首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: Treatment of cultured bovine adrenal chromaffin cells with 12- O -tetradecanoylphorbol 13-acetate (TPA), an activator of protein kinase C (PKC), decreased [3H]saxitoxin ([3H]STX) binding in a concentration (IC50 = 19 n M )- and time ( t 1/2 = 4.5 h)-dependent manner. TPA (100 n M for 15 h) lowered the B max of [3H]STX binding by 53% without altering the K D value. Phorbol 12,13-dibutyrate (PDBu) also reduced [3H]STX binding, whereas 4α-TPA, an inactive analogue, had no effect. The inhibitory effect of TPA was abolished when H-7 (an inhibitor of PKC), but not H-89 (an inhibitor of cyclic AMP-dependent protein kinase), was included in the culture medium for 1 h before and during TPA treatment. Simultaneous treatment with TPA in combination with either actinomycin D or cycloheximide, an inhibitor of protein synthesis, nullified the effect of TPA. TPA treatment also attenuated veratridine-induced 22Na+ influx but did not alter the affinity of veratridine for Na channels as well as an allosteric potentiation of veratridine-induced 22Na+ influx by brevetoxin. These results suggest that an activation of PKC down-regulates the density of Na channels without altering their pharmacological features; this down-regulation is mediated via the de novo synthesis of an as yet unidentified protein(s), rather than an immediate effect of Na channel phosphorylation.  相似文献   

2.
Cultured cells of the smooth muscle line DDT1MF-2, which was derived from a hamster vas deferens tumor, expressed histamine H1-type receptors and responded biochemically and functionally to H1-specific stimulation. The H1-receptor antagonist [3H]-pyrilamine bound specifically to 9.7 x 10(6) sites/DDT1MF-2 cell with a dissociation constant (Kd) of 219 nM. The addition of histamine to suspensions of fura-2-loaded DDT1MF-2 cells elicited a rapid, transient, and stimulus concentration-dependent increase in the intracellular concentration of Ca2+ with an EC50 of 3 x 10(-5) M, which demonstrated H1 receptor specificity. Moreover, in order to evaluate in vitro contractile response of individual DDT1MF-2 cells, the degree of intracellular actin polymerization was quantified by a DNase inhibition assay. The percentage of nonpolymerized or G-actin in DDT1MF-2 cells was reduced in a histamine concentration-dependent manner with an EC50 of 1 x 10(-5) M and H1 receptor specificity. Histamine-induced actin polymerization was accompanied by changes in cell shape that were consistent with cellular contraction, as assessed by flow cytometry. The H1-type receptors of cultured DDT1MF-2 cells thus couple histamine stimulation to a variety of functional responses of smooth muscle cells.  相似文献   

3.
4.
Role of protein kinase C in chick embryo skeletal myoblast fusion   总被引:4,自引:0,他引:4  
The involvement of Ca2+ and PGE1 in myoblast fusion has been well documented. Extracellular Ca2+ is essential for myoblast adhesion, alignment, and fusion. There is an obligatory increase in Ca2+ influx immediately preceding fusion and the Ca2+ ionophore A23187 promotes precocious fusion. PGE1 receptors appear just prior to fusion, and an antagonist of PGE1 binding to cell surface receptors blocks fusion when added prior to Ca2+ influx. Finally, exogenous PGE1 induces precocious fusion. The present study was an initial test of the hypothesis that membrane protein phosphorylation by protein kinase C (PKC) links PGE1 receptor occupancy and the increase in Ca2+ influx. Our conclusion that PKC is an essential component in the regulation of myoblast fusion is based in part on the following evidence: (1) an activator of PKC, the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), at low concentration and for a brief exposure period, induces precocious fusion and stimulates Ca2+ influx; (2) 4 alpha-phorbol-12,13-didecanoate, an inactive analog of TPA, has no discernible effect on fusion or Ca2+ influx; (3) 1-oleoyl-2-acetyl glycerol, an analog of endogenous diacylglycerol (DAG) which activates PKC, promotes precocious fusion, as does the DAG kinase inhibitor R59022 (6-[2-[4-[(4-fluorophenyl)phenylmethylene]-1-piperidinyl]ethyl]-7- methyl-5H-thiazole-[3,2 alpha]-pyrimidin-5-one) which raises the level of endogenous DAG by inhibiting its catabolism; (4) 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7), a highly potent PKC inhibitor, reversibly blocks myogenesis at a point between alignment and fusion; and (5) H-7 also blocks the normal increase in Ca2+ influx preceding fusion.  相似文献   

5.
[3H]Arachidonic acid is released after stimulation of rabbit neutrophils with fMet-Leu-Phe or platelet-activating factor (PAF). The release is rapid and dose-dependent, and is inhibited in phorbol 12-myristate 13-acetate (PMA)-treated rabbit neutrophils. The protein kinase C (PKC) inhibitor 1-(5-isoquinoline-sulphonyl)-2-methylpiperazine (H-7) prevents this inhibition. In addition, PMA increases arachidonic acid release in H-7-treated cells stimulated with fMet-Leu-Phe. [3H]Arachidonic acid release, but not the rise in the concentration of intracellular Ca2+, is inhibited in pertussis-toxin-treated neutrophils stimulated with PAF. The diacylglycerol kinase inhibitor R59022 increases the concentration of diacylglycerol and potentiates [3H]arachidonic acid release in neutrophils stimulated with fMet-Leu-Phe. This potentiation is not inhibited by H-7. These results suggest several points. (1) A rise in the intracellular concentration of free Ca2+ is not sufficient for arachidonic acid release in rabbit neutrophils stimulated by physiological stimuli. (2) A functional pertussis-toxin-sensitive guanine nucleotide regulatory protein and/or one or more of the changes produced by phospholipase C activation are necessary for arachidonic acid release produced by physiological stimuli. (3) Agents that stimulate PKC potentiate arachidonic acid release, and this potentiation is not inhibited by H-7. These agents produce their actions in part by direct membrane perturbation.  相似文献   

6.
1. Sphingosine inhibited the binding of [3H]quinuclidinyl benzilate (QNB), a potent and specific muscarinic antagonist, in dispersed rat parotid acinar cells.2. The inhibition of [3H]QNB binding was expressed as decrease in affinity without significant change of a number of membrane sites.3. The effect of Sphingosine on the binding was not affected by the chelation of extracellular Ca2+.4. H-7, an inhibitor of protein kinase C, failed to decrease [3H]QNB binding.5. Stearylamine, an analogue of Sphingosine, was as effective as Sphingosine in inhibiting [3H]QNB binding.6. These results suggest that Sphingosine inhibits muscarinic cholinergic receptor binding by a mechanism that is independent on extracellular Ca2+ and protein kinase C.  相似文献   

7.
Recently published reports suggest that the activation of protein kinase C (PKC) plays an important role in the activation pathway of many cell types. In this study, we examined the role of PKC in human T-cell proliferation, IL-2 production, and IL-2R expression, when cultured with the mitogen PHA, the PKC inhibitor H-7, and H-7 control HA1004. H-7 inhibited the PHA-stimulated [3H]thymidine uptake, IL-2 production, and IL-2R expression in a dose-related manner. Further, we found H-7 inhibited T-cell proliferation, IL-2 production, IL-2 mRNA from PHA plus PMA-stimulated cultures. We also found that H-7 inhibited the early-stage activation of PHA-stimulated cells. The presence of exogenous purified human IL-2 or rIL-4 partly reversed the immunosuppression caused by H-7. In contrast, HA1004 had no effect on cell proliferation, IL-2 production, or IL-2R expression. Our results demonstrate that PKC activation is one major pathway through which T-cells become activated.  相似文献   

8.
Nuclear factor kappa-B (NF-kappa B) has been shown to play an important role in LPS-mediated induction of several genes in macrophages. Several studies have implicated protein kinase C (PKC) or cAMP-dependent protein kinase in the regulation of NF-kappa B activity. In this study we have investigated the mechanism of NF-kappa B induction in murine macrophages. A chloramphenicol acetyl transferase (CAT) expression vector containing multiple copies of the TNF-alpha NF-kappa B element was transfected into the RAW264 macrophage-like cell line and assessed for inducible CAT activity. LPS treatment of the transfected cells resulted in a significant induction of CAT activity. CAT activity was not induced by treatment with phorbol myristate acetate (PMA) or the cAMP analogue 8-bromo cAMP. To further study NF-kappa B induction, nuclear extracts were prepared from RAW264 cells. Extracts from RAW264 cells that were treated from 30 min to 2 hr with LPS had a significant increase in NF-kappa B binding activity as determined by the electrophoresis mobility shift assay (EMSA). Treatment of these cells from 30 min to 2 hr with PMA did not result in such binding activity. U.V. crosslinking analysis of the DNA-binding activity confirmed these results and indicated that LPS induced a 55 KD DNA-binding protein. Induction of this NF-kappa B binding activity was not inhibited by pretreatment with the PKC inhibitor H-7. H-7 did inhibit induction of TPA responsive element binding by either LPS or PMA. Prolonged exposure to phorbol ester, a treatment which down-regulates PKC, had no effect on LPS induction of NF-kappa B activity in these cells. These results suggest that the induction of NF-kappa B in macrophages by LPS is independent of PKC.  相似文献   

9.
Cannabinoid CB1-receptor stimulation in DDT1 MF-2 smooth muscle cells induces a rise in [Ca2+]i, which is dependent on extracellular Ca2+ and modulated by thapsigargin-sensitive stores, suggesting capacitative Ca2+ entry (CCE), and by MAP kinase. Non-capacitative Ca2+ entry (NCCE) stimulated by arachidonic acid (AA) partly mediates histamine H1-receptor-evoked increases in [Ca2+]i in DDT1 MF-2 cells. In the current study, both Ca2+ entry mechanisms and a possible link between MAP kinase activation and increasing [Ca2+]i were investigated. In the whole-cell patch clamp configuration, the CB-receptor agonist CP 55, 940 evoked a transient, Ca2+-dependent K+ current, which was not blocked by the inhibitors of CCE, 2-APB, and SKF 96365. AA, but not its metabolites, evoked a transient outward current and inhibited the response to CP 55,940 in a concentration-dependent manner. CP 55,940 induced a concentration-dependent release of AA, which was inhibited by the CB1 antagonist SR 141716. The non-selective Ca2+ channel blockers La3+ and Gd3+ inhibited the CP 55,940-induced current at concentrations that had no effect on thapsigargin-evoked CCE. La3+ also inhibited the AA-induced current. CP 55,940-induced AA release was abolished by Gd3+ and by phospholipase A2 inhibition using quinacrine; this compound also inhibited the outward current. The CP 55,940-induced AA release was strongly reduced by the MAP kinase inhibitor PD 98059. The data suggest that in DDT1 MF-2 cells, AA is an integral component of the CB1 receptor signaling pathway, upstream of NCCE and, via PLA2, downstream of MAP kinase.  相似文献   

10.
11.
In testing the hypothesis that the stimulation of the release of fibronectin (FN) by 12-O-tetradecanoylphorbol 13-acetate (TPA) from human lung fibroblasts in culture is the result of activation of protein kinase C (PKC), we found that the PKC inhibitor sphingosine strongly inhibited FN release in presence and even in absence of TPA. However, a different PKC inhibitor, calphostin C, despite almost complete inhibition of PKC, had no effect on FN release. We concluded that sphingosine is a potent inhibitor of FN release from the cell surface, independent of its inhibition of PKC; and that TPA stimulates release of FN by a pathway other than activation of PKC. We found that the activation of PKC by TPA was accompanied by inhibition of the cAMP-dependent protein kinase (PKA). When PKA was inhibited by an antagonist (H8, a cAMP analogue) at a concentration specific for PKA inhibition, the release of FN was stimulated similar to the stimulation with TPA. Activation of PKA with forskolin resulted in decreased FN release. In conclusion, we have shown that: (1) sphingosine had a robust effect inhibiting the release of FN from fibroblasts, independent of its action on PKC; (2) TPA treatment of these cells resulted in inhibition of PKA; (3) inhibition of PKA stimulated FN release whereas its activation decreased this release. It is possible that PKA, by phosphorylating a protein, may function, directly or indirectly, in keeping FN attached to the cell surface of fibroblasts.  相似文献   

12.
The synthetic fluorescent derivatives of 12-O-tetradecanoylphorbol-13-acetate (TPA), dansyl-TPA, dansyl-TPA-20-acetate and dansyl-TPA-13-desacetate, have ID50 values in the [3H]PDBu binding assay of 2nM, 30nM and 1000nM respectively; the ID50 value of TPA is 4nM. Dansyl-TPA is also equipotent with TPA as an activator of protein kinase C(PKC) producing half maximum stimulation at 2nM. Dansyl-TPA-13-desacetate is almost as potent as dansyl-TPA, while dansyl-TPA-20-acetate is completely inactive as an activator of PKC. The cellular uptake of these fluorescent TPA derivatives tends to parallel their activity in the [3H]PDBu binding assay. Treatment of C3H 10T1/2 cells with 100nM dansyl-TPA results in intense fluorescence of the entire cytoplasm, while the nucleus is virtually devoid of fluorescence. The uptake of fluorescence is quenched by an excess of TPA. Thus, dansyl-TPA rapidly enters cells and binds to specific sites distributed throughout the cytoplasm. Presumably these sites reflect the cellular localization of phorbol ester receptors and protein kinase C.  相似文献   

13.
The involvement of Ca2+/phospholipid-dependent protein kinase (protein kinase C, PKC) and cyclic AMP-dependent protein kinase in the K+-evoked release of norepinephrine (NE) was studied using guinea pig brain cortical synaptosomes preloaded with [3H]NE. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a potent activator of PKC, enhanced the K+-evoked release of [3H]NE, in a concentration-dependent manner, but with no effect on the spontaneous outflow and uptake of [3H]NE in the synaptosomes. The apparent affinity of the evoked release for added calcium but not the maximally evoked release was increased by TPA (10(-7) M). Inhibitors of PKC, polymyxin B, and a more potent inhibitor, staurosporine, counteracted the TPA-induced potentiation of the evoked release. Both forskolin and dibutyryl cyclic AMP (DBcAMP) enhanced the evoked release, but reduced the TPA-potentiated NE release. A novel inhibitor of cyclic AMP-dependent protein kinase, KT5720, blocked both the forskolin-induced increase in the evoked release and its inhibition of TPA-induced potentiation in the evoked release, thereby suggesting that forskolin or DBcAMP counteracts the Ca2+-dependent release of NE by activating cyclic AMP-dependent protein kinase. These results suggest that the activation of PKC potentiates the evoked release of NE and that the activation of cyclic AMP-dependent protein kinase acts negatively on the PKC-activated exocytotic neurotransmitter release process in brain synaptosomes of the guinea pig.  相似文献   

14.
Chelerythrine is a potent and specific inhibitor of protein kinase C   总被引:56,自引:0,他引:56  
The benzophenanthridine alkaloid chelerythrine is a potent, selective antagonist of the Ca++/phospholopid-dependent protein kinase (Protein kinase C: PKC) from the rat brain. Half-maximal inhibition of the kinase occurs at 0.66 microM. Chelerythrine interacted with the catalytic domain of PKC, was a competitive inhibitor with respect to the phosphate acceptor (histone IIIS) (Ki = 0.7 microM) and a non-competitive inhibitor with respect to ATP. This effect was further evidenced by the fact that chelerythrine inhibited native PKC and its catalytic fragment identically and did not affect [3H]- phorbol 12,13 dibutyrate binding to PKC. Chelerythrine selectively inhibited PKC compared to tyrosine protein kinase, cAMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase. The potent antitumoral activity of celerythrine measured in vitro might be due at least in part to inhibition of PKC and thus suggests that PKC may be a model for rational design of antitumor drugs.  相似文献   

15.
Inhibitors of phospholipase A2, tetracaine and quinacrine, inhibitors of protein kinases, H-7 and H-8, and a diacylglycerol lipase inhibitor reduced the level of CMV-induced [3H]AA release. A combination of H-7 and quinacrine inhibited stimulation of [3H]AA by about 80%. LU cells chronically treated with TPA and infected with CMV, had a reduced level of CMV-induced [3H]AA release and in the presence of quinacrine it was completely inhibited. These results suggest that CMV-induced stimulation of AA metabolism is mediated by pathways which are associated with activation of PLA2 and protein kinase C.  相似文献   

16.
In the present study, we first investigated which of the factors, protein kinase C (PKC) or Ca2+, plays an important role in activation of phospholipase D (PLD) of rabbit peritoneal neutrophils stimulated by the chemoattractant FMLP. PLD activity was assessed by measuring [3H]phosphatidylethanol ([3H]PEt), the unambiguous marker of PLD, generated by [3H]lyso platelet-activating factor-prelabeled neutrophils in the presence of ethanol. PKC inhibitors, staurosporine and 1-(5-isoquinolinesulfonyl-2-methylpiperazine dihydrochloride, augmented the plateau level of [3H]PEt produced in FMLP-stimulated cells, although they had no effect on the initial rate of the formation. Furthermore, it was found that the FMLP-stimulated [3H]PEt formation was inhibited by pretreatment of cells with PMA, a PKC activator, and exposure of cells to staurosporine before PMA pretreatment moderately blocked the PMA inhibition. Ca2+ ionophore ionomycin, as well as FMLP, stimulated [3H]PEt formation, accompanied by a decrease in [3H]phosphatidylcholine, in a time- and concentration-dependent manner. Both FMLP and ionomycin absolutely required extracellular Ca2+ to increase [3H]PEt formation. These results imply that elevated intercellular Ca2+ by FMLP stimulation is the major factor for PLD activation and that PKC rather negatively regulates the enzyme activity. Interestingly, a calmodulin inhibitor, N-(6-aminohexyl)-5-chloro-1- naphthalenesulfonamide, and a myosin L chain kinase inhibitor, 1-(5-iodonaphthalene-1-sulfonyl)-1H-h exahydro-1,4-diazepine hydrochloride, both inhibited the ionomycin- and FMLP-stimulated [3H]PEt formation in a concentration-dependent manner. Results obtained in this study suggest that, in FMLP-stimulated rabbit peritoneal neutrophils, increased intracellular Ca2+ activates PLD through calmodulin/myosin L chain kinase pathway and, thereafter, the enzyme activation is turned off by simultaneously activated PKC.  相似文献   

17.
We have explored the hypothesis that the apparent greater efficiency of cholecystokinin (CCK-8) receptor-second messenger coupling compared with that of muscarinic receptor in Flow 9000 cells is due to differential feedback inhibitory control mechanisms. Pretreatment of Flow 9000 cells with the tumour-promoting protein kinase C (PKC)-activating agent 12-O-tetradecanoylphorbol 13-acetate (TPA) produced a time- and dose-dependent inhibition of CCK-8 and acetylcholine (ACh) stimulation of inositol phosphate production. The inhibition by TPA of ACh-induced PI (phosphoinositide) response involved reduction of the maximal response, but no change in the concentration of ACh required to evoke a half-maximal response. In contrast, TPA inhibition of CCK-8 responses could be overcome by increasing the CCK-8 concentrations. Flow 9000 cells pretreated with TPA exhibited a 52-68% reduction in [3H]quinuclidinyl benzilate ([3H]QNB) binding capacity, whereas [125I]CCK-8 binding was unchanged. In saponin-permeabilized Flow 9000 cells, TPA pretreatment had no effect on guanosine 5'-[gamma-thio]triphosphate (GTP[S])-induced inositol phosphate formation, indicating that G-protein linkage to phosphoinositidase C (PIC) was not affected. However, TPA significantly inhibited the potentiating effect of GTP[S] on CCK-8 and ACh activation of PI response, suggesting that the coupling between the receptors and the G-protein was impaired. The PKC-activator 1-oleoyl-2-acetylglycerol (OAG), a diacylglycerol analogue, also significantly reduced CCK-8 and ACh stimulation of inositol phosphate accumulation in these cells. Our results are consistent with the hypothesis that muscarinic activation of PI hydrolysis is subjected to rapid feedback inhibition via the 1,2-diacylglycerol-PKC pathway. CCK-receptor activation of PI turnover is modulated to a lesser extent, and this may partially explain apparent differences in the efficiency of receptor-second messenger coupling. It is proposed that TPA acting through PKC exerts its inhibitory action on muscarinic-agonist-mediated PI response mainly at the receptor level, whereas the inhibitory effect on CCK-8 response is at a site close to the receptor-G-protein coupling step.  相似文献   

18.
Possible involvement of microfilaments in protein kinase C translocation   总被引:5,自引:0,他引:5  
We investigated the role of microfilaments in stimulus-induced translocation of protein kinase C (PKC) in polymorphonuclear leukocytes (PMNs) from C57BL/6 mice. Cytochalasin B and dihydrocytochalasin B almost completely inhibited PKC translocation induced by either TPA or Ca2+ ionophore after pretreatment of cells for 30 min. In addition, ML-9, a potent inhibitor of Ca2+/calmodulin-dependent myosin light chain kinase which regulate microfilament contraction, and a calmodulin antagonist W-7, also inhibited PKC translocation. These findings suggest the possibility that microfilaments are involved in the translocation of PKC.  相似文献   

19.
The selectivity of different Rho kinase (ROCK) inhibitors in the spontaneously tonic smooth muscle has not been investigated. We examined this issue using Y-27632 [(R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarbox anecarboxamide, 2HCl], H-1152 [(S)-(+)-(2-methyl-5-isoquinolinyl) sulfonylhomopiperazine, 2HCl], HA-1077 [(5 isoquinolinesulfonyl) homopiperazine, 2HCl], and ROCK inhibitor II [N-(4-pyridyl)-N'-(2,4,6-trichlorophenyl)urea]. We compared these inhibitors in the spontaneously tonic smooth muscle of the internal anal sphincter (IAS). ROCK, protein kinase C (PKC), and myosin light chain kinase (MLCK) activities were determined in the IAS, before and after different ROCK inhibitors. Y-27632 and H-1152 were approximately 30-fold more potent in the IAS (IC(50): 4.4 x 10(-7) and 7.9 x 10(-8) M, respectively) vs. the phasic rectal smooth muscle (RSM) (IC(50): 1.3 x 10(-5) and 2.5 x 10(-6) M, respectively). HA-1077 and ROCK inhibitor II were equipotent in the IAS vs. RSM. In the IAS, H-1152 was the most potent whereas ROCK inhibitor II is the least. Y-27632 and H-1152 caused concentration-dependent decrease in the IAS tone that correlates directly with the decreases in ROCK activity, without significant effect in the PKC and MLCK activities. This specifically selective correlation between ROCK activity and decrease in the IAS tone was absent in the case of HA-1077 and ROCK inhibitor II, which also inhibited PKC and MLCK. We conclude that the IAS tone is critically dependent on ROCK activity, and H-1152 and Y-27632 are the most selective and potent ROCK inhibitors in the IAS.  相似文献   

20.
Ca2+/phospholipid-dependent protein kinase (PKC) was inhibited by sulphated polysaccharides. Pentosan polysulphate (PPS) and heparin were 8-10-times more potent than dextran sulphate or heparan sulphate. Steady-state studies revealed that PPS was a competitive inhibitor with respect to ATP with an apparent Ki value of 0.32 micrograms/ml and a non-competitive inhibitor with respect to histones. In contrast, the inhibition of PKC by heparin was competitive with substrate and non-competitive with respect to ATP. The interaction of sulphated polysaccharides with the catalytic domain of PKC was further demonstrated by the absence of effect on [3H]phorbol 12,13-dibutyrate binding to the regulatory domain of PKC. Furthermore, PPS and heparin inhibited equally cAMP-dependent protein kinase and tyrosine protein kinase. Structure-function relationships indicated that the Inhibition of protein kinases by PPS and heparin fractions was highly dependent on molecular weight. Additionally, PKC-affinity chromatography revealed that a high-molecular-weight heparin fraction with strong anti-PKC activity was eluted. We set out to demonstrate that heparin and PPS, which are potent antiproliferative agents on vascular smooth muscle cells (SMC), alter intracellular PKC activity (both membrane and cytosolic). Therefore, it is suggested that the mechanism by which sulphated polysaccharides inhibit SMC growth may be by direct inhibition of PKC in SMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号