首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corynebacterium callunae (NCIB 10338) grows faster on glutamate than ammonia when used as sole nitrogen sources. The levels of glutamine synthetase (GS; EC 6.3.1.2) and glutamate synthase (GOGAT; EC 1.4.1.13) of C. callunae were found to be influenced by the nitrogen source. Accordingly, the levels of GS and GOGAT activities were decreased markedly under conditions of ammonia excess and increased under low nitrogen conditions. In contrast, glutamate dehydrogenase (GDH; EC 1.4.1.4) activities were not significantly affected by the type or the concentration of the nitrogen source supplied. The carbon source in the growth medium could also affect GDH, GS and GOGAT levels. Of the carbon sources tested in the presence of 2 mM or 10 mM ammonium chloride as the nitrogen source pyruvate, acetate, fumarate and malate caused a decrease in the levels of all three enzymes as compared with glucose. GDH, GS and GOGAT levels were slightly influenced by aeration. Also, the enzyme levels varied with the growth phase. Methionine sulfoximine, an analogue of glutamine, markedly inhibited both the growth of C. callunae cells and the transferase activity of GS. The apparent K m values of GDH for ammonia and glutamate were 17.2 mM and 69.1 mM, respectively. In the NADPH-dependent reaction of GOGAT, the apparent K m values were 0.1 mM for -ketoglutarate and 0.22 mM for glutamine.Abbreviations GDH glutamate dehydrogenase - GS glutamine synthetase - GOGAT glutamate synthase  相似文献   

2.
3.
The phototrophic green sulphur bacterium Chlorobium vibrioforme f. thiosulfatophilum assimilated ammonia via glutamine synthetase and glutamate synthase when grown with ammonia up to 30 mM, but above this level glutamate dehydrogenase was the key enzyme. Glutamine synthetase purified 42-fold was found to be adenylylated. The -glutamyltransferase activity of the enzyme was markedly inhibited by alanine, glycine, serine and lysine, and these amino acids in various combinations showed cumulative inhibition. Adenine nucleotides also inhibited enzyme activity, especially ATP. Glutamate synthase purified 222-fold had a maximum absorption at 440 nm which was reduced by sodium dithionite, and the enzyme was inhibited by atebrin indicating the presence of a flavin component. The enzyme had specific requirements for NADH, -ketoglutarate and l-glutamine, the K m values for these were 13.5, 270 and 769 M respectively. Glutamate synthase was sensitive to feedback inhibition by amino acids, adenine nucleotides and other metabolites and the combined effects of these inhibitors was cumulative.Abbreviations GS glutamine synthetase - GOGAT glutamate synthase - GDH glutamic dehydrogenase  相似文献   

4.
The incorporation of 15N into washed cells of Derxia gummosa from labelled-(NH4)2SO4 and -KNO3 respectively was inhibited by both L-methionine-DL-sulphoximine and azaserine. Glutamine synthetase purified to homogeneity from this bacterium had a molecular weight of 708 000 and was composed of 12 similar subunits each of 59 000. The enzyme assayed by γ-glutamyltransferase method had Km values for L-glutamine and hydroxylamine of 12.5 and 1.2 mM, respectively. Optimal pH values for adenylylated and deadenylylated forms were pH 7.0 and pH 8.0, respectively. The adenylylated enzyme was deadenylylated by treatment with snake venom phosphodiesterase. The inhibitions by both glutamate and ammonia were competitive. The activity was markedly inhibited by L-methionine-DL-sulphoximine, alanine, glycine and serine and to a lesser extent by aspartate, phenylalanine and lysine. Various tri-, di- and mono-phosphate nucleotides, organic acids (pyruvate, oxalate and oxaloacetate) were also inhibitory. Glutamate synthase purified 167-fold had specific requirements for NADH, L-glutamine and 2-ketoglutarate. The Km values for NADH, glutamine and 2-ketoglutarate were 9.6, 270 and 24 μM respectively. Optimal pH range was 7.2–8.2. The enzyme was inhibited by azaserine, methionine, aspartate, AMP, ADP and ATP.  相似文献   

5.
Some properties of the biosynthetic and -glutamyltransferase activities of glutamine synthetase (EC 6.3.1.2) from Anabaena cylindrica are described, including requirement for divalent cations, pH optimum and Km for substrates. The -glutamyl-transferase reaction was inhibited by L-glutamate, ammonia and ATP. The inhibition by L-glutamate and ammonia was competitive for L-glutamine and non-competitive for hydroxylamine. Both the biosynthetic and the -glutamyltransferase activities of the desalted enzyme were much more sensitive to inactivation by treatments such as urea, hydroxylamine and incubation at 50° C than the preparation which contained a divalent cation. The effects of some substrates of these reactions on protection against thermal denaturation and hydroxylamine were examined. An interpretation of these results in terms of the sequence of binding of substrates both in the biosynthetic and the -glutamyltransferase reactions are discussed.  相似文献   

6.
7.
Using antibodies raised against glutamine synthetase (GS) and NADP-glutamate dehydrogenase (NADP-GDH) from Laccaria laccata, we examined tissular localization of GS and NADP-GDH in symbiotic tissues of Douglas fir/L. laccata ectomycorrhizas by immunogold labeling. Thin sections of mycorrhizal roots were first treated either with an anti-GS- or antiNADP-GDH-specific antibody and then with a colloidal gold marker. Both enzymes appeared to be cytoplasmic. Our results also indicated the presence of GS in some fungal cells in dense cytoplasmic patches. It also appeared that GS is more abundant than NADP-GDH. The distribution of these nitrogen-assimilating enzymes in the fungal Hartig net and the sheath did not differ significantly. No labelling was observed in host cells.  相似文献   

8.
Wild-type and mutant plants of barley (Hordeum vulgare L. cv. Maris Mink) lacking activities of chloroplastic glutamine synthetase (GS) and of ferredox-in-dependent glutamate synthase (Fd-GOGAT) were crossed to generate heterozygous plants. Crosses of the F2 generation containing GS activities between 47 and 97 of the wild-type and Fd-GOGAT activities down to 63 of the wild-type have been selected to study the control of both enzymes on photorespiratory carbon and nitrogen metabolism. There were no major pleiotropic effects. Decreased GS had a small impact on leaf protein and the total activity of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco). The activation state of Rubisco was unaffected in air, but a decrease in GS influenced the activation state of Rubisco in low CO2. In illuminated leaves, the amino-acid content decreased with decreasing GS, while the content of ammonium rose, showing that even small reductions in GS limit ammonium re-assimilation and may bring about a loss of nitrogen from the plants, and hence a reduction in protein and Rubisco. Leaf amino-acid contents were restored, and ammonium and nitrate contents decreased, by leaving plants in the dark for 24 h. The ratios of serine to glycine decreased with a decrease in GS when plants were kept at moderate photon flux densities in air, suggesting a possible feedback on glycine decarboxylation. This effect was absent in high light and low CO2. Under these conditions ammonium contents exhibited an optimum and amino-acid contents a minimum at a GS activity of 65 of the wild-type, suggesting an inhibition of ammonium release in mutants with less than 65 GS. The leaf contents of glutamate, glutamine, aspartate, asparagine, and alanine largely followed changes in the total amino-acid contents determined under different environmental conditions. Decreased Fd-GOGAT resulted in a decrease in leaf protein, chlorophyll, Rubisco and nitrate contents. Chlorophyll a/b ratios and specific leaf fresh weight were lower than in the wild-type. Leaf ammonium contents were similar to the wild-type and total leaf amino-acid contents were only affected in low CO2 at high photon flux densities, but mutants with decreased Fd-GOGAT accumulated glutamine and contained less glutamate.Abbreviations Chl chlorophyll - FBPase fructose-1,6-bisphosphatase - Fd-GOGAT ferredoxin-dependent glutamine: 2-oxoglutarate aminotransferase - GS glutamine synthetase - PEP phosphoenolpyruvate - PFD photon flux density - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase This research was jointly supported by the Agricultural and Food Research Council and the Science and Engineering Research Council, U.K. in the programme on Biochemistry of Metabolic Regulation in Plants (PG50/555).  相似文献   

9.
Intact bundle-sheath cells with functional plasmodesmata were isolated from leaves of Zea mays L. cv. Mutin, and the capacity of these cells to synthesize glutamine and glutamate was determined by simulating physiological substrate concentrations in the bathing medium. The results show that glutamine synthetase can operate at full rate in the presence of added 8 mM ATP. At lower concentrations of ATP a higher rate of glutamine synthesis was found in the light than in darkness. Glutamate-synthase activity, on the other hand, was strictly light dependent. It appears that in bundle-sheath cells of maize the nitrate-assimilatory capacities of glutamine synthetase (located mainly in the cytosol) and of glutamate synthase (located in the stroma) are high enough to meet the demands of whole maize leaves.Abbreviations Gln glutamine - Glu glutamate - GOGAT glutamate synthase - GS glutamine synthetase - 2-OG 2-oxoglutarate This work was supported by the Bundesminister für Forschung und Technologie (0319296A). We thank Mr. Bernd Raufeisen for the art work of Fig. 1.  相似文献   

10.
Glutamine synthetase (EC 6.3.1.2) was purified to homogeneity from a free-living nitrogen fixing bacteria, Bacillus polymyxa. The holoenzyme, relative molecular mass (Mr) of 600 000 is composed of monomeric sub-units of 60 000 (Mr). The isoelectric point of the sub-units was 5.2. The pH optimum for the biosynthetic and transferase enzyme activity was 8.2 and 7.8, respectively. The apparent K m values (K m app ) in the biosynthetic reaction for glutamate, NH4Cl and ATP were 3.2, 0.22 and 1 mM, respectively. In the transferase reaction the K m values for glutamine, hydroxylamine and ADP were 6.5, 3.5 and 8×10-4 mM respectively. L-Methionine-D-L-sulfoximine was a very potent inhibitor in both biosynthetic and transferase reactions. Similar to most Gram positive bacteria there was no evidence of in vivo adenylylation and the enzyme seemed to be mainly regulated by feed-back mechanism.Abbreviations PMSF phenylmethylsulfonylfluoride - TCA trichloroacetic acid - GS glutamine synthetase - MSO L-Methionine-D-L-sulfoximine - SDS-PAGE sodium dodecyl sulfatepolyacrylamide gel electrophoresis - SVPDE snake venum phosphodiesterase  相似文献   

11.
Glutamine synthetase from Pseudomonas aeruginosa is regulated by repression/derepression of enzyme synthesis and by adenylylation/deadenylylation control. High levels of deadenylylated biosynthetically active glutamine synthetase were observed in cultures growing with limiting amounts of nitrogen while synthesis of the enzyme was repressed and that present was adenylylated in cultures with excess nitrogen.NADP-and NAD-dependent glutamate dehydrogenase could be separated by column chromatography and showed molecular weights of 110,000 and 220,000, respectively. Synthesis of the NADP-dependent glutamate dehydrogenase is repressed under nitrogen limitation and by growth on glutamate. In contrast, NAD-dependent glutamate dehydrogenase is derepressed by glutamate. Glutamate synthase is repressed by glutamate but not by excess nitrogen.  相似文献   

12.
In the wild-type of Corynebacterium glutamicum, the specific activity of glutamate dehydrogenase (GDH) remained constant at 1.3 U (mg protein)–1 when raising the ammonia (NH4) concentration in the growth medium from 1 to 90 mM. In contrast, the glutamine synthetase (GS) and glutamate synthase (GOGAT) activities decreased from 1.1 U (mg protein)–1 and 42 mU (mg protein)–1, respectively, to less than 10 % of these values at NH4 concentrations > 10 mM suggesting that under these conditions the GDH reaction is the primary NH4 assimilation pathway. Consistent with this suggestion, a GDH-deficient C. glutamicum mutant showed slower growth at NH4 concentrations 10 mM and, in contrast to the wild-type, did not grow in the presence of the GS inhibitor methionine sulfoximine. © Rapid Science Ltd. 1998  相似文献   

13.
In Pseudomonas aeruginosa the formation of urease, histidase and some other enzymes involved in nitrogen assimilation is repressed by ammonia in the growth medium. The key metabolite in this process appears to be glutamine or a product derived from it, since ammonia and glutamate did not repress urease and histidase synthesis in a mutant lacking glutamine synthetase activity when growth was limited for glutamine. The synthesis of these enzymes was repressed in cells growing in the presence of excess glutamine. High levels of glutamine were also required for the derepression of NADP-dependent glutamate dehydrogenase formation in the glutamine synthetase-negative mutant.  相似文献   

14.
Frankia sp. strain CpI1 has two glutamine synthetases designated GSI and GSII. Biosynthetic activities of both GSI and GSII were strongly inhibited by ADP and AMP. Alanine, aspartate, glycine and serine inhibited both GSI and GSII activities, whereas asparagine and lysine inhibited only slightly. Glutamine inhibited GSII but did not affect GSI. Since GSII is more heat labile than GSI, their relative heat stabilities can be used to determine their contribution to total GS activity. In cells grown on ammonia and on glutamine as sole combined-nitrogen sources most GS activity detected in crude extracts was due to GSI. In cells transferred to glutamate, GSI accounted for all GS activity in the first 15 h and then heat labile GSII was induced and increased to account for 40% of total GS activity within 50 h. Transfer of N2-fixing cells to ammonia-containing medium led to a rapid decrease of GSII and a slow increase of GSI activity within 24 h. Conversely, when ammonia-grown cells were transferred to combined nitrogen-free medium, GSI activity gradually decreased and GSII increased before total activity leveled off in 50 h. GSII appears to be an ammonia-assimilating enzyme specifically synthesized during perceived N-starvation of Frankia cells.  相似文献   

15.
D. Cammaerts  M. Jacobs 《Planta》1985,163(4):517-526
Glutamate-dehydrogenase (GDH, EC 1.4.1.2) activity and isoenzyme patterns were investigated in Arabidopsis thaliana plantlets, and parallel studies were carried out on glutamine synthetase (GS, EC 6.3.1.2). Both NADH-GDH and NAD-GDH activities increased during plant development whereas GS activity declined. Leaves deprived of light showed a considerable enhancement of NADH-GDH activity. In roots, both GDH activities were induced by ammonia whereas in leaves nitrogen assimilation was less important. It was demonstrated that the increase in GDH activity was the result of de-novo protein synthesis. High nitrogen levels were first assimilated by NADH-GDH, while GS was actively involved in nitrogen metabolism only when the enzyme was stimulated by a supply of energy, generated by NAD-GDH or by feeding sucrose. When methionine sulfoximine, an inhibitor of GS, was added to the feeding solution, NADH-GDH activity remained unaffected in leaves whereas NAD-GDH was induced. In roots, however, there was a marked activation of GDH and no inactivation of GS. It was concluded that NADH-GDH was involved in the detoxification of high nitrogen levels while NAD-GDH was mainly responsible for the supply of energy to the cell during active assimilation. Glutamine synthetase, on the other hand was involved in the assimilation of physiological amounts of nitrogen. A study of the isoenzyme pattern of GDH indicated that a good correlation existed between the relative activity of the isoenzymes and the ratio of aminating to deaminating enzyme activities. The NADH-GDH activity corresponded to the more anodal isoenzymes while the NAD-GDH activity corresponded to the cathodal ones. The results indicate that the two genes involved in the formation of GDH control the expression of enzymes with different metabolic functions.Abbreviations GDH glutamate dehydrogenase - GS glutamine synthetase - MSO methionine sulfoximine  相似文献   

16.
17.
Heterozygous mutants of barley (Hordeum vulgare L. cv. Maris Mink) with decreased activities of chloroplastic glutamine synthetase (GS) between 97 and 47% of the wild type and ferredoxin dependent glutamate synthase (Fd-GOGAT) down to 64% of the wild type have been used to study aspects of glyoxylate metabolism and the effect of glyoxylate on the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in vivo. In the leaf, the extractable activities of serine:glyoxylate aminotransferase decreased with a decrease in GS whereas activities of glutamate and alanine:glyoxylate aminotransferase increased, pointing to a re direction of amino donors from serine to glutamate and alanine. Under ambient conditions, the leaf contents of glutamate and alanine declined continuously with a decrease in GS, in parallel with the decrease in total amino acids. Glycine, serine and asparagine contents decreased with a decrease in GS to approximately 70% of the wild type, but increased again with a further decrease in GS. At high irradiances and at low CO2 concentrations, glyoxylate contents exhibited a pronounced minimum between 60% and 80% GS. With a further decrease in GS, glyoxylate contents recovered and approached values similar to the wild type. The activation state of Rubisco showed a negative correlation with glyoxylate contents, indicating that a decrease in GS feeds back on the first step of carbon assimilation and photorespiration. The activation state of stromal fructose-1,6-bisphosphatase was unaffected by a decrease in GS or Fd-GOGAT, whereas the activation state of NADP dependent malate dehydrogenase changed in a complex manner. The CO2photocompensation point, *, was appreciably increased in mutants with 47% GS. Mitochondrial respiration in the light (Rd) was reduced with a decrease in GS. Relative rates of CO2 release into CO2-free air between the wild type and the 47%-GS mutant correlated with determinations of *. These data are consistent with the view that when GS is decreased there is an increased oxidative decarboxylation of glyoxylate resulting from a decreased availability of amino donors for the transamination of glyoxylate to glycine, and that when GS activities are lower than 70% of the wild type an additional mechanism operates to reduce the photorespiratory loss of ammonia.Abbreviations AGAT nine:glyoxylate aminotransferase - FBPase fructose-1,6-bisphosphatase - Fd-GOGAT ferredoxin dependent glutamate synthase - GGAT glutamate:glyoxylate aminotransferase - GS glutamine synthetase - MDH malate dehydrogenase - PFD photon flux density - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase - SGAT serine:glyoxylate aminotransferase This research was supported by the Biotechnology and Biological Sciences Research Council initiative on the Biochemistry of Metabolic Regulation in Plants (PG 50/555).  相似文献   

18.
Glutamine synthetase (GS; EC 6.3.1.2) activity from the unicellular cyanobacterium Synechococcus sp. strain PCC 6301 shows a short-term regulation by light-dark transitions. The enzyme activity declines down to 30% of the original level after 2 h of dark incubation, and can be fully reactivated within 15 min of re-illumination. The loss of activity is not due to protein degradation, but rather to a reversible change of the enzyme, as deduced from the GS-protein levels determined in dark-incubated cells using polyclonal antibodies raised against Synechococcus GS. Incubation with 3-(3-4-dichlorophenyl)-1,1-dimethylurea (DCMU) also provokes GS inactivation, indicating that an active electron flow between both photosystems is necessary to maintain GS in an active state. On the other hand, the light-mediated reactivation of GS in dark-incubated cells treated with dicyclohexyl-carbodiimide (DCCD) or carbonyl cyanide m-chlorophenylhydrazone (CCCP) indicates that neither changes in the ATP synthesis nor the lack of an electrochemical proton gradient across the thylakoid membrane are directly involved in the regulation process. The inactive form of GS is extremely labile in vitro after disruption of the cells, and is not reactivated by treatment with dithiothreitol or spinach thioredoxin m. These results, taken together with the fact that dark-promoted GS inactivation is dependent on the growth phase, seem to indicate that GS activity is not regulated by a typical redox process and that some other metabolic signal(s), probably related to the ammonium-assimilation pathway, might be involved in the regulation process. In this regard, our results indicate that glutamine is not a regulatory metabolite of Synechococcus glutamine synthetase.Abbreviations CAP chloramphenicol - CCCP carbonyl cyanide m-chlorophenylhydrazone - DCCD dicyclohexylcarbodiimide - DCMU 3-(3-4-dichlorophenyl)-1,1-dimethylurea - DTT dithiothreitol - GOGAT glutamate synthase - GS glutamine synthetase - PFD photon flux density This work has been financed by the Directión General de Investigación Científica y Técnica, (Grant PB88-0020) and by the Junta de Andalucía, Spain.  相似文献   

19.
20.
Embryos of yellow lupine ( Lupinus luteus L. cv. Jantar), deprived of cotyledons, were incubated for 72 h in media containing various combinations of saccharose, ammonia, nitrate, glutamine and asparagine. Induction of glutamine synthetase (GS) was observed in embryos in media containing saccharose while the activity of this enzyme was inhibited by glutamine, asparagine and ammonia in the absence of sugar. The above mentioned nutritional factors had an opposite effect on the activity of glutamate dehydrogenase (GDH). Changes in glutamate dehydrogenase activity were preceded by reverse changes in the activity of glutamine synthetase. The possibility of GDH repression by GS in lupine embryos is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号