首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecologists and population geneticists have long suspected that the diversity of living organisms was connected to the structure of their environment. In heterogeneous environments, diversifying selection combined to restricted gene flow may indeed lead to locally adapted populations. The freshwater snail, Galba truncatula, is a good model to address this question because it is present in a heterogeneous environment composed of temporary and permanent waters. In order to test the selective importance of those environments, we proposed here to measure survival of lineages from both habitats during drought episodes. To this purpose, we experimentally submitted adults and juveniles individuals from both habitats to drought. We found a difference in desiccation resistance between temporary and permanents waters only for adults. Adults from temporary habitats were found more resistant to drought. This divergence in desiccation resistance seems to explain the unexpected life history traits differences between habitats observed.  相似文献   

2.
We provide an overview of the physical oceanographic and geological processes that affect marine biological habitats and production in the marine waters throughout the archipelago and continental shelf of Southeast Alaska. Given the paucity of regional data, our overview summarizes work done in adjacent regions of the Gulf of Alaska shelf and basin, and draws on research carried out in similar settings elsewhere. The geological setting, which critically influences the regional meteorology and oceanography, includes a narrow continental shelf, deep channels that permeate the archipelago, fjords, glaciers and a rugged, mountainous coast. The large-scale meteorology is influenced primarily by seasonal variations in the intensity and position of the Aleutian Low. Winds, freshwater runoff, tides and cross-shelf exchange control the regional oceanography. The large-scale flow field advects mass, heat, salt, nutrients and planktonic organisms northward from British Columbia (and even further south) to the northern Gulf of Alaska along the slope, shelf, and within the channels of Southeast Alaska. The deep channels permeating the island archipelago and narrow continental shelf facilitate communication between basin and interior waters. Water properties and flow fields are subject to large annual variations in response to similarly large variations in winds and coastal freshwater discharge. The complex geological setting leads to large spatial heterogeneity in the physical processes controlling the local circulation fields and mixing, thereby creating numerous and diverse marine biological habitats. These various circulation and mixing processes modify substantially Southeast Alaska water masses and thus influence marine ecosystem processes downstream over the northern and western Gulf of Alaska shelf.  相似文献   

3.
Many species of vertebrates require multiple habitats to obtain different resources at different stages of their life-cycles. Use of habitat mosaics takes place on a variety of spatial and temporal scales, from a daily requirement for adjacent habitats to seasonal use of geographically separated environments. Mosaics of habitats are also required in some species to allow ontogenetic habitat shifts, while in others each sex may have specific requirements that are met by different habitats. The extent and nature of animal movements are key (but generally poorly known) factors affecting the vulnerability of species to landscape change. The requirement by many species for multiple habitats suggests that their conservation will be most effective in a mosaic environment and that protection of certain high profile habitats alone, such as rainforest, will be insufficient to achieve conservation goals. Management regimes that result in homogenization of habitats should be avoided. Priority should be given to research that identifies the extent to which species can locate habitat mosaics, at different spatial scales and arrangements, in modified environments.  相似文献   

4.
Cumacea and Tanaidacea are marginal groups in continental waters. Although many euryhaline species from both groups are found in estuaries and coastal lagoons, most occur only temporarily in non-marine habitats, appearing unable to form stable populations there. A total of 21 genuinely non-marine cumaceans are known, mostly concentrated in the Ponto-Caspian region, and only four tanaids have been reported from non-marine environments. Most non-marine cumaceans (19 species) belong in the Pseudocumatidae and appear restricted to the Caspian Sea (with salinity up to 13‰) and its peripheral fluvial basins, including the northern, lower salinity zones of the Black Sea (Sea of Azov). There are nine Ponto-Caspian genera, all endemic to the region. Only two other taxa (in the family Nannastacidae) occur in areas free of any marine–water influence, in river basins in North and South America. Both seem able to survive in waters of raised salinity of the lower reaches of these fluvial systems; but neither has been recorded in full salinity marine environments. The only non-marine tanaidacean thus far known lives in a slightly brackish inland spring in Northern Australia. The genus includes a second species, from a brackish-water lake at the Bismarck Archipelago, tentatively included here as non-marine also. Two additional species of tanaidaceans have been reported from non-marine habitats but both also occur in the sea. Guest editors: E. V. Balian, C. Lévêque, H. Segers & K. Martens Freshwater Animal Diversity Assessment  相似文献   

5.
Climatic and geological changes across time are presumed to have shaped the rich biodiversity of tropical regions. However, the impact climatic drying and subsequent tropical rainforest contraction had on speciation has been controversial because of inconsistent palaeoecological and genetic data. Despite the strong interest in examining the role of climatic change on speciation in the Neotropics there has been few comparative studies, particularly, those that include non-rainforest taxa. We used bird species that inhabit humid or dry habitats that dispersed across the Panamanian Isthmus to characterize temporal and spatial patterns of speciation across this barrier. Here, we show that these two assemblages of birds exhibit temporally different speciation time patterns that supports multiple cycles of speciation. Evidence for these cycles is further corroborated by the finding that both assemblages consist of 'young' and 'old' species, despite dry habitat species pairs being geographically more distant than pairs of humid habitat species. The matrix of humid and dry habitats in the tropics not only allows for the maintenance of high species richness, but additionally this study suggests that these environments may have promoted speciation. We conclude that differentially expanding and contracting distributions of dry and humid habitats was probably an important contributor to speciation in the tropics.  相似文献   

6.
Kelp forests along temperate and polar coastlines represent some of most diverse and productive habitats on the Earth. Here, we synthesize information from >60 years of research on the structure and functioning of kelp forest habitats in European waters, with particular emphasis on the coasts of UK and Ireland, which represents an important biogeographic transition zone that is subjected to multiple threats and stressors. We collated existing data on kelp distribution and abundance and reanalyzed these data to describe the structure of kelp forests along a spatial gradient spanning more than 10° of latitude. We then examined ecological goods and services provided by kelp forests, including elevated secondary production, nutrient cycling, energy capture and flow, coastal defense, direct applications, and biodiversity repositories, before discussing current and future threats posed to kelp forests and identifying key knowledge gaps. Recent evidence unequivocally demonstrates that the structure of kelp forests in the NE Atlantic is changing in response to climate‐ and non‐climate‐related stressors, which will have major implications for the structure and functioning of coastal ecosystems. However, kelp‐dominated habitats along much of the NE Atlantic coastline have been chronically understudied over recent decades in comparison with other regions such as Australasia and North America. The paucity of field‐based research currently impedes our ability to conserve and manage these important ecosystems. Targeted observational and experimental research conducted over large spatial and temporal scales is urgently needed to address these knowledge gaps.  相似文献   

7.
典型草原区不同生境反硝化菌群的空间特征   总被引:2,自引:0,他引:2  
【背景】锡林河-河滨湿地-阶地草原是蒙古高原典型草原区代表性的水生-湿生-陆生生境,但不同生境中反硝化菌群的空间分布特征尚不明晰。【目的】阐明典型草原区不同生境反硝化菌群的组成、丰度、空间分布特征及异质性成因。【方法】利用16S rRNA基因测序研究锡林河流域水生、湿生、陆生生境6个样带沉积物/土壤细菌群落组成及相对丰度。基于2014年及以前文献报道的反硝化细菌及16S rRNA基因信息构建参比菌库,筛选生境关联的反硝化菌属。通过典范对应分析等探究反硝化菌群空间异质性成因。【结果】参比菌库包含80种反硝化细菌(65个属),6个样带测序获得的469个细菌属中36个为反硝化细菌属。3种生境共存的反硝化细菌有14个属,其中黄杆菌属(1.65%-14.17%)和噬氢菌属(1.56%-1.69%)是水生和湿生生境共有的优势菌,假单胞菌属(1.85%)是低河漫滩样带的优势菌。空间分布特征显示反硝化菌群沿水生-湿生-陆生生境呈现先升后降的分布趋势,在低河漫滩湿地达到最高值。典范对应分析表明:黄杆菌属、噬氢菌属、气单胞菌属、鞘氨醇单胞菌属等与pH值、水分及沙粒含量呈正相关关系,而芽孢杆菌属、链霉菌属、马杜拉放线菌属等与粘粒、粉粒、有机质、总氮含量等呈正相关关系。【结论】典型草原区反硝化菌群组成及丰度具有明显的生境异质性,低河漫滩湿地是反硝化细菌生长繁殖的最佳生境,由颗粒组成、水分含量和pH等环境因子共同驱动。  相似文献   

8.
Archaeal habitats--from the extreme to the ordinary   总被引:2,自引:0,他引:2  
The domain Archaea represents a third line of evolutionary descent, separate from Bacteria and Eucarya. Initial studies seemed to limit archaea to various extreme environments. These included habitats at the extreme limits that allow life on earth, in terms of temperature, pH, salinity, and anaerobiosis, which were the homes to hyper thermo philes, extreme (thermo)acidophiles, extreme halophiles, and methanogens. Typical environments from which pure cultures of archaeal species have been isolated include hot springs, hydrothermal vents, solfataras, salt lakes, soda lakes, sewage digesters, and the rumen. Within the past two decades, the use of molecular techniques, including PCR-based amplification of 16S rRNA genes, has allowed a culture-independent assessment of microbial diversity. Remarkably, such techniques have indicated a wide distribution of mostly uncultured archaea in normal habitats, such as ocean waters, lake waters, and soil. This review discusses organisms from the domain Archaea in the context of the environments where they have been isolated or detected. For organizational purposes, the domain has been separated into the traditional groups of methanogens, extreme halophiles, thermoacidophiles, and hyperthermophiles, as well as the uncultured archaea detected by molecular means. Where possible, we have correlated known energy-yielding reactions and carbon sources of the archaeal types with available data on potential carbon sources and electron donors and acceptors present in the environments. From the broad distribution, metabolic diversity, and sheer numbers of archaea in environments from the extreme to the ordinary, the roles that the Archaea play in the ecosystems have been grossly underestimated and are worthy of much greater scrutiny.  相似文献   

9.
Here we explore the spatial, temporal and phylogenetic patterns of ecological diversification for the entire clade of thelodonts, one of the earliest groups of vertebrates and longest lasting of the Palaeozoic agnathans in the fossil record. Parsimony and maximum‐likelihood methods are used to reconstruct ancestral states of their geographical distributions, habitats and lifestyles. Our results support the concept that thelodonts originated during the Middle?–Late Ordovician probably in marine open waters of Laurasia, with a demersal lifestyle on hard substrates being the ancestral condition for the whole clade. Later, thelodonts underwent a complex ecological diversification and palaeobiogeographical history, comparable in many aspects to those of some major groups of living fishes. Different modes of life evolved repeatedly and a wide range of habitats were colonized by distinct groups, including deep waters and brackish marine and/or freshwater environments. Diadromous strategies presumably appeared on nine different occasions. The palaeobiogeographical history of thelodonts reveals significant differences in the dispersal potential of some major groups. Dispersal of thelodontiforms entailed displacements over long distances and the crossing of deep‐water biogeographical barriers, whereas those of furcacaudiforms were always limited to areas interconnected by shallow platforms. We propose that the evolution of pelagic larval stages in thelodontiforms might explain this biogeographical pattern and could satisfactorily account for the greater evolutionary success of this group.  相似文献   

10.
Diel movements of Orange–Vaal smallmouth yellowfish Labeobarbus aeneus (Burchell, 1822) in the Vaal River, South Africa, were determined by externally attaching radio transmitters to 11 adult fish and manually tracking them between March and May 2012. Twenty-four radio telemetry monitoring surveys produced 2 304 diel tracks. At night, yellowfish displayed a preference for slow shallow (<0.3?m s?1, <0.5?m) and fast shallow habitats (>0.3?m s?1, <0.3?m), whereas by day they avoided these habitats, preferring fast deep areas (>0.3?m s?1, >0.3?m). The average total distance of 272?m moved per 24-hour period was three times greater than the diel range, and the average maximum displacement per minute was significantly higher in daytime (4?m) than at night (1.5?m). These findings suggest that L. aeneus is active primarily during the day in fast-flowing, deeper waters, and relatively inactive at night, when it occupies shallower habitats. This behaviour should be further explored to identify causal mechanisms underlying the diel habitat shifts in this species such as water temperature, foraging tactics and/or predator avoidance.  相似文献   

11.
1. While there has been considerable focus on prey occurrence as a factor determining the habitat preference of predators, the roles of other factors related to the habitat are less well characterised. 2. In aphidophagous ladybird beetles (Coleoptera: Coccinellidae), a number of species are more restricted in the habitats in which they live than are their prey. A number of such ladybirds appear to show geographic variation in habitat preference. 3. To better understand these phenomena, this study considered geographic variation in habitat preference in one such species, the 5-spot ladybird Coccinella quinquepunctata. Because of this ladybird's scarcity, a combination of over 20 years' observations, habitat surveys and online data was used to reach the study's conclusions. 4. The data collected indicate that the ladybird is specialised in pioneer habitats close to water, but broadens its range to non-riverine pioneer habitats in north-west continental Europe, where it is likely that a damper (micro)climate allows it to do so. Thus, microclimatic factors appear to be important in determining the habitat of this and probably other predators that are not constrained by prey occurrence. 5. Although threatened by river management elsewhere, in north-western Europe, this species clearly benefits from human activity, which creates many of the disturbed habitats it colonises there. This finding provides further support for the contention that many ladybirds are net beneficiaries of human influence, although they are often characterised as threatened.  相似文献   

12.
The eastern Patagonian Shelf and continental slope of the south-west Atlantic Ocean support a high biodiversity and abundance of skates. In this study, meso-scale differences in the assemblages, spatial and seasonal distributions of skates are revealed among six habitat zones of the eastern Patagonian Shelf characterized by distinctive oceanographic conditions. Most skates belonged to temperate fauna, and their abundance was much greater in habitats occupied by temperate waters (north-western outer shelf) or mixed waters (northern slope) than in habitats occupied by sub-Antarctic waters (SASW) (south-eastern outer shelf and southern slope). Sub-Antarctic skates were not abundant on the shelf even in habitats occupied by SASW, occurring mainly in deep areas of the lower continental slope. The majority of temperate skates migrated seasonally, shifting northward in winter and spreading southward with warming waters in summer. Most temperate species had two peaks in female maturity (mainly spring and autumn) and spawned in the same habitats where they fed. It is hypothesized that the high biodiversity and abundance of skates on the Patagonian Shelf and Slope are due to the practical absence of their natural competitors, flatfishes, which occupy similar eco-niches elsewhere.  相似文献   

13.
South–west Australia contains extensive seagrass meadows along 2,500 km of coastline from the shallow subtidal to 50+ m water depths, and in many of the 51 bar-built estuaries along the coast. There are geomorphological differences between the south and west coasts that result in different patterns of swell exposure influencing the processes that structure seagrass habitats. In this paper, ‘sheltered’, ‘exposed’ and ‘estuarine’ seagrass habitat types are defined for south–west Australia to synthesize processes influencing seagrass communities. Sheltered habitats in south–west Australia are characterized by high light, low to moderate water motion and sporadic disturbance from storms, making them ideal habitats for a diversity of seagrass assemblages. Exposed seagrass habitats are characterized by the presence of strong and consistent ocean swells (3–8 m), predominantly from the south or south–west and seagrasses exhibit a suite of adaptive traits to survive the effects of exposure to ocean swell and associated sand movement. These include morphological features such as heavy fiber reinforcement to strengthen the aboveground stems or leaves, deep vertical rhizomes and life history traits such as rapid growth and high seed set. Within estuarine habitats highly dynamic seagrass communities are the result of fluctuating annual cycles in temperature, light and salinity. Compared to global seagrass meadows, coastal south–west Australian seagrass habitats experience high light, low nutrients and high water movement. Despite these differences, similarities with other regions do exist and here we place the habitats of south–west Australia into a global context using comparative data. The wide array of morphology and life history traits displayed among seagrass species of south–west Australia are presented in a conceptual model including habitat type, physical stressors and seagrass responses. The combination of adaptations to the habitats and processes that define them make south–west Australia a region where there is an unusually high number of co-occurring seagrass species, the highest in the world for a temperate environment (19 species), and approaching the species diversity of many tropical environments. Linking aspects of seagrass habitat, physical aspects of the environment and seagrass life history provides a context for applying knowledge gained from seagrasses in south–west Australia to other coastal ecosystems throughout the world.  相似文献   

14.
The primates have the reputation of being essentially arboreal, forest-adapted animals. Yet there are many genera and species that inhabit an extremely wide array of non-forest habitats. Nevertheless, palaeoprimatologists often tend to depict fossil primate habitats as being more arboreal and more forest-like than is justified by the facts. It is worthwhile, therefore, to reconsider some current interpretations. In this paper, evidence of the Fayum Oligocene primate deposits are reviewed and discussed. The following conclusions emerge:(1) The large number of primate species indicates that the Fayum ecosystem was an optimum or near-optimum habitat for primates. (2) The lithological characteristics point to a sahélien type of climate. (3) The calcified and silicified root systems, having diameters up to 4 cm, suggest a sahélien type of shrub, bushland and/or small-tree vegetation. (4) The large fossilized logs cannot have grown on the spot and apparently represent driftwood from a more humid climatic belt in the south, as is indicated by damage resulting from fluvial transportation and by palaeobotanical data. (5) There may have been some minor patches or strips of medium-height forests and/or wood-lands in the Fayum delta, but there is no evidence of these.Thus the tall forest in which the earliest known African primates are currently supposed to have lived probably never existed. Grounds for this conclusion were presented by Unger 121 years ago, by Beadnell 75 years ago and by Kräusel 41 years ago, but sank into oblivion. The classic image of the primates as arboreal specialists seems to have interfered with seeing the facts. However, more extensive verification of the evidence by means of palaeobotanical research is still required. The fossil material to do so is readily available.  相似文献   

15.
The putative peculiarities of island insects and the factors important in their conservation are noted. Endemism and speciation lessons from island insects have contributed significantly to wider understanding of aspects of insect diversification. The twin complexes of threats to island insects involve (1) internal processes, essentially habitat changes by human activity, and their consequences and (2) externally-imposed effects from alien invasive species, both of these operating in environments that may lack much of the buffer capability present in larger continental areas or in richer communities. Many island insects now persist only in small inaccessible remnant habitats, and protecting these is a key theme in planning insect conservation on islands. The possible effects of climate change may be severe, particularly on ‘low islands’ such as many coral cays.  相似文献   

16.
The implications of shallow water impacts such as fishing and climate change on fish assemblages are generally considered in isolation from the distribution and abundance of these fish assemblages in adjacent deeper waters. We investigate the abundance and length of demersal fish assemblages across a section of tropical continental shelf at Ningaloo Reef, Western Australia, to identify fish and fish habitat relationships across steep gradients in depth and in different benthic habitat types. The assemblage composition of demersal fish were assessed from baited remote underwater stereo-video samples (n = 304) collected from 16 depth and habitat combinations. Samples were collected across a depth range poorly represented in the literature from the fringing reef lagoon (1-10 m depth), down the fore reef slope to the reef base (10-30 m depth) then across the adjacent continental shelf (30-110 m depth). Multivariate analyses showed that there were distinctive fish assemblages and different sized fish were associated with each habitat/depth category. Species richness, MaxN and diversity declined with depth, while average length and trophic level increased. The assemblage structure, diversity, size and trophic structure of demersal fishes changes from shallow inshore habitats to deeper water habitats. More habitat specialists (unique species per habitat/depth category) were associated with the reef slope and reef base than other habitats, but offshore sponge-dominated habitats and inshore coral-dominated reef also supported unique species. This suggests that marine protected areas in shallow coral-dominated reef habitats may not adequately protect those species whose depth distribution extends beyond shallow habitats, or other significant elements of demersal fish biodiversity. The ontogenetic habitat partitioning which is characteristic of many species, suggests that to maintain entire species life histories it is necessary to protect corridors of connected habitats through which fish can migrate.  相似文献   

17.
Relation to habitat in rotifers   总被引:4,自引:2,他引:2  
Pejler  Birger 《Hydrobiologia》1995,313(1):267-278
Rotifera should be especially suited for an analysis of habitat relations because this group contains such a high number of species, inhabiting diverse environments. Furthermore, rotifers are to a large extent cosmopolitan, implying that ecological barriers, rather than geographical, are decisive of their distribution. In this review a short characterization of the rotifer fauna in different habitats is given, whereby macroenvironments and microenvironments are reported separately. The macroenvironments are classified as follows: harmonious lakes and ponds, arctic and antarctic waters, hot springs, hypertrophic-saprobic environments, mires, strongly acidic waters, saline waters, temporary water bodies, subterranean waters, running waters, oceans, terrestrial environments. The following microenvironments are distinguished: macrophytes (housing periphytic rotifers), open water (with planktic forms), minerogenous sediments (with psammon and hyporheos), organogenous sediments, other organisms (i.e. parasites and epizoans).Many rotifers are more or less euryecious, while relatively few are strongly restricted in their choice of habitat. In extreme environments a low number of species is found, but often a high number of individuals within these species. These rotifers are usually primary consumers, and for natural reasons extreme environments are characterized by a low number of trophic levels.In environments with a high species number the separate species differ very much in their morphology, making it difficult to find common traits which may be interpreted as adaptations to the respective habitats. The most apparent adaptations ought to be found among the planktic rotifers, and these adaptations seem to constitute largely a protection against predators. Rotifers in extreme environments are usually not very apart in a morphological or taxonomical respect, with their most close relatives living in normal habitats and sometimes euryecious (an apparent exception from this rule is formed by the class Seisonidea). Adaptations to deviating chemical and physical environments may develop relatively rapidly (seen from a geological perspective), while the more fundamental changes (occurring during a longer period of time) seem to be a response to biotic factors (e.g., the development of different types of trophi for facilitating food collection).  相似文献   

18.
Invertebrate communities in volcanic habitats of different ages on the islands of La Palma and El Hierro were studied using standardized trapping and searching techniques. A variety of graphical and numerical approaches were used to analyse relationships among the sites. Young, barren lava flows constitute aeolian ecosystems with a fauna of generalized detritivores and predators, especially collembolans, earwigs, thysamirans and crickets. Surface samples have many individuals and low diversity; those from caves have smaller numbers but similar taxonomic composition.
Vegetated surface habitats have richer communities, with diverse herbivores and predators but largely without the pioneer 'lavicolous' species. Caves with high humidity and stable temperature contain mainly specialized troglobitic species, but if there are both dry and humid sections lavicoles may also be present. Divergence into distinct epigean and hypogean communities results from both abiotic and biotic processes, including erosion and plant succession. While these occur mainly on the surface they also affect caves, increasing humidity and providing insulation from variations in external environmental conditions; the process is considered as a form of 'maturation' of the caves. Various models of succession are considered, which might help to account for the disappearance of lavicoles from mature epigean and hypogean communities.  相似文献   

19.
Two benthic carnivorous goatfish (Mullidae), Upeneichthys stotti (max total length, L T= 179 mm) and U. lineatus (max L T= 257 mm), were trawled from the inner continental shelf waters of Western Australia. U. stotti was found almost exclusively offshore at 20–35 m depth, while U. lineatus was most abundant inshore at 5–15 m depth. Smaller individuals of both species ate small, thin-shelled mysids, tanaids and amphipods, while larger fish ate large, hard-bodied isopods, carid decapods and brachyuran crabs. Classification and ordination of the mean volumetric percentage contributions of the prey (dietary samples) of both species from all sites and in each season did not lead to a clear separation between these two species. However, ordination demonstrated that the dietary samples of the two species were distinct when the two species were found together, and when fish of sequential 20-mm length intervals were used. The interspecific size-class differences were consistent with the results obtained using Schoener's overlap index, for which values >0·6 were recorded for only two of the 45 possible interspecific pairwise comparisons. Since these interspecific differences occurred despite virtually identical mouth sizes and morphologies, the two species must feed in a slightly different manner and/or in different microhabitats. While most comparable-sized fish ate tanaids and amphipods, U. stotti ate more relatively mobile epibenthic mysids, cumaceans and carid decapods, whereas U. lineatus ate more larger and slower-moving burrowing bivalves, onuphid polychaetes and brachyuran crabs. The partial partitioning of habitats, when combined with differences in the diet, would help facilitate the co-existence of these two mullids when they are abundant.  相似文献   

20.
Abstract There exists a wide diversity of halophilic eubacteria with chemoorganotrophic-aerobic metabolism. Most of them have a more moderate salt response than halophilic archaebacteria, falling into the category of moderately halophilic bacteria. Although mostly isolated from salted food, their natural habitats are hypersaline waters of intermediate levels of salt concentration, and hypersaline soils. In hypersaline waters, the taxonomic groups found are the ones that also predominate in ocean waters, such as representatives of the genera Vibrio, Pseudomonas and Flavobacterium . However, in hypersaline soils, the taxonomic groups present are those typical of normal soils, such as Pseudomonas, Bacillus and Gram-positive cocci. The halophilic bacteria from soils are also more resistant to exposure to low salt concentrations than the organisms isolated from waters. Therefore, it seems that the general characteristics of the hypersaline environments drastically affect the types of halophilic bacteria present, and that the halophilic character has arisen in many phylogenetic groups of eubacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号