首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of the recA gene product from E. coli to double-stranded and single-stranded nucleic acids has been investigated by following the change in melting temperature of duplex DNA and the fluorescence of single-stranded DNA or poly(dA) modified by reaction with chloroacetaldehyde. At low ionic strength, in the absence of Mg2+ ions, RecA protein binds preferentially to duplex DNA or poly(dA-dT). This leads to an increase of the DNA melting temperature. Stabilization of duplex DNA decreases when ionic strength or pH increases. In the presence of Mg2+ ions, preferential binding to single-stranded polynucleotides is observed. Precipitation occurs when duplex DNA begins to melt in the presence of RecA protein. From competition experiments, different single-stranded and double-stranded polydeoxynucleotides can be ranked according to their ability to bind RecA protein. Structural changes induced in nucleic acids upon RecA binding are discussed together with conformational changes induced in RecA protein upon magnesium binding.  相似文献   

2.
A survey of the major deoxyribonucleases in Pseudomonas aeruginosa strain PAO was undertaken. Two activities predominated in Brij-58 lysates of this organism. These have been purified from contaminating nuclease activities, and some of their properties have been elucidated. The first was a nuclease that degraded heat-denatured deoxyribonucleic acid (DNA) to mono- and dinucleotides. The activity of this enzyme was confined to single-stranded DNA, and 100% of the substrate was hydrolyzed to acid-soluble material. The Mg2+ optimum is low (1 to 3mM), and the molecular weight is 6 X 10(4). The second predominant activity was an adenosine 5'-triphosphate (ATP)-dependent deoxyribonuclease. This enzyme had an absolute dependence on the presence of ATP Mg2+ concentrations of approximately 10 mM. Five moles of ATP was consumed for each mole of phosphodiester bonds cleaved. The acid-soluble products of the reaction consisted of short oligonucleotides from one to six bases in length. Only 50% of the double-stranded DNA was rendered acid soluble in a limit digest. The molecular weight of this enzyme is 3 X 10(5). The observation of these enzymes in P. aeruginosa is consistent with the possibility that recombinational pathways similar to those of Escherichia coli are operating in this organism.  相似文献   

3.
The DNA-stimulated ATPase characterized in the accompanying paper is shown to be a DNA unwinding enzyme. Substrates employed were DNA, RNA hybrid duplexes and DNA-DNA partial duplexes prepared by polymerization on fd phage single-stranded DNA template. The enzyme was found to denature these duplexes in an ATP-dependent reaction, without detectably degrading. EDTA, an inhibitor of the Mg2+-requiring ATPase, was found to prevent denaturation suggesting that dephosphorylation of the ATP and not only its presence is required. These results together with those from enzyme-DNA binding studies lead to ideas regarding the mode of enzymic action. It is proposed that the enzyme binds, in an initial step, to a single-stranded part of the DNA substrate molecule and that from here, energetically supported by ATP dephosphorylation, it invades double-stranded parts separating base-paired strands by processive, zipper-like action. It is further proposed that chain separation results from the combined action of several enzyme molecules and that a tendency of the enzyme to aggregate with itself reflects a tendency of the molecules to cooperate. Various functions are conceivable for the enzyme.  相似文献   

4.
recA protein, which is essential for genetic recombination in Escherichia coli, causes extensive unwinding of the double helix by an ATP-dependent reaction and accumulation of positive supercoiling in closed circular double-stranded DNA. Initiation of the extensive unwinding was largely dependent on homologous single-stranded DNA. Therefore, it is likely that the extensive unwinding is initiated mainly at the site of D-loops. "Nascent D-loops" in which the two DNA molecules did not interwind were also good initiation sites of extensive unwinding. When the concentration of Mg2+ was decreased from the standard conditions for D-loop formation (13 mM MgCl2; the higher Mg2+ condition) to the lower Mg2+ condition (1 to 2 mM MgCl2), extensive unwinding by recA protein was initiated very quickly in the absence of single-stranded DNA. Results showed that this single-stranded DNA-independent initiation of extensive unwinding (i) requires negative superhelicity of the double-stranded DNA and (ii) is a first order reaction with respect to the DNA. These observations suggest that, under the lower Mg2+ condition, the extensive unwinding starts at a transiently denatured site in the negative superhelical DNA. Once initiated, the unwinding by recA protein is propagated extensively, even under conditions that do not allow its initiation. Therefore, the propagation of unwinding is a processive reaction ("processive unwinding"). Previous studies indicated that recA protein promotes "distributive unwinding" of double helix which depends on single-stranded DNA. Therefore, recA protein promotes unwinding of the double helix by either of two distinct pathways. Stress caused by the processive unwinding could explain the dissociation of D-loops and reversible inactivation of the double-stranded DNA in a D-loop cycle.  相似文献   

5.
A small endodeoxyribonuclease )2.3 S) that is active on single-stranded DNA has been extensively purified from Escherichia coli so as to be free of other known DNases. It has an alkaline pH optimum (9.5), requires Mg2+, and makes 3'-hydroxy and 5'-phosphate termini. The nuclease nicks duplex DNA, particularly if treated with OsO4, irradiated with ultraviolet light, or exposed to pH 5. The uracil-containing duplex DNA from the Bacillus subtilis phage PBS-2 is an especially good substrate; it is made acid-soluble by levels of the enzyme which fail to produce any acid-soluble material in other single-stranded or duplex DNAs. Neither RNA nor RNA-DNA hybrid are degraded by the enzyme. The enzyme specificity suggests that it might act at abnormal regions in DNA, so that its in vivo function could be to initiate an excision repair sequence. Its high activity on uracil-containing DNA could imply that the enzyme provides an alternative mechanism for excising uracil residues from DNA to the pathway utilizing uracil-DNA N-glycosidase. We suggest that this enzyme be designated as endonuclease V of E. coli.  相似文献   

6.
Helicase I has been purified to greater than 95% homogeneity from an F+ strain of Escherichia coli, and characterized as a single-stranded DNA-dependent ATPase and a helicase. The duplex DNA unwinding reaction requires a region of ssDNA for enzyme binding and concomitant nucleoside 5'-triphosphate hydrolysis. All eight predominant nucleoside 5'-triphosphates can satisfy this requirement. Unwinding is unidirectional in the 5' to 3' direction. The length of duplex DNA unwound is independent of protein concentration suggesting that the unwinding reaction is highly processive. Kinetic analysis of the unwinding reaction indicates that the enzyme turns over very slowly from one DNA substrate molecule to another. The ATP hydrolysis reaction is continuous when circular partial duplex DNA substrates are used as DNA effectors. When linear partial duplex substrates are used ATP hydrolysis is barely detectable, although the kinetics of the unwinding reaction on linear partial duplex substrates are identical to those observed using a circular partial duplex DNA substrate. This suggests that ATP hydrolysis fuels continuous translocation of helicase I on circular single-stranded DNA while on linear single stranded DNA the enzyme translocates to the end of the DNA molecule where it must slowly dissociate from the substrate molecule and/or slowly associate with a new substrate molecule, thus resulting in a very low rate of ATP hydrolysis.  相似文献   

7.
T Fujiyoshi  J Nakayama  M Anai 《Biochemistry》1982,21(17):4159-4164
The various catalytic activities of the ATP-dependent deoxyribonuclease (DNase) of Bacillus laterosporus have pH optima at 6.3 and 8.3. Although the pH profile of ATP-dependent DNase activity on duplex DNA is bell shaped with a maximum at about pH 8.3, ATP-dependent DNAse activity on single-stranded DNA has optima at pH 6.3 and 8.3. ATPase activities dependent on double-stranded and single-stranded DNA have a high bell-shaped peak with a maximum at pH 6.3 with a low and broad shoulder at about pH 8.3. ATP-independent DNase activity also has optima at pH 6.3 and 8.3. The ratio of the amount of ATP hydrolyzed per number of cleaved phosphodiester bonds in DNA increases with decrease in the pH value of the reaction. The ratios obtained at pH 8.3 and 6.3 were respectively about 3 and 22 with duplex DNA as substrate and 5 and 17 with single-stranded DNA as substrate. Formation of a single-stranded region of 15000-20000 nucleotides, which is linked to duplex DNA and about half of which has 3'-hydroxyl termini, was observed at about pH 6.3, but not at above pH 7.5. Furthermore, the optimum concentrations of divalent cations for the activity producing the single-stranded region and the activity hydrolyzing ATP were identical (3 mM Mn2+ or 5 mM Mg2+). Thus the two activities are closely related. These results indicate that the enzyme has two different modes of action on duplex DNA which are modulated by the pH.  相似文献   

8.
Terminal deoxynucleotidyl transferase, which requires a single-stranded DNA primer under the usual assay conditions, can be made to accept double-stranded DNA as primer for the addition of either rNMP or dNMP, if Mg+2 ion is replaced by Co+2 ion. The priming efficiency in the presence of Co+2 ion with respect to initial rate tested with 2 single-stranded primer, is 5-6 fold higher than that observed with Mg+2 ion. In the presence of Co+2 ion, the primer specificity is altered so that all forms of duplex DNA molecules can be labeled at their unique 3'-ends regardless of whether such ends are staggered or even. Thus, using ribonucleotide incorporation, we have for the first time employed this reaction for sequence analysis of duplex DNA fragments generated by restriction endonuclease cleavages. Furthermore, by using Co+2 ion, it is possible to add a long homopolymer tract of deoxyribonucleotides to the 3'-terminus of double-stranded DNA. Therefore, without prior treatment with lambda exonuclease to expose the 3' terminus as single-stranded primer, this reaction now permits insertion of homopolymer tails at the 3'-ends of all types of DNA molecules for the purpose of in vitro construction of recombinant DNA.  相似文献   

9.
Escherichia coli DNA helicases: mechanisms of DNA unwinding   总被引:12,自引:0,他引:12  
DNA helicases are ubiquitous enzymes that catalyse the unwinding of duplex DNA during replication, recombination and repair. These enzymes have been studied extensively; however, the specific details of how any helicase unwinds duplex DNA are unknown. Although it is clear that not all helicases unwind duplex DNA in an identical way, many helicases possess similar properties, which are thus likely to be of general importance to their mechanism of action. For example, since helicases appear generally to be oligomeric enzymes, the hypothesis is presented in this review that the functionally active forms of DNA helicases are oligomeric. The oligomeric nature of helicases provides them with multiple DNA-binding sites, allowing the transient formation of ternary structures, such that at an unwinding fork, the helicase can bind either single-stranded and duplex DNA simultaneously or two strands of single-stranded DNA. Modulation of the relative affinities of these binding sites for single-stranded versus duplex DNA through ATP binding and hydrolysis would then provide the basis for a cycling mechanism for processive unwinding of DNA by helicases. The properties of the Escherichia coli DNA helicases are reviewed and possible mechanisms by which helicases might unwind duplex DNA are discussed in view of their oligomeric structures, with emphasis on the E. coli Rep, RecBCD and phage T7 gene 4 helicases.  相似文献   

10.
The deoxyribonuclease specified by the recB and recC genes of Escherichia coli (recBC DNase; exonuclease V) has been purified to near homogeneity by a new procedure. Although hydrolysis of even a single nucleotide from a duplex DNA molecule by the pure enzyme is absolutely dependent upon ATP, the extent of phosphodiester hydrolysis is strongly inhibited by ATP concentrations of 0.2 mm or greater, and the initial rate is unaffected. Under these conditions, the extent of DNA hydrolysis is proportional to enzyme concentration. In contrast, neither the rate nor the extent of hydrolysis of single-stranded DNA nor ATP is affected by high concentrations of ATP. The amount of large single-stranded polynucleotide generated by the action of the recBC DNase increases as the ATP concentration increases and, at 0.5 mM ATP, becomes equivalent to the amount of acid-soluble nucleotide formed. These findings suggest that high intracellular concentrations of ATP affect the mechanism of the recBC DNase so as to limit the extent of hydrolysis of duplex DNA, while at the same time favoring the formation of single-stranded regions within the duplex. Such regions may be essential intermediates in the recombination process.  相似文献   

11.
A DNAase (deoxyribonuclease) was isolated from culture supernatants of sporulating Bacillus subtilis 168. The purified enzyme migrated as a single band during polyacrylamide-gel electrophoresis. The enzyme differs from other DNAases of B. subtilis in molecular weight, metal-ion requirement and mode of action. The enzyme was inactive in the absence of metal ions, and exhibited optimum activity with 10 mM-Mn2+, although Mg2+, Cd2+ and Co2+ could also permit some activity. The pH optimum for the enzyme was pH 7.5, and it degraded linear-duplex DNA or closed-circular-duplex DNA to acid-soluble material. There was little or no activity on single-stranded DNA or rRNA. Sucrose-gradient analysis of the products of DNAase action on bacteriophage T7 DNA showed that endonucleolytic cleavage had occurred by the introduction of single-strand breaks in both strands of the duplex. The molecular weight of the enzyme was determined, by gel filtration on Sephadex G-75, to be 12000.  相似文献   

12.
It is shown that circular PM2 DNA with two gaps of 13 nucleotides per molecule is degraded by purified recBC enzyme from Escherichia coli to acid-soluble material at a rate which is less than one tenth of the rate of solubilization of linear duplex DNA. Increasing the gap length in the circular DNA to 40-650 nucleotides does not affect the breakdown of the molecules by the recBC enzyme, nor does it change the proportions of the products formed (acid-soluble material, acid-insoluble fragments and non-degraded molecules). On the other hand, terminal gaps in linear duplex DNA produced by limited digestion with either exonuclease III or lambda exonuclease significantly reduce the rate of the degradation by the recBC enzyme, particularly when the gaps exceed 100 nucleotides. The results suggest that the recBC enzyme does not cleave gaps in circular DNA at random positions, but possibly at the junction between single-stranded and duplex DNA or close to it. The degradation of gapped circular DNA by purified recBC enzyme was used to search for an inhibitor of the recBC enzyme in extracts from ultraviolet-irradiated cells. No such inhibitor has been observed but rather a weak stimulatory factor for the solubilization of gapped circular DNA by the recBC enzyme. Thus, the experimental system appears not to be suited as a test in vitro for an ultraviolet-induced inhibitor of the recBC enzyme which has been postulated to be produced in recA+ lexA+ cells of E. coli after ultraviolet irradiation.  相似文献   

13.
In the previous studies with endonucleases specific for single-stranded DNA, we have indicated that the nonhistone chromosomal protein HMG(1 + 2) prepared from pig thymus has an activity to unwind DNA partially at low protein-to-DNA weight ratios (Yoshida, M. & Shimura, K. (1984) J. Biochem. 95, 117-124). In the present work, we have pursued the unwinding reaction by HMG(1 + 2) by thermal melting temperature analysis of DNA, and by investigating the effect of Mg2+ on the reaction. The melting temperature of DNA in the presence of HMG(1 + 2) at low protein weight ratios decreased in 2 mM Tris-HCl, pH 7.8, whereas it increased at higher ratios. The depressions of melting temperature by HMG(1 + 2) at low ratios were not observed either in the system of 2 mM Tris-HCl, pH 7.8, containing EDTA or in the system containing samples treated in advance with EDTA. An addition of Mg2+ to the system reproduced the depression of melting temperature at low protein-to-DNA ratios as well as the increase at higher ratios. Analysis by Mg2+-equilibrated gel filtration revealed that HMG(1 + 2) is a Mg2+-binding protein. However, the depression of melting temperature at low protein-to-DNA ratios was not due to removal of Mg2+ from DNA by HMG(1 + 2). From these results, it is concluded that HMG(1 + 2) causes a partial DNA unwinding detectable by thermal melting temperature analysis of DNA, and that Mg2+ is necessary for the unwinding reaction.  相似文献   

14.
The DNA helicase activity associated with purified simian virus 40 (SV40) large tumor (T) antigen has been examined. A variety of DNA substrates were used to characterize this ATP-dependent activity. Linear single-stranded M13 DNA containing short duplex regions at both ends was used to show that SV40 T antigen helicase displaced the short, annealed fragment by unwinding in a 3' to 5' direction. Three different partial duplex structures consisting of 71-, 343-, and 851-nucleotide long fragments annealed to M13 single-stranded circular DNA were used to show that SV40 T antigen can readily unwind short and long duplex regions with almost equal facility. ATP and MgCl2 were required for this reaction. With the exception of GTP, dGTP, and CTP, the other common nucleoside triphosphates substituted for ATP with varied efficiency, while adenosine 5'-O-(thiotriphosphate) was inactive. The T antigen helicase activity was also examined using completely duplex DNA fragments (approximately 300 base pairs) with or without the SV40 origin sequence as substrates. In reactions containing small amounts (0.6 ng) of DNA, the ATP-dependent unwinding of duplex DNA fragments occurred with no dependence on the origin sequence. This reaction was stimulated 5- to 6-fold by the addition of the Escherichia coli single-stranded DNA-binding protein. When competitor DNA was added so that the ratio of SV40 T antigen to DNA was reduced 1000-fold, only DNA fragments containing a functional SV40 origin of replication were unwound. This reaction was dependent on ATP, MgCl2, and a DNA-binding protein, and was stimulated by inorganic phosphate or creatine phosphate. The origin sequence requirements for the unwinding reaction were the same as those for replication (the 64-base pair sequence present at T antigen binding site 2). Thus, under specified conditions, only duplex DNA fragments containing an intact SV40 core origin were unwound. In contrast, unwinding of partially duplex segments of DNA flanked by single-stranded regions can occur with no sequence specificity.  相似文献   

15.
A homogeneous preparation of venom phosphodiesterase from Crotalus adamanteus possesses an intrinsic endonuclease activity, specific for superhelical (form I) and single-stranded DNA. The phosphodiesterase degrades single-stranded T7 DNA by endonucleolytic cleavages. Duplex T7 DNA is hydrolyzed by the liberation of acid-soluble products simultaneously from the 3' and 5' termini but without demonstrable internal scissions in duplex regions. Since venom phosphodiesterase is known to hydrolyze oligonucleotides stepwise from the 3' termini, the cleavage at the 5' end of duplex T7 DNA is ascribed to an endonuclease activity. Form I PM2 DNA is nicked to yield first relaxed circles and then linear DNA which is subsequently hydrolyzed only from the chain termini. The linear duplex DNA intermediates consist of a discrete series of fragments (11 are usually resolved on agarose gels) with initial molecular weights ranging from 6.3 x 10(6) (the intact PM2 DNA size) to approximately 1 x 10(6). The cleavage of the form I molecule must, therefore, occur at a limited number of unique sites. The enzyme also cleaves nonsuperhelical, covalently closed circular PM2 DNA but at a 10(4) times slower rate. Both the endonuclease activity on form I DNA and the known exonuclease activity co-migrate on polyacrtkanude gels, are optimally active at pH 9, are stimulated by small concentrations of Mg2+, and are similarly inactivated by heat, reducing agents, and EDTA.  相似文献   

16.
Studies on the specificity of the ATP-dependent DNase of Bacillus subtilis 168, carried out with pure enzyme at the optimal conditions for its action, have shown that the substrate is double-stranded linear DNA. Linear single-stranded DNA (separated strands of B. subtilis DNA and linear phage fd DNA) is not attacked, neither are there any circular forms (supercoiled or nicked simian virus 40 and circular single-stranded fd DNAs). The double-stranded DNA can be completely hydrolysed, the limit products being, almost exclusively, mononucleotides. The presence of terminal phosphate residues in the substrate (either at the 3' or the 5' end) is not necessary for enzyme action. This DNase appears therefore to be an exonuclease processively liberating mononucleotides from both strands of the native linear DNA. ATP (indispensable for the DNase reaction) is also hydrolysed by the enzyme, to ADP and inorganic orthophosphate (Pi) in the presence of DNA. The apparent Km for ATP, in the ATPase reaction, is 0.15 mM. At high ATP concentrations, which inhibit the DNase activity, there is activation of the ATPase reaction. Three molecules of ATP are consumed for each DNA phosphodiester bond split, at optimal conditions for DNase activity.  相似文献   

17.
The substrate specificity of 49+-enzyme was investigated in vitro. The enzyme showed a marked preference for rapidly sedimenting T4 DNA (greater than 1000 S) when helix-destabilizing proteins from Escherichia coli or phage T4 were added to the reaction. Regular replicative T4 DNA (200-S DNA) or denatured T4 DNA was not cleaved by the enzyme in the presence of these proteins but if they were omitted from the reaction both DNAs become good substrates for the enzyme. 200-S DNA was cleaved at its natural sites of single strandedness which occur at one-genome intervals. Gaps in T4 DNA which were constructed by treatment of a nicked DNA with exonuclease III were also cleaved by 49+-enzyme in the absence of helix-destabilizing proteins. Single-stranded T4 DNA was extensively degraded and up to 50% of the material was found to be acid-soluble in a limit digest. The degradation products were predominantly oligonucleotides of random size. No preference for a 5'-terminal nucleotide was observed in material from a limit digest with M13 DNA. Double-stranded DNA was nicked upon exposure to 49+-enzyme and double-strand breakage finally occurred by an accumulation of single-strand interruptions. No acid-soluble material was produced from native T4 DNA. The introduction of nicks in native DNA did not improve its properties as a substrate for the enzyme. Double-stranded DNA was about 100-fold less sensitive to the enzyme than single-stranded DNA.  相似文献   

18.
Conditions were established where the thallium-catalyzed iodination of random coil DNA proceeded 100-200 times faster than for native DNA. This reaction was explored as a probe for localized regions of disrupted base pairs in duplex DNA. A heteroduplex was constructed between DNA fragments produced by Hind II + III cleavage of phi80 plac DNA and phi80 plac DNA containing the Ll deletion (73 nucleotides in length). This heteroduplex incorporated twelve times as much iodine as the parent homoduplex fragments. Hence the technique could reveal the presence of a few (two or more) nonpaired cytosines, if they existed within an otherwise helical DNA fragment 789 base pairs long. Iodination studies were performed on superhelical SV40 DNA and on linear lambdaplac DNA. Analysis of the relative amount of iodine in restriction endonuclease fragments of these DNA's revealed the absence of localized single-stranded regions.  相似文献   

19.
Terminal deoxynucleotidyl transferase, which requires a single-stranded DNA primer under the usual assay conditions, can be made to accept double-stranded DNA as primer for the addition of either rNMP or dNMP, if Mg+2 ion is replaced by Co+2 ion. The priming efficiency in the presence of (C leads to) CO+2 ion with respect to initial rate tested with 2 single-stranded primer, is 5-6 fols higher than that observed with Mg+2 ion. In the presence of Co+2 ion, the primer specificity is altered so that all forms of duplex DNA molecules can be labeled at their unique 3' -ends regardless of whether such ends are staggered or even. Thus, using ribonucleotide incorporation, we have for the first time employed this reaction for sequence analysis of duplex DNA fragments generated by restriction endonuclease cleavages. Furthermore, by using Co+2 ion, it is possible to add a long homopolymer tract of deoxyribonucleotides to the 3'-terminus of double-stranded DNA. Therefore, without prior treatment with lambda exonuclease to expose the 3' terminus as single-stranded primer, this reaction now permits insertion of homopolymer tails at the 3'-ends of all types of DNA molecules for the purpose of in vitro construction of recombinant DNA.  相似文献   

20.
The RecBCD enzyme is an ATP-dependent nuclease on both single-stranded and double-stranded DNA substrates. We have investigated the kinetics of the RecBCD-catalyzed reaction with small, single-stranded oligodeoxyribonucleotide substrates under single-turnover conditions using rapid-quench flow techniques. RecBCD-DNA complexes were allowed to form in pre-incubation mixtures. The nuclease reactions were initiated by mixing with ATP. The reaction time-courses were fit to several possible reaction mechanisms and quantitative estimates were obtained for rate constants for individual reaction steps. The relative rates of forward reaction versus dissociation from the DNA, and the fact that inclusion of excess non-radiolabeled single-stranded DNA to trap free RecBCD has no effect on the nuclease reaction, indicates that the reaction is processive. The reaction products show that the reaction begins near the 3'-end of the [5'-32P]DNA substrates and the major cleavage sites are two to four phosphodiester bonds apart. The product distribution is unchanged as the ATP concentration varies from 10 microM to 100 microM ATP, while the overall reaction rate varies by about tenfold. These observations suggest that DNA cleavage is tightly coordinated with movement of the enzyme along the DNA. The reaction time-courses at low concentrations of ATP (10 microM and 25 microM) have a significant lag before cleavage products appear. We propose that the lag represents ATP-dependent movement of the DNA from an initial binding site in the helicase domain of the RecB subunit to the nuclease active site in a separate domain of RecB. The extent of reaction of the substrate is limited (approximately 50%) under all conditions. This may indicate the formation of a non-productive RecBCD-DNA complex that does not dissociate in the 1-2 s time-scale of our experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号