Leaf   总被引:1,自引:0,他引:1  
The formation of discrete ‘tablets’ of hydratedsilica in the bulliform cells of the leaf blade was followedover a 16-day period in three species of the Gramineae representingdifferent habitats. Seedlings of Oryza sativa (rice) and Cynodondactylon (Bermuda Grass) were cultured under growth-cabinetconditions at levels of 50 and 500 ppm dissolved silica (SiO2)in the nutrient solution. In addition, bulliform depositionwas studied in mature tiller leaves of Sieglingia decumbens(Heath Grass). Attached leaves, as well as those excised fromthe culm, were used. Initial stages of tablet formation were observed by the 2-dayharvest in the central and basal zones of the fully expandedseedling blades. Deposition did not occur at a stage when bulliformturgor changes might influence blade evolvement. At the 16-dayharvest, deposition was heaviest in the tip zone, and decreasedprogressively towards the base of the blade. In addition, proportionatelyhigher tablet counts (P = 0.05) generally were absent from theleaves grown at the higher silica level. This indicated a limitedavailability of deposition sites. These results are discussed in relation to (i) cellular maturation;(ii) internal leaf anatomy; (iii) leaf expansion; (iv) a basipetalsenescence gradient within the leaf blade. Certain of theseare considered to be possible limiting factors to silica depositionin the grass leaf.  相似文献   

7.
Deposits of silica in the culm internodes, floral bracts andawns of Hordeum sativum Jess (cv Deba Abed) have been investigatedusing the scanning electron microscope The deposits were isolatedfrom all organic matter by digestion with nitric and perchloricacids Two basic types of deposits were recognized, lumen andwall silicification, the latter with or without lumen infillings In the culm internodes, lumen deposits are derived from idioblasts(‘hats’), sclerenchyma and xylem vessels In thefloral bracts they are derived from idioblasts (‘hats’and astenform opals), epidermal long cells (dendriform opals),sclerenchyma and xylem vessels The shape of these deposits doesnot generally resemble the outline of the cell itself, but depositsderived from cell walls do closely resemble the infact cell.In the culm, the walls of stomatal cells, trichomes and, largelythe outer tangential walls of mature long epidermal cells, becomesilicified, together with some cork cells In the floral bracts,silica is found in most epidermal cell walls but is confinedto the trichomes, scutiform cells and costal epidermal cellsearly in their development At maturity concentrations of silicaare much higher in the floral bracts and awns than in the culmsand leaves The results are discussed in relation to the pattern of depositionand its possible functions. Hordeum sativum Jess, barley, silica deposits, opals, scanning electron microscopy  相似文献   

8.
The alterations in the PSII activity of leaves, subsequent toa mild or severe heat stress were characterized by monitoringthe Chl a fluorescence and thermoluminescence emission fromintact leaves. The Chl a fluorescence measurements were carriedout in leaves adapted to either ‘state I’ or ‘stateII’ since under these two conditions the photosyntheticapparatus is known to have distinctly different structure-functionrelationships. The pattern of Chl a fluorescence induction instate II-adapted leaves was different from that of state I-adaptedleaves due to the alterations in the extent of photochemical(qQ) and non-photochemical (qE) quenching during the time courseof induction. The pattern of changes in qQ and qE values wasalso altered by heat treatment depending on the severity ofheat stress; severe heat stress (47°C) suppressing theseparameters drastically. Mild heat treatment (42°C) did notaffect the ability of leaves to undergo state I to state IItransition whereas the severe heat stress totally abolishedsuch transition. The fluorescence and thermoluminescence characteristicsof the leaves that have been exposed to the severe heat stresssuggest that a large number of affected PSII units retain afunctional water-oxidizing complex at the donor side. (Received June 14, 1994; Accepted July 19, 1995)  相似文献   

9.
The three-dimensional quantitative leaf anatomy in developingyoung (9–22 d) first leaves of wild type Arabidopsis thalianacv. Landsberg erecta from mitosis through cell and leaf expansionto the cessation of lamina growth has been studied. The domainsof cell division, the relative proportion of the cell typespresent during development and the production of intercellularspace in the developing leaf have been determined by image analysisof entire leaves sectioned in three planes. Mitotic activityoccurs throughout the youngest leaves prior to unfolding andcell expansion is initiated firstly at the leaf tip with a persistentzone of mitotic cells at the leaf base resulting in a gradientof development along the leaf axis, which persists in the olderleaves. Major anatomical changes which occur during the developmentare, a rapid increase in mesophyll volume, an increase in thevein network, and expansion of the intercellular spaces. Thepattern of cell expansion results in a 10-fold variation inmesophyll cell size in mature leaves. In the youngest leavesthe plan area of mesophyll cells varies between 100 µm2and 400 µm2 whereas in mature leaves mesophyll cells rangein plan area from 800 µm2 to 9500 µm2. The volumesof mesophyll tissue and airspace under unit leaf area increase3-fold and 35-fold, respectively, during leaf expansion. Thevolume proportions of tissue types mesophyll:airspace:epiderrnal:vascularin the mature leaf are 61:26:12:1, respectively. This studyprovides comparative information for future identification andanalysis of leaf development mutants of Arabidopsis thaliana. Key words: Arabidopsis, quantitative leaf anatomy, leaf expansion, image analysis  相似文献   

10.
We report new information on silica deposition in 15 plant species,including nine grasses, two sedges and four composites. Thesilica depositional patterns found in seven of the grass speciesindicate that they are C4 plants. However the festucoid grassCortaderia selloana is a C3 plant with long leaf trichomes andoval silica structures in the leaves. In contrast the panicoidC4 grasses Chasmathium latifolium, Chasmathium sessiflorum,Imperata cylindrica, Panicum repens, Panicum commutatum andSetaria magna, all produce dumb-bell-shaped silica structuresin the leaves. The chloridoid grasses Spartina patens and Spartinacynosuroides have saddle-shaped structures and no dumb-bellor oval shaped ones. The sedges Rhynchospora plumosa and Scirpuscyperinus were found to have oval phytoliths and may be C3 plants.Our examination of these and other grasses strongly suggeststhat C4 grasses tend to produce the same type of silica cells.Grasses and sedges with C3 type photosynthesis tend to produceoval silica structures. The composite Grindelia squarrosa andsunflowers Helianthus angustifolia, Helianthus atrorubens andHelianthus tuberosus absorb relatively small amounts of siliconand larger amounts of calcium, where both elements deposit inleaf trichomes. We found no clear indicator for the C3 sunflowersor C4 types in the Asteraceae. Helianthus tuberosus leaves havemany trichomes on the adaxial surface. These trichomes havea higher concentration of silica than the surrounding leaf surface.Helianthus tuberosus leaves had much higher ash and silica contentsthan those of Helianthus angustifolia and Helianthus atrorubens.The composite Grindelia squarrosa has a usual deposition ofsilica in the basal cells around the guard cells. Silica depositionoften reflects the surface features of a leaf. An exceptionis Scripus cyperinus where the silica structures are deep inthe tissue and do not reflect the surface configurations. Theinforescence of Setaria magna had a 14.64 silica content. Thetufts of white, silky hairs characteristic of Imperata cylindricainflorescence have no silica. C3 and C4 plants, silica and ash content, scanning electron microscopy, energy-dispersive X-ray analysis, silicon distribution, spectra of elements in plants, trichomes, silica fibres, phytoliths  相似文献   

11.
Silica (SiO2.nH2O) is deposited in large quantities in the shootsystems of grasses. In the leaf epidermal system, it is incorporatedinto the cell wall matrix, primarily of outer epidermal walls,and within the lumena of some types of epidermal cells. This biogenic silica can be stained specifically with methylred, crystal violet lactone, and silver amine chromate. At theultrastructural level, the silica in lumens of silica cells,bulliform cells and long epidermal cells is made up of rodsabout 2.5 µm in length and 0.4µm in width. Ultimateparticles in the rods range from 1 to 2 nm in diameter. In contrast,silica in the cell wall matrix of trichomes and outer wallsof long epidermal cells is not rod-shaped, but rather, formsroughly spherical masses. Detailed analyses are presented on the frequencies of occurrenceof the different types of epidermal cells that contain silicain the leaves of representative C3 and C4 grasses. The C4 grasseshave higher frequencies of bulliform cell clusters, silica cells,and long epidermal cells, whereas the C3 grasses have higherfrequencies of trichomes. No correlation was found in the frequencyof occurrence of silica bodies in bulliform cells for C3 grassesas compared with C4 grasses. Of all the grasses examined, Coix,Oryza, and Eleusine had the highest densities of such bodies,and some taxa had no silica bodies apparent in their bulliformcells. The idea that silica bodies in bulliform cells and silica cellsmight act as "windows’ and trichomes might function as‘light pipes’ to facilitate light transmission throughthe epidermal system to photosynthetic mesophyll tissue belowwas tested. The experimental data presented do not support eitherof these hypotheses. C2 and C4 grasses, biogenic silica, light pipes, window hypothesis, silica staining, silica ultrastructure  相似文献   

12.
DIX  N. J. 《Annals of botany》1974,38(2):505-514
It was confirmed that the leaves of Acer platanoides containan antifungal inhibitory substance. Low concentrations of sterilecold water extracts inhibited the germination of the sporesof Cladosporium herbarum (three isolates), Cladosporium sphaerospermumand Cylindrocarbon radiclcola. In the concentration range 0·06–0·125per cent (w/v) of leaf material the inhibitory response wasdemonstrated to increase linearly as the concentration of leafmaterial increased logarithmically. Inhibitory activity wasfound in leaf samples collected during a period from July toOctober but activity had disappeared from leaves collected inthe following January. The inhibitory activity was located intwo components of the water extract by bioassay tests followingether extraction and separation by chromatography. One of theactive components has been identified as gallic acid by gaschromatography. Gallic acid has also been detected in dew collectedfrom leaf surfaces where it is suggested that it may play animportant part in the colonization of the leaves by fungi.  相似文献   

13.
14.
GRAVES  C. J. 《Annals of botany》1978,42(1):117-125
The effects of various levels of copper on the uptake and distributionof copper in Chrysanthemum morifolium grown in solution cultureand peat-sand have been examined. Whole plants growing in shortdays were sampled at regular intervals, divided into roots,stem, leaves and lateral shoots, and analysed for copper. Thepartitioning of copper between these tissues showed that a relativelylarge proportion (30–40 per cent) of the total plant copperwas accumulated in the roots of normal plants during the harvestingperiod, compared with approximately 10 per cent in the rootsof copper deficient plants. Whilst the copper content (ug g–1) of leaves and stemfrom normal plants was negatively correlated with the amountof dry matter produced (P < 0·001), the correspondingcopper deficient tissues showed little variation in copper contentwith increases in tissue dry weight. A more detailed investigationof the copper content of leaves from normal plants showed thatgradients existed within the plant with respect to both leafposition and time of harvest which could be described by a singlecubic surface equation (P < 0·001).  相似文献   

15.
Ash and silica content and their depositional patterns in differenttissues of the mature corn plant (Zea mays L.) were determined.Ash and silica were highest in the leaf blades (up to 16.6 and10.9 per cent, respectively) followed by the leaf sheath, tassel,roots, stem epidermis and pith, and ear husk. The percentageof ash as silica was also highest in the leaves. Silica wasextremely low in the kernels. The upper stem epidermis and pithcontained nearly twice the silica content as did the lower portion.The patterns of ash and silica distribution were similar inplants grown in two different areas of Kansas, but were in lowerconcentration in the leaves and leaf sheaths from the area withlower soluble silica in the soil. Silica was deposited in theepidermis in a continuous matrix with cell walls showing serratedinterlocking margins in both leaves and stem. Rows of lobedphytoliths of denser silica were found in the epidermis as wellas highly silicified guard cells and trichomes. The silica matrixof the epidermis appears smooth on the outer surface and porousor spongy on the inner surface. Zea mays L. Corn, maize, ash content, silica deposition, scanning electron microscopy  相似文献   

16.
Changes in carbon fixation rate and the levels of photosyntheticproteins were measured in fourth leaves of Lolium temulentumgrown until full expansion at 360 µmol quanta m–2s–1 and subsequently at the same irradiance or shadedto 90 µmol m–2 s–1. Ribulose-1,5-bisphosphatecarboxylase/oxygenase (Rubisco), light-harvesting chlorophylla/b protein of photosystem II (LHCII), 65 kDa protein of photosystemI (PSI), cytochrome f (Cytf) and coupling factor 1 (CF1) declinedsteadily in amount throughout senescence in unshaded leaves.In shaded leaves, however, the decrease in LHCII and the 65kDa protein was delayed until later in senescence whereas theamount of Cyt f protein decreased rapidly following transferto shade and was lower than that of unshaded leaves at the earlyand middle stages of senescence. Decreases in the Rubisco andCF1 of shaded leaves occurred at slightly reduced rates comparedwith unshaded leaves. These results indicate that chloroplastproteins in fully-expanded leaves are controlled individually,in a direction appropriate to acclimate photosynthesis to agiven irradiance during senescence. (Received August 20, 1992; Accepted January 5, 1993)  相似文献   

17.
Flooding the soil for 5–7 d caused partial desiccationin leaves of pea plants (Pisum sativum. L. cv. ‘Sprite’).The injury was associated with anaerobiosis in the soil, a largeincrease in the permeability of leaf tissue to electrolytesand other substances, a low leaf water content and an increasedwater saturation deficit (WSD). Desiccating leaves also lackedthe capacity to rehydrate in humid atmospheres, a disabilityexpressed as a water resaturation deficit (WRSD). This irreversibleinjury was preceded during the first 4–5 d of floodingby closure of stomata within 24 h, decreased transpiration,an unusually large leaf water content and small WSD. Leaf waterpotentials were higher than those in well-drained controls.Also, there was no appreciable WRSD. Leaflets detached fromflooded plants during this early phase retained their watermore effectively than those from controls when left exposedto the atmosphere for 5 min. Stomatal closure and the associated increase in leaf hydrationcould be simulated by excising leaves and incubating them withtheir petioles in open vials of water. Thus, such changes inflooded plants possibly represented a response to a deficiencyin the supply of substances that would usually be transportedfrom roots to leaves in healthy plants (negative message). Ionleakage and the associated loss of leaf hydration that occurswhen flooding is extended for more than 5 d could not be simulatedby isolating the leaves from the roots. Appearance of this symptomdepended on leaves remaining attached to flooded root systems,implying that the damage is caused by injurious substances passingupwards (positive message). Both ethylene and ethanol have beeneliminated as likely causes, but flooding increased phosphorusin the leaves to concentrations that may be toxic. Key words: Pisum sativum, Flooding, Foliar desiccation, Stomata, Ethylene  相似文献   

18.
Leaves from in vitro and greenhouse cultured plants of Malusdomestica (Borkh.) cv. Mark were subjected to 4 h of darkness;4 h of 1 M mannitol induced water stress; 1 h of 10–4M to 10–7 M cis-trans abscisic acid (ABA) treatment; 1h of 0.12% atmospheric CO2. Stomatal closure was determinedby microscopic examination of leaf imprints. In all treatments,less than 5% of the stomata from leaves of in vitro culturedplants were closed. The diameter of open stomata on leaves fromin vitro culture remained at 8 µm. In contrast, an averageof 96% of the stomata on leaves of greenhouse grown plants wereclosed after 4 h in darkness; 56% after 4 h of mannitol inducedwater stress; 90% after 1 h of 10–4 M ABA treatment; 61%after 1 h in an atmosphere of 0.12% CO2. Stomata of in vitroapple leaves did not seem to have a closure mechanism, but acquiredone during acclimatization to the greenhouse environment. Thelack of stomatal closure in in vitro plants was the main causeof rapid water loss during transfer to low relative humidity.  相似文献   

19.
WARDLAW  C. W. 《Annals of botany》1957,21(3):436-437
In an attempt to shed new light on the nature of microphyllsand macrophylls, a study has been made of leaf inception inselected materials, including Psilotum, Tmesipteris and otherpteridophytes, and flowering plants such as Cuscuta with greatly‘reduced’ leaves. It is shown that the incipientprimordia of the small scale-like leaves of Psilotum and ofthe quite substantial, though microphyllous, laminate leavesof Tmesipteris are closely comparable and that there are noessential differences in the histological organization of incipientmicrophylls and incipient macrophylls. In parasitic speciessuch as Cuscuta, with small scale-like leaves, the organizationof the apical meristem and the inception of primordia are asin normal autotrophic species. The so-called ‘reduced’leaves and the microphyllous condition of some pteridophytesare attributable to a physiological-genetical limitation ofgrowth of primordia in the subapical regions of the shoot. Theconclusions which may be drawn from these observations are discussed.  相似文献   

20.
A sequential study describing the content (%) of alkaloids inleaves of Erythroxylum coca var. coca Lam. from leaf bud developmentto leaf drop has not previously been conducted. The length oftime the leaf resides on the plant and its concurrent metabolicactivity also has not been defined. In the present study, cocaine,methyl ecgonine, hygrine, tropinone, trans -cinnamoylcocaine,cis-cinnamoylcocaine, tropacocaine and cuscohygrine were monitoredto determine: (1) their content and patterns of accumulationfrom leaf bud to leaf drop; (2) the time leaves resided on theplant; and (3) whether leaves were metabolically active untilleaf drop. E. coca plants were grown in a controlled environmentfor 37 months. Leaves similar in chronological age were extractedand analysed for alkaloid content by gas chromatography (GC)and gas chromatography/mass spectrometry (GC/MS). Cocaine washighest in 7 d old rolled leaves (0·75%) and declinedto 0·39% at leaf drop. Cocaine, methyl ecgonine, hygrine,tropinone, trans -cinnamoylcocaine, cis-cinnamoylcocaine, cuscohygrineand tropacocaine content in 35 d old (mature) leaves was 0·61,0·59, 0·68, 0·08, 0·31, 0·55,0·52, and 0·05%. respectively. Cocaine, methylecgonine, hygrine, cis -cinnamoylcocaine, and cuscohygrine displayeda gradual decline from week 2 to week 36 of leaf duration. Tropinoneand tropacocaine were the least abundant of the alkaloids monitored.Cis-cinnamoylcocaine content exceeded cocaine at week 12, 16,and weeks 19 to 23 of leaf duration. Trans -cinnamoylcocainewas highest in rolled leaves (week 1) and in expanded leavesafter week 30. The monitored alkaloids appeared to be part ofthe metabolically active pool of the leaf. Leaves remained onthe E. coca plants for 36 weeks.Copyright 1994, 1999 AcademicPress Cocaine, methyl ecgonine, hygrine, tropinone, trans-cinnamoylcocaine, cis-cinnamoylcocaine, cusco-hygrine, tropacocaine, leaf bud, rolled leaves, expanded leaves, alkaloids, patterns, fluctuation, Erythroxylum coca var. coca, E, coca  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号