首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S100A7, S100A10, and S100A11 are transglutaminase substrates   总被引:3,自引:0,他引:3  
Ruse M  Lambert A  Robinson N  Ryan D  Shon KJ  Eckert RL 《Biochemistry》2001,40(10):3167-3173
S100 proteins are a family of 10-14 kDa EF-hand-containing calcium binding proteins that function to transmit calcium-dependent cell regulatory signals. S100 proteins have no intrinsic enzyme activity but bind in a calcium-dependent manner to target proteins to modulate target protein function. Transglutaminases are enzymes that catalyze the formation of covalent epsilon-(gamma-glutamyl)lysine bonds between protein-bound glutamine and lysine residues. In the present study we show that transglutaminase-dependent covalent modification is a property shared by several S100 proteins and that both type I and type II transglutaminases can modify S100 proteins. We further show that the reactive regions are at the solvent-exposed amino- and carboxyl-terminal ends of the protein, regions that specify S100 protein function. We suggest that transglutaminase-dependent modification is a general mechanism designed to regulate S100 protein function.  相似文献   

2.
Piwi proteins specify an animal-specific subclass of the Argonaute family that, in vertebrates, is specifically expressed in germ cells. We demonstrate that zebrafish Piwi (Ziwi) is expressed in both the male and the female gonad and is a component of a germline-specifying structure called nuage. Loss of Ziwi function results in a progressive loss of germ cells due to apoptosis during larval development. In animals that have reduced Ziwi function, germ cells are maintained but display abnormal levels of apoptosis in adults. In mammals, Piwi proteins associate with approximately 29-nucleotide-long, testis-specific RNA molecules called piRNAs. Here we show that zebrafish piRNAs are present in both ovary and testis. Many of these are derived from transposons, implicating a role for piRNAs in the silencing of repetitive elements in vertebrates. Furthermore, we show that piRNAs are Dicer independent and that their 3' end likely carries a 2'O-Methyl modification.  相似文献   

3.
Structural genomics has the goal of obtaining useful, three-dimensional models of all proteins by a combination of experimental structure determination and comparative model building. We evaluate different strategies for optimizing information return on effort. The strategy that maximizes structural coverage requires about seven times fewer structure determinations compared with the strategy in which targets are selected at random. With a choice of reasonable model quality and the goal of 90% coverage, we extrapolate the estimate of the total effort of structural genomics. It would take approximately 16,000 carefully selected structure determinations to construct useful atomic models for the vast majority of all proteins. In practice, unless there is global coordination of target selection, the total effort will likely increase by a factor of three. The task can be accomplished within a decade provided that selection of targets is highly coordinated and significant funding is available.  相似文献   

4.
Many research groups successfully rely on whole-gene random mutagenesis and recombination approaches for the directed evolution of enzymes. Recent advances in enzyme engineering have used a combination of these random methods of directed evolution with elements of rational enzyme modification to successfully by-pass certain limitations of both directed evolution and rational design. Semi-rational approaches that target multiple, specific residues to mutate on the basis of prior structural or functional knowledge create 'smart' libraries that are more likely to yield positive results. Efficient sampling of mutations likely to affect enzyme function has been conducted both experimentally and, on a much greater scale, computationally, with remarkable improvements in substrate selectivity and specificity and in the de novo design of enzyme activities within scaffolds of known structure.  相似文献   

5.
MOTIVATION: Protein secondary structure prediction is an important step towards understanding how proteins fold in three dimensions. Recent analysis by information theory indicates that the correlation between neighboring secondary structures are much stronger than that of neighboring amino acids. In this article, we focus on the combination problem for sequences, i.e. combining the scores or assignments from single or multiple prediction systems under the constraint of a whole sequence, as a target for improvement in protein secondary structure prediction. RESULTS: We apply several graphical chain models to solve the combination problem and show that they are consistently more effective than the traditional window-based methods. In particular, conditional random fields (CRFs) moderately improve the predictions for helices and, more importantly, for beta sheets, which are the major bottleneck for protein secondary structure prediction.  相似文献   

6.
David Pallas  Frank Solomon 《Cell》1982,30(2):407-414
We have analyzed the detailed structure and cytoplasmic distribution of cytoplasmic microtubule-associated proteins. The procedure used to identify these proteins, based on preparation of detergent-extracted cytoskeletons, permits separation of fractions containing assembled and unassembled microtubule proteins. We show that two of these proteins, 69 and 80 kd, are closely related to one another and that each protein is present as a set of structurally related polypeptides with differing isoelectric points. In both neuroblastoma and pheochromocytoma cells, several of the isoelectric variants are greatly enriched in the fraction containing assembled microtubule components. Their differential distribution is correlated with phosphorylation at novel sites on the protein. These results support the possibility that covalent modification of a cytoskeletal component may specify its functional state.  相似文献   

7.
To unravel gene expression patterns during rice inflorescence development, particularly at early stages of panicle and floral organ specification, we have characterized random cloned cDNAs from developmental-stage-specific libraries. cDNA libraries were constructed from rice panicles at the stage of branching and flower primordia specification or from panicles undergoing floral organogenesis. Partial sequence analysis and expression patterns of some of these random cDNA clones from these two rice panicle libraries are presented. Sequence comparisons with known DNA sequences in databases reveal that approximately sixtyeight per cent of these expressed rice genes show varying degrees of similarity to genes in other species with assigned functions. In contrast, thirtytwo per cent represent uncharacterized genes. cDNAs reported here code for potential rice homologues of housekeeping molecules, regulators of gene expression, and signal transduction molecules. They comprise both single-copy and multicopy genes, and genes expressed differentially, both spatially and temporally, during rice plant development. New rice cDNAs requiring specific mention are those with similarity toCOP1, a regulator of photomorphogenesis inArabidopsis; sequence-specific DNA binding plant proteins like AP2-domain-containing factors; genes that specify positional information in shoot meristems like leucine-rich-repeat-containing receptor kinases; regulators of chromatin structure like Polycomb domain protein; and also proteins induced by abiotic stresses.  相似文献   

8.
9.
C M Oshiro  J Thomason  I D Kuntz 《Biopolymers》1991,31(9):1049-1064
In this paper we examine the distance geometry (DG) algorithm in the form used to determine the structure of proteins. We focus on three aspects of the algorithm: bound smoothing with the triangle inequality, the random selection of distances within the bounds, and the number of distances needed to specify a structure. Computational experiments are performed using simulated and real data for basic pancreatic trypsin inhibitor (BPTI) from nmr and crystallographic measurements. We find that the upper bounds determined by bound smoothing to be a linear function of the true crystal distance. A simple model that describes the results obtained with randomly selected trial distances is proposed. Using this representation of the trial distances, we show that BPTI DG structures are more compact than the true crystal structure. We also show that the DG-generated structures no longer resemble test structures when the number of these interresidue distance constraints is less than the number of degrees of freedom of the protein backbone. While the actual model will be sensitive the way distances are chosen, our conclusions are likely to apply to other versions of the DG algorithm.  相似文献   

10.
The herpes simplex virus type 1 (HSV-1) alpha or immediate-early proteins ICP4 (IE175), ICP0 (IE110), and ICP27 (IE63) are trans-acting proteins which affect HSV-1 gene expression. We previously showed that ICP27 in combination with ICP4 and ICP0 could act as a repressor or an activator in transfection assays, depending on the target gene (R. E. Sekulovich, K. Leary, and R. M. Sandri-Goldin, J. Virol. 62:4510-4522, 1988). To investigate the regions of the ICP27 protein which specify these functions, we constructed a series of in-frame insertion and deletion mutants in the ICP27 gene. These mutants were analyzed in transient expression assays for the ability to repress or to activate two different target genes. The target plasmids used consisted of the promoter regions from the HSV-1 beta or early gene which encodes thymidine kinase and from the beta-gamma or leaky late gene. VP5, which encodes the major capsid protein, each fused to the chloramphenicol acetyltransferase gene. Our previous studies showed that induction of pTK-CAT expression by ICP4 and ICP0 was repressed by ICP27, whereas the stimulation of pVP5-CAT expression seen with ICP4 and ICP0 was significantly increased when ICP27 was also added. In this study, a series of transfection assays was performed with each of the ICP27 mutant plasmids in combination with plasmids containing the ICP4 and ICP0 genes with each target. The results of these experiments showed that mutants containing insertions or deletions in the region from amino acids 262 to 406 in the carboxy-terminal half of the protein were unable to stimulate expression of pVP5-CAT but were able to repress induction of pTK-CAT activity by ICP4 and ICP0. Mutants in the carboxy-terminal 78 amino acids lost both activities; that is, these mutants did not show repression of pTK-CAT activity or stimulation of pVP5-CAT activity, whereas mutants in the hydrophilic amino-terminal half of ICP27 were able to perform both functions. These results show that the carboxy-terminal half of ICP27 is important for the activation and repression functions. Furthermore, the carboxy-terminal 62 amino acids are required for the repressor activity, because mutants with this region intact were able to repress. Analysis of the DNA sequence showed that there are a number of cysteine and histidine residues encoded by this region which have some similarity to zinc finger metal-binding regions found in other eucaryotic regulatory proteins. These results suggest that the structural integrity of this region is important for the function of ICP27.  相似文献   

11.
For a minimalist model of protein folding, which we introduced recently, we investigate various methods to obtain folding sequences. A detailed study of random sequences shows that, for this model, such sequences usually do not fold to their ground states during simulations. Straightforward techniques for the construction of folding sequences, based solely on the target structure, fail. We describe in detail an optimization algorithm, based on genetic algorithms, for the “simulated breeding” of folding sequences in this model. We find that, for any target structure studied, there is not only a single folding sequence but a patch of sequences in sequence space that fold to this structure. In addition, we show that, much as in real proteins, nonhomologous sequences may fold to the same target structure. © 1997 John Wiley & Sons, Inc.  相似文献   

12.
Membrane proteins are unique, in that they can function properly only when they are bound to cellular membranes in a distinct manner. Therefore, positioning of membrane proteins with respect to the membrane is required in addition to the three-dimensional structures in order to understand their detailed molecular mechanisms. Atomic-resolution structures of membrane proteins that have been determined to date provide the atom coordinates in arbitrary coordinate systems with no relation to the membrane and therefore provide little or no information on how the protein would interact with the membrane. This is especially true for peripheral membrane proteins, because they, unlike integral proteins, are devoid of well-defined hydrophobic transmembrane domains. Here, we present a novel technique for determination of the configuration of a protein-membrane complex that involves protein ligation, segmental isotope labeling, polarized infrared spectroscopy, membrane depth-dependent fluorescence quenching, and analytical geometry algorithms. We have applied this approach to determine the structure of a membrane-bound phospholipase A2. Our results provide an unprecedented structure of a membrane-bound protein in which the z-coordinate of each atom is the distance from the membrane center and therefore allows precise location of each amino acid relative to the membrane. Given the functional significance of the orientation and location of membrane-bound proteins with respect to the membrane, we propose to specify this structural feature as the "quinary" structure of membrane proteins.  相似文献   

13.
14.
体外分子定向进化研究进展   总被引:17,自引:2,他引:17  
体外定向进化作为近几年发展起来的一种蛋白质改造新策略,可以在未知目标蛋白三维结构信息和作用机制的情况下,通过对编码基因的随机突变、重组和定向筛选,获得具有改进功能或全新功能的蛋白质,使几百万年的自然进化过程在短期内得以实现,因而是发现新的生物活性分子和反应途径的重要方法,已在短短几年内取得了令人瞩目的成就.  相似文献   

15.
Genetic selection provides an effective way to obtain active catalysts from a diverse population of protein variants. We have used this tool to investigate the role of loop sequences in determining the quaternary structure of a domain-swapped enzyme. By inserting random loops of four to seven residues into a dimeric chorismate mutase and selecting for functional variants by genetic complementation, we have obtained and characterized both monomeric and hexameric enzymes that retain considerable catalytic activity. The low percentage of active proteins recovered from these selection experiments indicates that relatively few loop sequences permit a change in quaternary structure without affecting active site structure. The results of our experiments suggest further that protein stability can be an important driving force in the evolution of oligomeric proteins.  相似文献   

16.
It is well known that the structure is currently available only for a small fraction of known protein sequences. It is urgent to discover the important features of known protein sequences based on present protein structures. Here, we report a study on the size distribution of protein families within different types of folds. The fold of a protein means the global arrangement of its main secondary structures, both in terms of their relative orientations and their topological connections, which specify a certain biochemical and biophysical aspect. We first search protein families in the structural database SCOP against the sequence-based database Pfam, and acquire a pool of corresponding Pfam families whose structures can be deemed as known. This pool of Pfam families is called the sample space for short. Then the size distributions of protein families involving the sample space, the Pfam database and the SCOP database are obtained. The results indicate that the size distributions of protein families under different kinds of folds abide by similar power-law. Specially, the largest families scatter evenly in different kinds of folds. This may help better understand the relationship of protein sequence, structure and function. We also show that the total of proteins with known structures can be considered a random sample from the whole space of protein sequences, which is an essential but unsettled assumption for related predictions, such as, estimating the number of protein folds in nature. Finally we conclude that about 2957 folds are needed to cover the total Pfam families by a simple method.  相似文献   

17.
18.
The Alzheimer-linked neural protein S100B is a signaling molecule shown to control the assembly of intermediate filament proteins in a calcium-sensitive manner. Upon binding calcium, a conformational change occurs in S100B exposing a hydrophobic surface for target protein interactions. The synthetic peptide TRTK-12 (TRTKIDWNKILS), derived from random bacteriophage library screening, bears sequence similarity to several intermediate filament proteins and has the highest calcium-dependent affinity of any target molecule for S100B to date (K(d) <1 microm). In this work, the three-dimensional structure of the Ca(2+)-S100B-TRTK-12 complex has been determined by NMR spectroscopy. The structure reveals an extended, contiguous hydrophobic surface is formed on Ca(2+)-S100B for target interaction. The TRTK-12 peptide adopts a coiled structure that fits into a portion of this surface, anchored at Trp(7), and interacts with multiple hydrophobic contacts in helices III and IV of Ca(2+)-S100B. This interaction is strikingly different from the alpha-helical structures found for other S100 target peptides. By using the TRTK-12 interaction as a guide, in combination with other available S100 target structures, a recognition site on helix I is identified that may act in concert with the TRTK-12-binding site from helices III and IV. This would provide a larger, more complex site to interact with full-length target proteins and would account for the promiscuity observed for S100B target protein interactions.  相似文献   

19.
The nucleolus is a dynamic subnuclear structure involved in ribosome subunit biogenesis, cell cycle control and mediating responses to cell stress, among other functions. While many different viruses target proteins to the nucleolus and recruit nucleolar proteins to facilitate virus replication, the effect of infection on the nucleolus in terms of morphology and protein content is unknown. Previously we have shown that the coronavirus nucleocapsid protein will localize to the nucleolus. In this study, using the avian infectious bronchitis coronavirus, we have shown that virus infection results in a number of changes to the nucleolus both in terms of gross morphology and protein content. Using confocal microscopy coupled with fluorescent labelled nucleolar marker proteins we observed changes in the morphology of the nucleolus including an enlarged fibrillar centre. We found that the tumour suppressor protein, p53, which localizes normally to the nucleus and nucleolus, was redistributed predominately to the cytoplasm.  相似文献   

20.
The ability to consistently distinguish real protein structures from computationally generated model decoys is not yet a solved problem. One route to distinguish real protein structures from decoys is to delineate the important physical features that specify a real protein. For example, it has long been appreciated that the hydrophobic cores of proteins contribute significantly to their stability. We used two sources to obtain datasets of decoys to compare with real protein structures: submissions to the biennial Critical Assessment of protein Structure Prediction competition, in which researchers attempt to predict the structure of a protein only knowing its amino acid sequence, and also decoys generated by 3DRobot, which have user‐specified global root‐mean‐squared deviations from experimentally determined structures. Our analysis revealed that both sets of decoys possess cores that do not recapitulate the key features that define real protein cores. In particular, the model structures appear more densely packed (because of energetically unfavorable atomic overlaps), contain too few residues in the core, and have improper distributions of hydrophobic residues throughout the structure. Based on these observations, we developed a feed‐forward neural network, which incorporates key physical features of protein cores, to predict how well a computational model recapitulates the real protein structure without knowledge of the structure of the target sequence. By identifying the important features of protein structure, our method is able to rank decoy structures with similar accuracy to that obtained by state‐of‐the‐art methods that incorporate many additional features. The small number of physical features makes our model interpretable, emphasizing the importance of protein packing and hydrophobicity in protein structure prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号