首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A unique phosphatase that selectively hydrolyzed phosphotyrosine and 2'-AMP at alkaline pH and p-nitrophenylphosphate at neutral pH was isolated from a cytosolic fraction of rat brain. The purified enzyme appeared homogenous on SDS-polyacrylamide gel electrophoresis and its molecular weight was estimated to be 42,000. The molecular weight of the native enzyme was 45,000 as determined by molecular sieve chromatography. These findings indicate that the native enzyme is a monomer protein. At pH 8.6, the enzyme hydrolyzed L-phosphotyrosine, D-phosphotyrosine, 2'-AMP, p-nitrophenylphosphate, 3'-AMP, 2'-GMP, and 3'-GMP; the ratio of its activities with these substrates was 100:96:115:68:39:25:16. Its Km values for L-phosphotyrosine, 2'-AMP, and p-nitrophenylphosphate were 0.8 X 10(-4) M, 1.4 X 10(-4) M, and 1.7 X 10(-4) M, respectively. At pH 7.4, the enzyme hydrolyzed p-nitrophenylphosphate, L-phosphotyrosine, and D-phosphotyrosine; the ratio of its activities with these compounds was 100:17:17, and its Km values for L-phosphotyrosine and p-nitrophenylphosphate were 1.8 X 10(-4) M and 2.0 X 10(-4) M, respectively. The enzyme activity was dependent on Mn2+ or Mg2+, and was strongly inhibited by 5'-nucleotides, pyrophosphate, and Zn2+. The enzyme was not sensitive to inhibitors of some well-characterized phosphatases such as NaF, molybdate, L(+)tartrate, tetramisole, vanadate, and lithium salt. The physiological role of the enzyme is discussed with respect to its activities toward phosphotyrosine, 2'-AMP, and p-nitrophenylphosphate.  相似文献   

2.
A neutral phosphatase which catalyzes the hydrolysis of p-nitrophenylphosphate has been purified to homogeneity from wheat seedlings. The enzyme is a monomeric glycoprotein exhibiting a molecular weight of 35,000, frictional ratio of 1.22, Stokes' radius of 260 nm, and sedimentation coefficient of 3.2 S. That the enzyme is a glycoprotein is surmised from its chromatographic property on Concanavalin A-Sepharose column. An examination of the substrate specificity indicates that the enzyme exhibits a preference for phosphotyrosine over a number of phosphocompounds, including p-nitrophenylphosphate and several glycolytic intermediates. Both phosphoserine and phosphothreonine are not hydrolyzed by the enzyme. The phosphatase activity is not affected by high concentrations of chelating agents and does not require metal ions. Molybdate, orthovanadate, Zn2+, and Hg2+ are all potent inhibitors of the phosphatase activity. The ability of the phosphatase to dephosphorylate protein phosphotyrosine has been investigated. [32P-Tyr]poly(Glu,Tyr)n, [32P-Tyr]alkylated bovine serum albumin, [32P-Tyr]angiotensin-I, and [32P-Tyr]band 3 (from human erythrocyte) are all substrates of the phosphatase. On the other hand, the enzyme has no activity toward protein phosphoserine and phosphothreonine. Our result further indicates that the neutral phosphatase is distinct from the wheat germ acid phosphatase. The latter enzyme is found to dephosphorylate phosphotyrosyl as well as phosphoseryl and phosphothreonyl groups in proteins. In light of the many similarities in properties to phosphotyrosyl protein phosphatases isolated from several sources, it is suggested that the wheat seedling phosphatase may participate in cellular regulation involving protein tyrosine phosphorylation.  相似文献   

3.
Alkaline phosphatase was purified from plasma membranes of rat ascites hepatoma AH-130, the homogenate of which had 50-fold higher specific activity than that found in the liver homogenate. The presence of Triton X-100, 0.5%, was essential to avoid its aggregation and to stabilize its activity. The purified enzyme, a glycoprotien, was homogeneous in polyacrylamide gel electrophoresis. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate indicated a protein molecular weight of 140,000. The addition of beta-mercaptoethanol caused the dissociation of the alkaline phosphatase into two subunits of identical molecular weight, 72,000. Isoelectric focusing revealed that the pI of this enzyme is 4.7. The pH optimum for the purified enzyme was 10.5 or higher with p-nitrophenylphosphate, and slightly lower pH values (pH 9.5--10.2) were obtained when other substrates were used. Of the substrates tested, p-nitrophenylphosphate (Km-0.3 mM) was most rapidly hydrolyzed. Vmax values of other substrates relative to that of p-nitrophenylphosphate were as follows; beta-glycerophosphate, 76%; 5'-TMP, 82%; 5'-AMP, 62%; 5'-IMP, 43%; glucose-6-phosphate, 39%; ADP, 36% and ATP, 15%. More than 90% of the activity of the purified enzyme was irreversibly lost when it was heated at 55 degrees C for 30 min, or exposed either to 10 mM beta-mercaptoethanol for 10 min to 3 M urea for 30 min, or to an acidic pH below pH 5.0 for 2 h. Of the effects by divalent cations, Mg2+ activated the enzyme by 20% whereas Zn2+ strongly inhibited it by 95% at 0.5 mM. EDTA at higher than 1 mM inactivated the enzyme irreversibly, although the effect of EDTA at lower than 0.1 mM was reversible by the addition of divalent cations, particularly by Mg2+. The enzyme was most strongly inhibited by L-histidine among the amino acids tested, and also strongly inhibited by imidazole. These results suggest that alkaline phosphatase of rat hepatoma AH-130 is very similar to that of rat liver in most of the properties reported so far.  相似文献   

4.
This study describes the biochemical characterization of a phosphatase activity present on the cell surface of Candida parapsilosis, a common cause of candidemia. Intact yeasts hydrolyzed p-nitrophenylphosphate to p-nitrophenol at a rate of 24.30+/-2.63 nmol p-nitrophenol h(-1) 10(-7) cells. The cell wall distribution of the Ca. parapsilosis enzyme was demonstrated by transmission electron microscopy. The duration of incubation of the yeast cells with the substrate and cell density influenced enzyme activity linearly. Values of V(max) and apparent K(m) for p-nitrophenylphosphate hydrolysis were 26.80+/-1.13 nmol p-nitrophenol h(-1) 10(-7) cells and 0.47+/-0.05 mM p-nitrophenylphosphate, respectively. The ectophosphatase activity was strongly inhibited at high pH as well as by classical inhibitors of acid phosphatases, such as sodium orthovanadate, sodium molybdate, sodium fluoride, and inorganic phosphate, the final product of the reaction. Only the inhibition caused by sodium orthovanadate was irreversible. Different phophorylated amino acids were used as substrates for the Ca. parapsilosis ectoenzyme, and the highest rate of phosphate hydrolysis was achieved using phosphotyrosine. A direct relationship between ectophosphatase activity and adhesion to host cells was established. In these assays, irreversible inhibition of enzyme activity resulted in decreased levels of yeast adhesion to epithelial cells.  相似文献   

5.
1. Zn2+-dependent acid p-nitrophenylphosphatase from chicken liver was purified to homogeneity. 2. The purified enzyme moves as a single electrophoretic band at pH 8.3 in 7.5% acrylamide and was coincident with the enzyme activity. 3. Gel filtration on Sephadex G-200 gave an apparent molecular weight of 110,000 with two apparent identical subunits of 54,000-56,000 as determined by sodium dodecyl sulphate gel electrophoresis. 4. The maximum of enzyme activity was obtained in the presence of 3-5 mM ZnCl2 at pH 6-6.2, however, higher concentrations of metal are inhibitory. The enzyme hydrolyses p-nitrophenylphosphate, o-carboxyphenylphosphate and phenylphosphate, was insensitive to NaF and was inhibited by phosphate and ATP. The Km for p-nitrophenylphosphate was 0.28 x 10(-3)M at pH 6 in 50 mM sodium acetate/100 mM NaCl. 5. Phosphate is a competitive inhibitor (Ki = 0.5 x 10(-3)M) whereas ATP seems to be a non-competitive inhibitor (Ki = 0.35 x 10(-3)M). The isoelectric point determined by isoelectric focusing on polyacrylamide gel is 7.5. 6. Cell fractionation studies indicate that the Zn2+-dependent acid p-nitrophenylphosphatase of chicken liver is a soluble enzyme form.  相似文献   

6.
In the present work we have partially characterized an ecto-phosphatase activity in Crithidia deanei, using viable parasites. This enzyme hydrolyzed p-nitrophenylphosphate at a rate of 3.55 +/- 0.47 nmol Pi/h x 10(8) cells. The dependence on p-NPP concentration shows a normal Michaelis-Menten kinetics for this phosphatase activity and the value of the apparent Km for p-NPP was 5.35 +/- 0.89 mM. This phosphatase activity was inhibited by the product of the reaction, the inorganic phosphate. Experiments using classical inhibitors of acid phosphatases, such as ZnCl2 and sodium fluoride, as well as inhibitors of phosphotyrosine phosphatase, such as sodium orthovanadate and ammonium molybdate, showed a decrease in this phosphatase activity, with different patterns of inhibition.  相似文献   

7.
Wysocki P  Strzezek J 《Theriogenology》2003,59(3-4):1011-1025
A protein tyrosine phosphatase (PTPase) with acid phosphatase activity was purified (500-fold) from the fluid of boar seminal vesicles. Preparative purification was performed with a 3-step procedure, employing FPLC S-Sepharose Fast Flow, Mono Q and Superdex 75 column. Protein tyrosine acid phosphatase (PTAPase) was homogeneous by polyacrylamide gel electrophoresis (PAGE, SDS-PAGE). PTAPase is a glycoprotein which has a molecular weight of about 41-42 kDa. This enzyme was maximally active at pH 5.5, and its thermostability was less than 80 degrees C. The K(m) value for p-nitrophenylphosphate, a specific synthetic substrate, was 0.87 x 10(-3)M, however, higher substrate specificity was shown when phosphotyrosine (K(m)=0.37 x 10(-3)M) and protein fragments, such as gastrin (K(m)=0.0032 x 10(-3)M) and hirudin (K(m)=0.0075 x 10(-3)M), were used as substrates. Activity of PTAPase was inhibited by dephostatin, molybdate and orthovanadate by 100, 95 and 70%, respectively, when phosphotyrosine was used as the substrate. Immunofluorescence study has shown that the seminal vesicles are the only source of PTAPase in boar seminal plasma.  相似文献   

8.
A protease was purified 163-fold from Pronase, a commercial product from culture filtrate of Streptomyces griseus, by a series of column chromatographies on CM-Toyopearl (Fractogel), Sephadex G-50, hydroxyapatite, and Z-Gly-D-Phe-AH-Sepharose 4B using Boc-Ala-Ala-Pro-Glu-pNA as a substrate. The final preparation was homogeneous by polyacrylamide gel electrophoresis (PAGE), sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and gel isoelectric focusing. Studies on the substrate specificity with peptide p-nitroanilides revealed that this protease preferentially hydrolyzed peptide bonds on the carbonyl-terminal side of either glutamic acid or aspartic acid. It was most active at pH 8.8 for the hydrolysis of Boc-Ala-Ala-Pro-Glu-pNA. The molecular weight of the protease was estimated to be 20,000 by gel filtration on Sepharose 6B using 6 M guanidine hydrochloride as an eluent, and 22,000 by SDS-PAGE in the presence of 2-mercaptoethanol. The isoelectric point of the enzyme was 8.4. The enzyme was inactivated by diisopropyl phosphofluoridate (DFP) but not by p-chloromercuribenzoate (PCMB) or EDTA.  相似文献   

9.
1. The presence of high-Mr and low-Mr acid phosphatases [orthophosphoric-monoester phosphohydrolase, (acid optimum), EC 3.1.3.2] in the skeletal muscle of frog Rana esculenta was reported. 2. The subcellular localization and some characteristics of both enzymes were also described. 3. The low-Mr AcPase was purified to homogeneity. The enzyme did not absorb on Concanavalin A-Sepharose 4B indicating that this was not a glycoprotein. 4. The enzyme is homogeneous on polyacrylamide gel electrophoresis and moves as a single band of Mr 13.7 +/- 0.8 kDa in the presence of sodium dodecyl sulphate. 5. The Mr of the native enzyme was 14.0 +/- 1.1 kDa as determined by gel filtration on a Sephadex G-100 column. The isoelectric point was 6.02. 6. The enzyme was strongly inhibited by 1 mM Ag+, Hg2+, Sn2+ and Cu2+ while other cations both at 10(-2) and 10(-3) M showed little or no effect. 7. The enzyme was insensitive to NaF and tartrate but was strongly deactivated by formaldehyde, PMB, Iodoacetamide and Triton X-100. Phosphate was a competitive inhibitor (k1 = 0.83 mM). 8. The best substrate for the enzyme was p-nitrophenylphosphate but phenylphosphate, flavin mononucleotide and o-P-tyrosine were also hydrolyzed, though at different rates. 9. The enzyme activity was enhanced in the presence of methanol, ethanol, acetone and glycerol indicating a phosphotransferase activity.  相似文献   

10.
Frog liver acid phosphatase hydrolyzes phosphotyrosine at acidic pH optimum. Mn2+, Ca2+ and Mg2+ (but not Zn2+) ions modulate this activity by shifting its pH optimum to physiological pH. This effect is not observed when p-nitrophenylphosphate is used as a substrate. Phosphoserine and phosphothreonine are not hydrolyzed under the same conditions.  相似文献   

11.
Extracellular phytase from Aspergillus ficuum, a glycoprotein, was purified to homogeneity in 3 column chromatographic steps using ion exchange and chromatofocusing. Results of gel filtration chromatography and SDS-polyacrylamide gel electrophoresis indicated the approximate molecular weight of the native protein to be 85-100-KDa. On the basis of a molecular weight of 85-KDa, the molar extinction coefficient of the enzyme at 280 nm was estimated to be 1.2 X 10(4) M-1 cm-1. The isoelectric point of the enzyme, as deduced by chromatofocusing, was about 4.5. The purified enzyme is remarkably stable at 0 degree C. Thermal inactivation studies have shown that the enzyme retained 40% of its activity after being subjected to 68 degrees C for 10 minutes, and the enzyme exhibited a broad temperature optimum with maximum catalytic activity at 58 degrees C. The Km of the enzyme for phytate and p-nitrophenylphosphate is about 40 uM and 265 uM, respectively, with an estimated turnover number of the enzyme for phytate of 220 per sec. Enzymatic deglycosylation of phytase by Endoglycosidase H lowered the molecular weight of native enzyme from 85-100-KDa to about 76-KDa; the digested phytase still retained some carbohydrate as judged by positive periodic acid-Schiff reagent staining of the electrophoresed protein. Immunoblotting of the phytase with monoclonal antibody 7H10 raised against purified native enzyme recognized not only native but also partially deglycosylated protein.  相似文献   

12.
A unique acid proteinase different from cathepsin D was purified from rat spleen by a method involving precipitation at pH 3.5, affinity chromatography on pepstatin-Sepharose 4B and concanavalin A-Sepharose 4B, chromatography on Sephadex G-100 and DEAE-Sephacel, and isoelectric focusing. A purification of 4200-fold over the homogenate was achieved and the yield was 11%. The purified enzyme appeared to be homogeneous on electrophoresis in polyacrylamide gels. The isoelectric point of the enzyme was determined to be 4.1-4.4. The enzyme hydrolyzed hemoglobin with a pH optimum of about 3.1. The molecular weight of the enzyme was estimated to be about 90000 by gel filtration on Sephadex G-100. In sodium dodecylsulfate polyacrylamide gel electrophoresis, the purified enzyme showed a single protein band corresponding to a molecular weight of about 45000. The hydrolysis of bovine hemoglobin by the enzyme was much higher than that of serum albumin. Various synthetic and natural inhibitors of the enzyme were tested. The enzyme was inhbited by Zn2+, Fe3+, Pb2+, cyanide, p-chloromercuribenzoate, iodoacetic acid and pepstatin, whereas 2-mercaptoethanol, phenylmethyl-sulfonyl fluoride and leupeptin showed no effect.  相似文献   

13.
Lysobacter enzymogenes produces an extracellular phosphatase (EC. 3.1.3.1) during the stationary phase of growth. The cells also produce a cell-associated alkaline phosphatase. This enzyme is found in the particulate fraction of cell extracts and may be membrane bound. The production of both phosphatases, especially the extracellular enzyme, is reduced by inorganic phosphate. The extracellular phosphatase was purified to a specific activity of 270 U/mg primarily by chromatography on carboxymethyl cellulose and gel filtration. The enzyme is stable under normal storage conditions but is rapidly inactivated above 70 degrees. It consists of one polypeptide with an approximate molecular weight of 25,000. The pH optimum is 7.5, and the Km for p-nitrophenylphosphate is 2.2 X 10(-4) M. The enzyme degrades a number of other phosphomonoesters but at a reduced rate compared with the rate obtained with p-nitrophenylphosphate. Phosphate and arsenate inhibit the enzyme, but EDTA and other chelating agents have no effect. The lack of a metal ion requirement for activity, the lower molecular weight, the soluble nature of the enzyme, and the lower pH optimum clearly distinguish the extracellular phosphatase from the cell-associated phosphatase and from other bacterial phosphatases.  相似文献   

14.
Yi CK 《Plant physiology》1981,67(1):68-73
A marked increase in beta-acetylglucosaminidase (2-acetamido-2-deoxy-beta-d-glucoside acetamidodeoxyglucohydrolase, EC 3.2.1.30) activity was observed in the germinating cotyledon of cotton seeds. The enzyme was isolated from cotton seedlings and purified to study its physiological function in the germination of cotton seeds. The purification procedure involves ammonium sulfate fractionation, ion-exchange chromatography, gel filtrations, and concanavalin A-Sepharose 4B chromatography, and the purified beta-N-acetylglucosaminidase was shown to be homogeneous by disc electrophoresis. The molecular weight was estimated to be about 125,000 by gel filtration. The enzyme hydrolyzed both p-nitrophenyl-N-acetyl-beta-d-glucosamine and p-nitrophenyl-N-acetyl-beta-d-galactosamine. When p-nitrophenyl-N-acetyl-beta-d-glucosamine was used as substrate, K(m) and V(max) were 0.625 nanomolar and 228 moles per minute per milligram, respectively, and optimum activity was at pH 5.6. The enzyme liberated beta-linked N-acetyl-glucosamine from chitin, ovalbumin, and pronase-digested wheat germ lectin.  相似文献   

15.
Pullulanase (pullulan 6-glucanohydrolase EC 3.2.1.41) was purified about 290-fold from the culture fluid of Bacillus No. 202-1 by DEAE-cellulose adsorption, acetone fractionation, (NH4) 2SO4 precipitation and DEAE--cellulose column chromatography followed by Sephadex G-200 molecular sieve chromatography. The enzyme gave a single band of protein by disc polyacrylamide gel electrophoresis. The molecular weight was estimated as 92 000 by sodium dodecyl sulfate gel electrophoresis. The isolectric point was lower than pH 2.5. The optimum pH for enzyme action was about 8.5-9.0. The action of the enzyme on amylopectin and glycogen resulted in increase in the iodine coloration of 85% and 70%, respectively. The enzyme completely hydrolyzed 1,6-alpha-glucosidic linkages in amylopectin, glycogen and pullulan.  相似文献   

16.
An α-glucosidase (α-d-glucoside glucohydrolase, EC 3.2.1.20) was isolated from germinating millet (Panicum miliaceum L.) seeds by a procedure that included ammonium sulfate fractionation, chromatography on CM-cellulofine/Fractogel EMD SO3, Sephacryl S-200 HR and TSK gel Phenyl-5 PW, and preparative isoelectric focusing. The enzyme was homogenous by SDS-PAGE. The molecular weight of the enzyme was estimated to be 86,000 based on its mobility in SDS-PAGE and 80,000 based on gel filtration with TSKgel super SW 3000, which showed that it was composed of a single unit. The isoelectric point of the enzyme was 8.3. The enzyme readily hydrolyzed maltose, malto-oligosaccharides, and α-1,4-glucan, but hydrolyzed polysaccharides more rapidly than maltose. The Km value decreased with an increase in the molecular weight of the substrate. The value for maltoheptaose was about 4-fold lower than that for maltose. The enzyme preferably hydrolyzed amylopectin in starch, but also readily hydrolyzed nigerose, which has an α-1,3-glucosidic linkage and exists as an abnormal linkage in the structure of starch. In particular, the enzyme readily hydrolyzed millet starch from germinating seeds that had been degraded to some extent.  相似文献   

17.
A new hydrolase for conjugated bile acids, tentatively named chenodeoxycholyltaurine hydrolase, was purified to homogeneity from Bacteroides vulgatus. This enzyme hydrolyzed taurine-conjugated bile acids but showed no activity toward glycine conjugates. Among the taurine conjugates, taurochenodeoxycholic acid was most effectively hydrolyzed, tauro-beta-muricholic and ursodeoxycholic acids were moderately well hydrolyzed, and cholic and 7 beta-cholic acids were hardly hydrolyzed, suggesting that this enzyme has a specificity for not only the amino acid moiety but also the steroidal moiety. The molecular weight of the enzyme was estimated to be approximately 140,000 by Sephacryl S-300 gel filtration and the subunit molecular weight of the enzyme was 36,000 by SDS-polyacrylamide gel electrophoresis. The optimum pH was in the range of 5.6 to 6.4. The NH2-terminal amino acid sequence of the enzyme was Met-Glu-Arg-Thr-Ile-Thr-Ile-Gln-Gln-Ile-Lys-Asp-Ala-Ala-Gln. The enzyme was activated by dithiothreitol, but inhibited by sulfhydryl inhibitors, p-hydroxymercuribenzoate, N-ethylmaleimide, and dithiodipyridine.  相似文献   

18.
The major acid phosphatase form (orthophosphoric-monoester phosphohydrolase (acid optimum), EC 3.1.3.2) was purified from the soluble extract of barley roots. The enzyme is homogeneous on polyacrylamide gel electrophoresis and moves as a single band of Mr approximately 38,000 in the presence of sodium dodecyl sulphate. The molecular weight of the native enzyme was Mr 77,600 and 79,000 as determined, respectively, by gel filtration on a Sephadex G-100 column and by density gradient ultracentrifugation. The isoelectric point was about 6.28. The enzyme is competitively inhibited by molybdate (Ki = 9 x 10(-7) M). NaF, Ag(+), Hg(2+), Pb(2+) and Zn(2+) are also inhibitors, while other cations showed no effect. The enzyme hydrolyzes a wide variety of natural and synthetic phosphate esters. In particular, the enzyme seems to be active on ATP, o-phosphotyrosine, o-phosphoserine and glucose 1-phosphate. The pH dependence studies between pH 4-8 using p-nitrophenylphosphate as substrate and diethylpyrocarbonate inactivation indicate the presence of essential histidine residue at the active site.  相似文献   

19.
Previously an enzyme, named acylagmatine amidohydrolase, hydrolyzing bleomycin B2 to bleomycinic acid and agmatine was found in the mycelia of Fusarium anguioides Sherbakoff. In this work the enzyme was purified further, but not completely. The crude enzyme preparation hydrolyzed various acylagmatines and also peptidyl arginine, but the latter activity could be separated from acylagmatine amidohydrolase activity by gel filtration on Sephadex G-100. The enzyme was inhibited by PCMB and its molecular weight was estimated as 65,000 by gel filtration. It showed substrate specificity with respect to the alkyl-chain length of the amine moiety. The other hydrolase fraction with activity toward Bz-Gly-Arg was found to be of a sort of carboxypeptidase, which preferentially hydrolyzed peptides with arginine or lysine at the carboxyl terminus, including bradykinin, but liberated neutral amino acids as well from the terminus when the penultimate residue of the substrates was phenylalanine. With Bz-Gly-Arg as substrate Fusarium carboxypeptidase was sensitive to chelating agents but not to diisopropyfluorophosphate, and its molecular weight was estimated to be 145,000.  相似文献   

20.
An erythrocyte membrane-associated cathepsin D-like acid proteinase, termed "EMAP," was purified to homogeneity from freshly collected rat blood in a yield of 60-65%. The molecular weight of the enzyme was determined to be 80,000-82,000 by Sephadex G-100 gel filtration. The enzyme was inhibited strongly by pepstatin and partially by HgCl2, Pb(NO3)2, and iodoacetic acid. The preferred substrate for the enzyme was hemoglobin. The enzyme also hydrolyzed serum albumin and casein, but to lesser extents, with an optimum pH of 3.5-4.0. However, it could not hydrolyze leucyl-2-naphthylamide, benzyloxycarbonyl-Phe-Arg-4-methyl-7-coumarylamide or other synthetic substrates at pH values ranging from 3.5 to 9.5. The enzyme was very similar to human EMAP in a number of enzymatic properties, whereas it differed from rat cathepsin D in several respects, such as pH stability, molecular weight, isoelectric point, and chromatographic properties. Immunologically, the enzyme cross-reacted with the rabbit antibody prepared against human EMAP. The patterns of immunoelectrophoresis, immunoblotting, and immunoprecipitation of the enzyme were remarkably similar, if not identical, to those of human EMAP. In contrast, rat EMAP showed no reaction with the rabbit antibody raised to rat spleen cathepsin D. These results indicate that EMAP is a unique cathepsin D-like acid proteinase different from ordinary cathepsin D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号