首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression of the enzyme-coding genes, controlling glucose-phosphate isomerase (GPI), malate dehydrogenase (MDH), and alcohol dehydrogenase (ADH), was examined in nongerminating seeds of sugarbeet after Triton X-100 (TX-100) and colchicine treatment. Two types of changes revealed included modification of the enzymatic loci expression (change of the isozyme electrophoretic mobility) and inactivation of standard profiles. In the MDH and GPI systems, these processes were found to be associated. Complete isozyme modification was accompanied with the disappearance of standard profiles. In the ADH system, the treatment with TX-100 and colchicine gave rise to two independent processes, including silencing of the Adh1 locus and the appearance of the ADH isozymes with abnormal electrophoretic mobility, which were probably the products of the Adh2 locus. It was suggested that the effect of TX-100 and colchicine on the expression of the enzyme-encoding genes examined depended on the intracellular localization of the encoded enzymes.  相似文献   

2.
Summary This study was conducted to assess the genetic basis of the variability observed for the glutamate oxaloacetate transaminase (GOT), Superoxide dismutase (SOD), esterase (EST), and malate dehydrogenase (MDH) isozyme systems in different open-pollinated Vicia faba varieties. Individual plants showing contrasting zymogram patterns were simultaneously selfed and cross-combined. Crossing was unsuccessful in producing progeny, and only selfed progenies were suitable for genetical analysis of isozyme variability. Three zones of GOT activity were made visible. The isozyme of GOT-2 and GOT-3 zones were dimeric and under the control of three alleles at the Got-2 locus and two alleles at the Got-3 locus, respectively. The isozymes of the GOT-1 zone did not show any variability. Three zones of SOD isozyme activity were made visible. The isozymes occurring in the SOD-1 (chloroplastic isozyme form) and SOD-2 (cytosol isozyme form) zones were dimeric and under the control of two alleles at the Sod-1 and Sod-2 loci. The isozyme visualized in the SOD-3 zone (mitochondrial isozyme form) were tetrameric and under the control of two alleles at the Sod-3 locus. Apparently the isozymes made visible in the most anodal esterase zones EST-1, EST-2, and EST-3 were monomeric, and the occurrence of two alleles at each of two different loci explained the variability observed in the EST-2 and EST-3 zones. For MDH, only two five-banded zymogram pattern types were found, and every selfed progeny showed only one of the two zymogram type, indicating that each individual possessed fixed alleles at the loci controlling MDH isozyme. Got-2, Got-3, Sod-1, Sod-2, and Sod-3 appear to be five new isozyme gene markers that can be useful in Vicia faba breeding for linkage study, varietal fingerprinting, outcrossing rate estimate, and indirect selection for quantitative characters.  相似文献   

3.
Summary A polymorphism in the enzyme malate dehydrogenase in Dorset populations ofMyrmica rubra was detected using isoelectric focusing (IEF). The polymorphism was not detected on native polyacrylamide gels. Two forms, with pI values of 4.9 and 5.7, were resolved.Several lines of evidence show that the polymorphism has an environmental rather than a genetic basis. The cause of the change from one phenotype to the other may be related to a seasonally varying factor. The results indicate that whilst IEF has great potential for revealing isozyme polymorphisms in ants, care should be taken in interpreting results.  相似文献   

4.
Four isozyme systems were surveyed in our laboratory-bred colony of axolotls (Ambystoma mexicanum) to determine whether there were elecrophoretic variants that could be used as markers in developmental experiments. For malate dehydrogenase (MDH), lactate dehydrogenase (LDH), and phosphoglucomutase (PGM), the best separations were obtained by isoelectric focussing on polyacrylamide slab gels, whereas for soluble esterases (Est), conventional polyacrylamide gel electrophoresis was used. The patterns for both MDH and LDH were consistent with two-locus models, but no variation was obtained. The results for PGM support a single-locus model with two alleles that are expressed codominantly in heterozygotes. There is also evidence for a third, null allele. The pgm gene maps approximately 24 map units from its centromere. The majority of the animals tested produced four esterase bands. We propose that each is controlled by a separate locus. One of the bands, Est-3, is absent in some animals. The results of various crosses support the proposition that these animals are homozygous for a null allele. The est-3 gene is distant from its centromere.  相似文献   

5.
Electrophoretic studies of malate oxidoreductases routinely assess variation in two enzymes, malate dehydrogenase (EC 1.1.1.37) and malic enzyme (NADP+) (EC 1.1.1.40). By modification of the standard isozyme staining conditions for these enzymes, we have resolved a new NAD+-preferring, MgCl2-requiring malic enzyme which is indicated to be EC 1.1.1.39. The enzyme was detected in 10 salmonid fish species of the generaSalmo, Salvelinus, andOnchoryhncus. Phenotypic variation indicates that the novel enzyme is tetrameric and coded by a single locus. Inheritance inS. salar follows a single-locus model and the phenotypes are unlinked to polymorphisms fors MDH-3,4* andm MEP-2*, two malate oxidoreductase loci previously shown to be variable in this species.This work was supported by a contract to E. V. from Fisheries and Oceans Canada, St. John's, Newfoundland, and a postgraduate award to W. C. J. from the Department of Education for Northern Ireland.  相似文献   

6.
The expression of the enzyme-coding genes, controlling glucose-phosphate isomerase (GPI), malate dehydrogenase (MDH), and alcohol dehydrogenase (ADH), was examined in nongerminating seeds of sugarbeet after Triton X-100 (TX-100) and colchicine treatment. Two types of changes revealed included modification of the enzymatic loci expression (change of the isozyme electrophoretic mobility) and inactivation of standard profiles. In the MDH and GPI systems, these processes were found to be associated. Complete isozyme modification was accompanied with the disappearance of standard profiles. In the ADH system, the treatment with TX-100 and colchicine gave rise to two independent processes, including silencing of the Adh1 locus and the appearance of the ADH isozymes with abnormal electrophoretic mobility, which were probably the products of the Adh2 locus. It was suggested that the effect of TX-100 and colchicine on the expression of the enzyme-encoding genes examined depended on the intracellular localization of the encoded enzymes.  相似文献   

7.
A genetic linkage map for loblolly pine (Pinus taeda L.) was constructed using segregation data from a three-generation outbred pedigree consisting of four grandparents, two parents, and 95 F2 progeny. The map was based predominantly on restriction fragment length polymorphism (RFLP) loci detected by cDNA probes. Sixty-five cDNA and three genomic DNA probes revealed 90 RFLP loci. Six polymorphic isozyme loci were also scored. One-fourth (24%) of the cDNA probes detected more than 1 segregating locus, an indication that multigene families are common in pines. As many as six alleles were observed at a single segregating locus among grandparents and it was not unusual for the progeny to segregate for three or four alleles per locus. Multipoint linkage analysis placed 73 RFLP and 2 isozyme loci into 20 linkage groups; the remaining 17 RFLP and 4 isozyme loci were unlinked. The mapped RFLP probes provide a new set of codominant markers for genetic analyses in loblolly pine.  相似文献   

8.
Molecular characterisation of clonal apple rootstocks using isozymes was carried out to identify isozyme polymorphism in seven clonal apple rootstocks and to identify the most characteristic and stable enzyme markers for each individual rootstock. Five enzyme systems were studied out of which polyphenol oxidase, malate dehydrogenase, acid phosphatase and peroxidase were useful in discriminating among the rootstocks. The peroxidase enzyme system showed maximum variation and esterase showed the least variation among the rootstocks. Out of seven rootstocks, three were distinguished on the basis of one enzyme system only (M.3 with MDH or PER, M.7 with PPO or PER and MM. 111 with MDH). Out of the sixteen loci studied seven were found to be polymorphic. Genetic variation among the rootstocks was explained on the basis of various parameters. The percentage of polymorphic loci varied from 13.33 to 35.71 per cent.  相似文献   

9.
Thirty-six sour (Prunus cerasus L.), sweet (P. avium L.), and ground cherry (P. fruticosa Pall.) selections were evaluated for seven enzyme systems and principal coordinate analysis was used to examine isozyme divergence among these cherry species. The enzyme systems studied were phosphoglucose isomerase (PGI), isocitrate dehydrogenase (IDH), phosphoglucomutase (PGM), 6-phosphogluconate dehydrogenase (6-PGD), leucine aminopeptidase (LAP), shikimate dehydrogenase (SKDH), and malate dehydrogenase (MDH). The first principal coordinate, which accounted for 41% of the total variation, separated the diploid sweet cherry selections from the sour, ground, and sour x ground cherry tetraploids. An additional 86 selections were evaluated for up to six of the enzyme systems to determine the polymorphisms at the enzyme loci and the level of heterozygosity between the diploid sweet cherry and the tetraploid species and interspecific hybrids. 6-PGD was the most polymorphic enzyme exhibiting 16 patterns. The tetraploid cherry species were more heterozygous than the diploid sweet cherry with an average heterozygosity of 78% compared to 19% for the diploids.  相似文献   

10.
Enzyme electrophoresis was used to compare the isozyme phenotypes of Oryza sativa, IR31917 (AA genome), and two O. minuta accessions (Om 101089 and Om101141; BBCC genome) for ten enzyme systems. Between the two species, two systems were monomorphic (isocitrate dehydrogenase and alcohol dehydrogenase) and eight were polymorphic (shikimate dehydrogenase, phosphogluconate dehydrogenase, phosphoglucose isomerase, malate dehydrogenase, glutamate oxaloacetate transaminase, esterase, aminopeptidase, and endopeptidase). Polymorphism between O. minuta accessions was detected for shikimate dehydrogenase and glutamate oxaloacetate. As expected, the quaternary structure of the O. minuta isozymes was comparable to that of O. sativa. Possible allelic relationships with known O. sativa alleles and their genomic designation are discussed. Combined with chromosome data, the interspecific variation was exploited to monitor the relative genetic contribution of the two parents in the IR31917/Om101141 F1 hybrids and recurrent (IR31917) backcross progenies. The isozyme content of F1 hybrid reflected its triploid nature (ABC genome composition), while that of the backcross progenies paralleled the duplication of the A genome and the gradual loss of O. minuta chromosomes during the backcrossing process. Evidence is provided for a degree of homoeology between the A, B, and C genomes, and for introgression from O. minuta into O. sativa.  相似文献   

11.
A set of 28 fibre flax and linseed cultivars differing in plant morphology and technological parameters were analysed by isozyme markers in five ontogenetic phases. Relatively high isozyme polymorphism was observed using polyacrylamide gel electrophoresis. Altogether 18 isozyme systems produced 145 different bands; 66 of them (45.52 %) have been found to be polymorphic. The highest level of polymorphism was found in acid phosphatase and esterase, polymorphism was detected in aconitase, diaphorase, glutamate dehydrogenase, peroxidase and superoxide dismutase as well. The highest number of unique isozymic spectra (cultivar × enzyme × ontogenetic phase) was detected in the phase of shoot with removed cotyledons. Electrophoretic analysis of all polymorphic isozymes enabled to distinguish 20 cultivars (71 %) in the screened cultivar set.  相似文献   

12.
Linkage Map of the Honey Bee, Apis Mellifera, Based on Rapd Markers   总被引:15,自引:1,他引:14       下载免费PDF全文
G. J. Hunt  R. E. Page-Jr 《Genetics》1995,139(3):1371-1382
A linkage map was constructed for the honey bee based on the segregation of 365 random amplified polymorphic DNA (RAPD) markers in haploid male progeny of a single female bee. The X locus for sex determination and genes for black body color and malate dehydrogenase were mapped to separate linkage groups. RAPD markers were very efficient for mapping, with an average of about 2.8 loci mapped for each 10-nucleotide primer that was used in polymerase chain reactions. The mean interval size between markers on the map was 9.1 cM. The map covered 3110 cM of linked markers on 26 linkage groups. We estimate the total genome size to be ~3450 cM. The size of the map indicated a very high recombination rate for the honey bee. The relationship of physical to genetic distance was estimated at 52 kb/cM, suggesting that map-based cloning of genes will be feasible for this species.  相似文献   

13.
Summary A study on a series of genetic markers was run on five hybrids of foxtail millet, Setaria italica, and on one interspecific hybrid S. viridisxS. italica (S. viridis is the wild relative of S. italica). Seven enzymatic systems were investigated using starch gel electrophoresis (esterase, alcohol dehydrogenase, glutamate oxaloacetate transaminase, acid phosphatase, malate dehydrogenase, 6-phosphogluconate dehydrogenase, cathodic peroxidase). This genetic analysis of the 6 F2 has allowed us to define 12 polymorphic loci: Est-1, -2 and -3, Adh-1, Got-1 and -2, Acph-1, Mdh-1 and -2, Pgd-1 and -2, and Pox-1. All of them behaved like dimers, except Est-1 and Est-2 which showed monomeric structures. Two other markers were examined: waxy endosperm, which appeared to be controlled by one locus, and anthocyanic pigmentation of the collar, for which at least two loci are responsible. Studies of linkage carried out on three F2 showed two linkage groups: Mdh-1, Pox-1, Wx, Est-3, and a locus for collar colour, and Est-2, and one or two other loci of colouring.  相似文献   

14.
Starch gel electrophoresis of supernatant malate dehydrogenase (MDH A2) was performed on erythrocyte samples from 505 individual animals representative of 33 marsupial species. Most species exhibited electrophoretically identical forms of MDH A2 activity with the exception of the grey kangaroos, Trichosurus possums, and bandicoots, thus confirming the phylogenetic relatedness of animals within each group and the conservative nature of this enzyme. Polymorphisms were observed in two of the six species analyzed whose mobilities were non-standard. Allelic isozyme patterns and those from interspecies F1 hybrids between grey kangaroos and other macropods were consistent with a dimeric subunit structure and an autosomal locus (MDH-A) encoding the enzyme.Supported in part by grants from the Australian Research Grants Committee.  相似文献   

15.
The aim of this study was to assess whether isozyme polymorphism in different members of the Morchellaceae could be used to improve the systematics in this fungal group and to characterize intraspecific crossings between monosporal strains in Morchella esculenta. For this purpose, isozyme electrophoretic analysis of the following enzymes was performed: glutamine synthetase, NAD-glutamate dehydrogenase, NADP-glutamate dehydrogenase, aspartate aminotransferase, malate dehydrogenase, NAD-glyceraldehyde phosphate dehydrogenase, glucose phosphate isomerase, and superoxide dismutase. The analyses allowed discrimination at the inter- or intra-specific levels and could help to establish a method of identification for strains in the Morchellaceae. To a certain extent they appeared to be suitable to analyze interactions of monosporal strains of Morchella esculenta in pairing experiments. The polymorphism shown in this study was consistent with the phylogenetic relationships between the investigated strains only at the genus level.Key words: isozyme analysis, electrophoresis, Morchella sp., polymorphism.  相似文献   

16.
The interspecies homology of dace supernatant (A2, AB, B2) and mitochondrial (C2) malate dehydrogenase isozymes has been established through cell fractionation and tissue distribution studies. Isolated supernatant malate dehydrogenase (s-MDH) isozymes show significant differences in Michaelis constants for oxaloacetate and in pH optima. Shifts in s-MDH isozyme pH optima with temperature may result in immediate compensation for increase in ectotherm body pH with decrease in temperature, but duplicate s-MDH isozymes are probably maintained through selection for tissue specific regulation of metabolism.This research was supported in part by NSF Grant SM176-83974 and a grant from the Blakeslee Fund.  相似文献   

17.
Summary The NADP-specific malate dehydrogenase isozymes were controlled by multiple gene systems. Three genes coding for dimeric enzymes segregated in a dependent fashion (NADP-Mdh 1, NADP-Mdh 2, NADP-Mdh 3). A fourth gene (NADP-Mdh 4), also coded for dimers, but was not polymorphic in B. vulgaris. A fifth gene (NADP-Me 1) coded for enzymes active as monomers. Two genes were found to control the main zone of NAD-specific malate dehydrogenase: one coded for dimers (Mdh 1), while a second (Mdh 2) was not polymorphic in the assessions studied. 6-P-Gluconate dehydrogenase was not polymorphic in B. vulgaris; the two types detected on SGE1 electrophoresis were due to developmental expression of the different systems. No genetical segregations could be detected in progeny of crosses of the distinct phenotypes. A shikimate dehydrogenase gene (Skdh 1) that coded for monomers was identified. The diaphorase system was rather complex, but one gene (Dia 1) coding for monomeric enzymes could be identified. Aconitase was found to be controlled by two independent genes (Aco 1, Aco 2), both polymorphic and coding for proteins active as monomers. Tight linkage was found between the genes NADP-Mdh 1, NADP-Mdh 2 and NADP-Mdh 3. Linkage was also found between a pollen fertility restorer (Z) and the Mdh 1 gene. The identification of linkage with Aco 1 needs further investigation. R segregated independently from Mdh 1, Aco 1 and Dia 1. Independent segregations were scored for isozyme genes Pgm 2, Icd 1, Ak 1, Gpi 1, Aco 1 and Dia 1.Abbreviations Tris-HCl Tris (hydroxymethyl) aminomethane-HCl - NADP nicotinamide adenine dinucleotide phosphate - NBT nitro-blue tetrazolium chloride monohydrate - PMS phenazine methosulphate  相似文献   

18.
Summary Plasma membranes were isolated and purified from 14-day-old maize roots (Zea mays L.) by two-phase partitioning at a 6.5% polymer concentration, and compared to isolated mitochondria, microsomes, and soluble fraction. Marker enzyme analysis demonstrated that the plasma membranes were devoid of cytoplasmic, mitochondrial, tonoplast, and endoplasmic-reticulum contaminations. Isolated plasma membranes exhibited malate dehydrogenase activity, catalyzing NADH-dependent reduction of oxaloacetate as well as NAD+-dependent malate oxidation. Malate dehydrogenase activity was resistant to osmotic shock, freeze-thaw treatment, and salt washing and stimulated by solubilization with Triton X-100, indicating that the enzyme is tightly bound to the plasma membrane. Malate dehydrogenase activity was highly specific to NAD+ and NADH. The enzyme exhibited a high degree of latency in both right-side-out (80%) and inside-out (70%) vesicle preparations. Kinetic and regulatory properties with ATP and Pi, as well as pH dependence of plasma-membrane-bound malate dehydrogenase were different from mitochondrial and soluble malate dehydrogenases. Starch gel electrophoresis revealed a characteristic isozyme form present in the plasma membrane isolate, but not present in the soluble, mitochondrial, and microsomal fractions. The results presented show that purified plasma membranes isolated from maize roots contain a tightly associated malate dehydrogenase, having properties different from mitochondrial and soluble malate dehydrogenases.Abbreviations FCR ferricyanide reductase - MDH malate dehydrogenase  相似文献   

19.
Haploid male and diploid female honey bees, Apis mellifera, from colonies headed by queens polymorphic at the malate dehydrogenase (MDH) locus were examined for the influence of MDH genotype and heterozygosity on the size and asymmetry of six morphological characters. Although there were significant differences among MDH genotypes for mean character size within colonies, these effects were inconsistent between colonies. There were no significant relationships between MDH genotype or heterozygosity and asymmetry, indicating that genetic variation at this locus has no impact on developmental stability in this species.  相似文献   

20.
Pigment as well as isozyme variations were observed among aspen (Populus tremuloides Michx.) plants regenerated from callus cultures. Out of more than 600 plantlets, two chimeric plants (one with green base and two albino shoots and the other with an albino shoot) were produced. Callus derived from albino shoots produced albino as well as chimeric plants when transferred to shoot inducing medium. Isozyme patterns of 119 plants were examined by starch gel electrophoresis. Thirty plants showed variation in shikimic dehydrogenase isozyme and 41 in isocitric dehydrogenase. Variation was also observed in malate dehydrogenase and phosphoglucose isomerase. No variation was seen in 6-phosphogluconate dehydrogenase. Pigment variation was not associated with any isozyme changes.Abbreviations BA 6-benzyladenine - IBA indole-3-butyric acid - GD Gresshoff & Doy medium - WPM woody plant medium - SKD shikimic dehydrogenase - IDH isocitric dehydrogenase - MDH malate dehydrogenase - PGI phosphoglucose isomerase - 6-PGD 6-phosphogluconate dehydrogenase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号