首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
The mechanism of the antiproliferation effect of N1,N12-bis(ethyl)spermine (BESPM) was studied in detail using mouse FM3A cells, since this polyamine analogue mimics the functions of spermine in several aspects [Igarashi, K., Kashiwagi, K., Fukuchi, J., Isobe, Y., Otomo, S. & Shirahata, A. (1990) Biochem. Biophys. Res. Commun. 172, 715-720]. Our results indicate that not only the decrease in sperimine and spermine caused by BESPM but also its accumulation play important roles on the inhibition of cell growth by BESPM, since BESPM accumulated in cells at a concentration fivefold that of spermidine in control cells. In comparison with the polaymine-deficient cells caused by alpha-difluoromethylornithine, an inhibitor of ornithine decarboxylase, and ethylglyoxal bis(guanylhydrazone), an inhibitor of S-adenosylmethionine decarboxylase, the behavior of polyamine-deficient cells caused by BESPM was different as follows: the inhibition of cell growth by BESPM was not abrogated by spermine or spermidine; polyamine uptake, which is stimulated during polyamine deficiency, was greatly inhibited, while spermidine/spermine N1-acetyltransferase activity, which is inhibited during polyamine deficiency, was enhanced in BESPM-treated cells; thymidine kinase activity did not decrease in BESPM-treated cells; inhibition of cell growth and macromolecule synthesis by BESPM correlated with the swelling of mitochondria and the decrease in ATP content; BESPM caused cell death when incubated together for several days. The role of BESPM accumulation on inhibition of cell growth is discussed.  相似文献   

3.
2-Arylbenzothiazoles are an important class of bicyclic privileged substructures present in various natural or synthetic compounds that have been shown to possess anticancer, antifungal, antibacterial, anti-inflammatory, and antiallergic activities. This study examined the antiproliferative properties of 2-(3,5-dihydroxyphenyl)-6-hydroxybenzothiazole (DH) and its molecular mechanism of action in human breast cancer MDA-MB-231 cells. DH inhibits the growth of MDA-MB-231 cells with an IC(50) value of 25 μM in a dose/time-dependent manner as measured by the microculture tetrazolium method. Cell cycle analysis by flow cytometry showed that DH-induced growth arrest could be associated to apoptosis in MDA-MB-231 cells.  相似文献   

4.
The outcomes of breast cancer patients are still poor although new compounds have recently been introduced into the clinic. Therefore, novel chemical approaches are required. In the present study, palladium(II) and corresponding platinum(II) complexes containing bis(2-pyridylmethyl)amine (bpma) and saccharine were synthesized and tested against human breast cancer cell lines, MCF-7 and MDA-MB-231, in vitro. Cytotoxicity was first screened by the MTT assay and the results were further confirmed by the ATP assay. The palladium complexes 1 and 3 yielded stronger cytotoxicity than the corresponding platinum complexes 2 and 4 at the same doses. The palladium complex 3 was found to be the most cytotoxic one. Therefore, a more comprehensive study was carried out with this complex only. The mode of cell death was determined morphologically under fluorescent microscope and biochemically with detection of active caspase-3 and PARP cleavage by Western blot. Changes in apoptosis-related gene expressions were measured with qPCR. It was demonstrated that complex 3 caused cell death by apoptosis determined by fluorescence imaging and Western blot. As a sign of apoptosis, PARP was cleaved in both of the cell lines. In addition, caspase-3 was cleaved in MDA-MB-231 cells while this cleavage was not observed in MCF-7. The results show that the complex 3 is a promising anti-cancer compound against breast cancer with an IC50 value of 3.9 μM for MCF-7 and 4.2 μM for MDA-MB-231 cells, which warrants further animal experiments.  相似文献   

5.
Besides undergoing O-demethylation in vivo, the triarylethylene antiestrogen nitromifene [1-(4-(2-pyrrolidinylethoxy)phenyl)-1-(4-methoxy)-phenyl-2-phenyl- 2- nitroethene, 1] undergoes biotransformation via nitroreduction, ethene bond cleavage, and pyrrolidine ring oxidation affording ketone metabolites 2 and 3 and a lactam metabolite 4. Estrogen receptor (ER) affinities of 1, 2, and 4 were, in turn, 1.7, 0.1, and 3.8% that of estradiol in MCF 7 human breast cancer cells, and these compounds inhibited by 50% the proliferation of MCF 7 cells at respective concentrations of 1.1, 5.6, and 2.0 microM. The inhibitory effect of 4 was fully reversible by estradiol, but that of 2 was only partially reversible. Also 3, which did not interact with ER, inhibited proliferation by 44% at a concentration of 10 microM. These results suggested that in contrast to 4, the effects of 2 and 3 were due in part to interaction with sites distinct from ER. Antiestrogen binding sites and calmodulin have been suggested to mediate antiproliferative effects of drugs. Interaction of ligands with the former sites has been proposed to antagonize the growth promoting effect of histamine. Although 2 and 3 had high affinities for these sites, their inhibitory effects on MCF 7 cell growth were largely unaffected by the presence of histidine, the source of intracellular histamine. Thus, the relationship between antiestrogen binding site affinity and antiproliferative effects of 2 and 3 was not clarified. In contrast, MCF 7 cell growth suppression potencies paralleled calmodulin antagonist potencies of 1 and 2 suggesting that interaction of 1 and 2 with calmodulin may contribute to their anticancer effects.  相似文献   

6.
The anti-apoptotic Bcl-2 protein, which confers oncogenic transformation and drug resistance in most human cancers, including breast cancer, has recently been shown to effectively counteract autophagy by directly targeting Beclin1, an essential autophagy mediator and tumor suppressor. However, it remains unknown whether autophagy inhibition contributes to Bcl-2-mediated oncogenesis. Here, by using a loss-of-function mutagenesis study, we show that Bcl-2-mediated antagonism of autophagy has a critical role in enhancing the tumorigenic properties of MCF7 breast cancer cells independent of its anti-apoptosis activity. A Bcl-2 mutant defective in apoptosis inhibition but competent for autophagy suppression promotes MCF7 breast cancer cell growth in vitro and in vivo as efficiently as wild-type Bcl-2. The growth-promoting activity of this Bcl-2 mutant is strongly correlated with its suppression of Beclin1-dependent autophagy, leading to sustained p62 expression and increased DNA damage in xenograft tumors, which may directly contribute to tumorigenesis. Thus, the anti-autophagic property of Bcl-2 is a key feature of Bcl-2-mediated oncogenesis and may in some contexts, serve as an attractive target for breast and other cancer therapies.  相似文献   

7.
Since antizyme (AZ) is known to inhibit cell proliferation and to increase apoptosis, the question arises as to whether these effects occur independently of polyamines. Intestinal epithelial cells (IEC-6) were grown in control medium and medium containing 5 mM difluoromethylornithine (DFMO) to inhibit ODC, DFMO + 5 µM spermidine (SPD), DFMO + 5 µM spermine (SPM), or DFMO + 10 µM putrescine (PUT) for 4 days and various parameters of growth were measured along with AZ levels. Cell counts were significantly decreased and mean doubling times were significantly increased by DFMO. Putrescine restored growth in the presence of DFMO. However, both SPD and SPM when added with DFMO caused a much greater inhibition of growth than did DFMO alone, and both of these polyamines caused a dramatic increase in AZ. The addition of SPD or SPM to media containing DFMO + PUT significantly inhibited growth and caused a significant increase in AZ. IEC-6 cells transfected with AZ-siRNA grew more than twice as rapidly as either control cells or those incubated with DFMO, indicating that removal of AZ increases growth in cells in which polyamine synthesis is inhibited as well as in control cells. In a separate experiment, the addition of SPD increased AZ levels and inhibited growth of cells incubated with DFMO by 50 %. The addition of 10 mM asparagine (ASN) prevented the increase in AZ and restored growth to control levels. These results show that cell growth in the presence or absence of ODC activity and in the presence or absence of polyamines depends only on the levels of AZ. Therefore, the effects of AZ on cell growth are independent of polyamines.  相似文献   

8.
Rh(I), Ir(I), Pd(II) and Pt(II) metal complexes of bis(2-diphenylphosphino)ethyl)benzylamine(DPBA) and bis(2-diphenylarsino)ethyl)benzylamine (DABA) have been synthesized using various starting materials. Reaction of RhCl(CO)(AsPh3)2 with DPBA or DABA in methanol resulted in the formation of cationic complexes of the composition, [Rh(CO)(L)]Cl (L = DPBA or DABA). Interaction of [IrCl(COD)]2 with DPBA in benzene resulted in the formation of a neutral complex [IrCl(DPBA)]. Reaction of [PdCl2(COD)] with the ligand DPBA in benzene resulted in a cationic complex of the composition [PdCl(DPBA)]Cl. Interaction of [PdCl(DPBA)]BPh4 with SnCl2 gave the complex [Pd(SnCl3)(DPBA)]BPh4. The ligands DPBA and DABA react with PtCl2(COD) in acetone to give neutral, Pt(II) complexes of the type, [PtCl2L] (L = DPBA or DABA). All the complexes were fully characterized by elemental analysis, conductivity measurements, IR and far-IR and 31P{1H} NMR spectral data.  相似文献   

9.
J Tesarik  L Garrigosa  C Mendoza 《Steroids》1999,64(1-2):22-27
It is known that steroids can induce cell surface receptor aggregation followed by activation of receptor and nonreceptor tyrosine kinases. It has been shown recently that 17beta-estradiol (E2) can stimulate the Src/p21ras/mitogen-activated protein kinase pathway in breast cancer cells, and this effect is supposed to mediate the E2-induced stimulation of breast cancer cell proliferation, possibly via activation of the c-fos and c-jun early genes or of genes involved in cell cycle control. Here we demonstrate the existence of an alternative mechanism of the cancer-promoting effect of E2. Human breast cancer cells (MCF-7) were exposed to the known proapoptotic agent vitamin E succinate (VES), added alone or together with different concentrations of E2. E2 conjugated with bovine serum albumin (E2-BSA), which cannot cross the plasma membrane of living cells, was also used in some experiments to assess whether E2 acted on the cell surface or at intracellular receptors. Apoptosis was analyzed by fluorescence-activated cell sorting after cell staining with propidium iodide and FITC-labeled annexin V. E2 showed a concentration-dependent stimulatory effect on spontaneous apoptosis but inhibited the VES-induced apoptosis. However, effects produced by the same molar concentrations of E2 were different when the hormone was free and when it was used in the form of the E2-BSA conjugate. The effects of E2 and E2-BSA were sensitive to genistein, a tyrosine kinase inhibitor. These data show that E2 modulates apoptosis of breast cancer cells, probably acting both at the cell surface and inside the cells. Tyrosine phosphorylation is involved in the signaling pathways mediating this E2 effect.  相似文献   

10.
11.

Aims

Pentacyclic triterpenes are a group of molecules with promising anticancer potential, although their precise molecular target remains elusive. The current work aims to investigate the antiproliferative and associated mechanisms of triterpenes in breast cancer cells in vitro.

Main methods

Effect of triterpenes on cell cycle distribution, ROS and key regulatory proteins were analyzed in three breast cancer cells in vitro. Growth inhibition, new DNA synthesis, colony formation assays and Western blot analysis were performed to assess the EGFR inhibitory effect of triterpenes. Molecular docking was performed to study the interaction between EGFR and triterpenes.

Key findings

We have demonstrated the ability of dimethyl melaleucate (DMM), a pentacyclic triterpene to exhibit cell cycle arrest at G0/G1 phase by down-regulation of cyclin D1 through PI3K/AKT inhibition. Further, to identify the upstream target of DMM, potential EGFR inhibitory activity of DMM and three structurally related pentacyclic triterpenes, ursolic acid, 18α-glycyrrhetinic acid and carbenoxolone was investigated. Interestingly, pentacyclic triterpenes limit EGF mediated breast cancer proliferation through sustained inhibition of EGFR and its downstream effectors STAT3 and cyclin D1 in breast cancer lines. We also show pentacyclic triterpenes to bind at the ATP binding pocket of tyrosine kinase domain of EGFR leading to the hypothesis that pentacyclic triterpenes could be a novel class of EGFR inhibitors. In conclusion, pentacyclic triterpenes inhibit EGFR activation through binding with tyrosine kinase domain thereby suppressing breast cancer proliferation.

Significance

Pentacyclic triterpenes may serve as a potential platform for development of novel drugs against breast cancer.  相似文献   

12.
13.
Connective tissue growth factor (CTGF) is a member of an emerging CCN gene family that is implicated in various diseases associated with fibro-proliferative disorder including scleroderma and atherosclerosis. The function of CTGF in human cancer is largely unknown. We now show that CTGF induces apoptosis in the human breast cancer cell line MCF-7. CTGF mRNA was completely absent in MCF-7 but strongly induced by treatment with transforming growth factor beta (TGF-beta). TGF-beta by itself induced apoptosis in MCF-7, and this effect was reversed by co-treatment with CTGF antisense oligonucleotide. Overexpression of CTGF gene in transiently transfected MCF-7 cells significantly augmented apoptosis. Moreover, recombinant CTGF protein significantly enhanced apoptosis in MCF-7 cells as evaluated by DNA fragmentation, Tdt-mediated dUTP biotin nick end-labeling staining, flow cytometry analysis, and nuclear staining using Hoechst 33258. Finally, recombinant CTGF showed no effect on Bax protein expression but significantly reduced Bcl2 protein expression. Taken together, these results suggest that CTGF is a major inducer of apoptosis in the human breast cancer cell line MCF-7 and that TGF-beta-induced apoptosis in MCF-7 cells is mediated, in part, by CTGF.  相似文献   

14.
The release of Notch intracellular domain (NICD) is mediated by γ-secretase. γ-Secretase inhibitors have been shown to be potent inhibitors of NICD. We hypothesized that Notch1 is acting as an oncogene in ovarian cancer and that inhibition of Notch1 would lead to inhibition of cell growth and apoptotic cell death in ovarian cancer cells. In this study, expressions of Notch1 and hes1 in four human ovarian cancer (A2780, SKOV3, HO-8910, and HO-8910PM), and one ovarian surface (IOSE 144) cell lines were detected by Western blot and quantitative real-time RT-PCR. The effects of γ-secretase inhibition (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester, DAPT) were measured by MTT assay, flow cytometry, ELISA and colony-forming assay. Our results showed that Notch1 and hes1 were found in all the four human ovarian cancer and IOSE 144 cell lines, and they were significantly higher in ovarian cancer cells A2780 compared to another four ovarian cells. Down-regulation of Notch1 expression by DAPT was able to substantially inhibit cell growth, induce G1 cell cycle arrest and induce cell apoptosis in A2780 in dose- and time-dependent manner. In addition, hes1 was found to be down-regulated in dose- and time-dependent manner by DAPT in A2780. These results demonstrate that treatment with DAPT leads to growth inhibition and apoptosis of A2780 cells in dose- and time-dependent manner. These findings also support the conclusion that blocking of the Notch1 activity by γ-secretase inhibitors represents a potentially attractive strategy of targeted therapy for ovarian cancer.  相似文献   

15.
Histone demethylase KDM7A regulates neuronal differentiation and development in mammals. In this study, we found that KDM7A was also required for breast cancer stem cells (BCSCs) maintenance. Silencing KDM7A significantly reduced the BCSCs population and mamosphere formation in vitro, and inhibited breast tumor growth in vivo. Restoring KDM7A expression rescued the defect in stem cell maintenance. Our mechanism analysis suggested that KDM7A upregulated the stemness-associated factors KLF4 and c-MYC for BCSCs maintenance. In addition, KDM7A knockdown promoted apoptosis through decreasing BCL2 expression and BAD phosphorylation in breast cancer (BrCa). Furthermore, restoring KDM7A and BCL2 expression rescued apoptosis inhibition in breast cancer, suggesting that KDM7A inhibited apoptosis by upregulating the BCL2 level in breast cancer. In conclusion, KDM7A promotes cancer stem cell maintenance and apoptosis inhibition in breast cancer.  相似文献   

16.
Previously, we have shown that progestins both stimulate proliferation of the progesterone receptor (PR)-rich human breast cancer cell line T47D and protect from cell death, in charcoal-stripped serum-containing medium. To lessen the variability inherent in different preparations of serum, we decided to further characterize progestin inhibition of cell death using serum starvation to kill the cells, and find that progestins protect from serum-starvation-induced apoptosis in T47D cells. This effect exhibits specificity for progestins and is inhibited by the antiprogestin RU486. While progestin inhibits cell death in a dose–responsive manner at physiological concentrations, estradiol-17β surprisingly does not inhibit cell death at any concentration from 0.001 nM to 1 μM. Progestin inhibition of cell death also occurs in at least two other human breast cancer cell lines, one with an intermediate level of PR, MCF-7 cells, and, surprisingly, one with no detectable level of PR, MDA-MB-231 cells. Further, we have found progestin inhibition of cell death caused by the breast cancer chemotherapeutic agents doxorubicin and 5-fluorouracil. These data are consistent with the building body of evidence that progestins are not the benign hormones for breast cancer they have been so long thought to be, but may be harmful both for undiagnosed cases and those undergoing treatment.  相似文献   

17.
Verrucarin A (VA), a protein synthesis inhibitor, derived from the pathogen fungus Myrothecium verrucaria, inhibits growth of leukemia cell lines and activates caspases and apoptosis and inflammatory signaling in macrophages. We have investigated VA-induced growth inhibition in breast cancer cells MDA-MB-231 and T47D and, particularly, the mechanism of VA-induced apoptosis. VA treatment brought about apoptotic cell death in a dose- and time-dependent manner which was associated with chromatin condensation, cell shrinkage, nuclear fragmentation and intracellular ROS production. Mitochondrial membrane depolarization, activation of caspase-3, down-regulation of Bcl-2 expression and up-regulation of Bax and p53 expression were observed. VA thus affects the viability of both the breast cancer cells by triggering ROS-mediated intrinsic mechanism of apoptosis.  相似文献   

18.
We have recently demonstrated that human TFF2 inhibits apoptosis in the non-TFF2 expressing breast adenocarcinoma cell line MCF-7. In this study we examined the impact of TFF2 and an anti-TFF2 antibody (hSP3) on the survival of other human adenocarcinoma cell lines; TFF2-positive (LS174T and SW480) and TFF2-negative (MCF-7 and T47D). Addition of TFF2 protected the (TFF2-) lines but had no effect on those constitutively expressing TFF2. Blocking with hSP3 significantly increased apoptosis in the (TFF2+) cell lines with minimal effect on the (TFF2-) cells. Our results show that the cytoprotective effect of TFF2 seen in MCF-7 cells is not cell line-specific and can be abrogated by inhibition of its expression.  相似文献   

19.
delta-Lactam-based hydroxamic acids, inhibitors of histone deacetylase (HDAC), have been synthesized via ring closure metathesis of key diene intermediates followed by conversion to hydroxamic acid analogues. The hydroxamic acids 12a, 12b, and 17c showed potent inhibitory activity in HDAC enzyme assay. The hydroxamic acid 12b exhibited growth inhibitory activity on five human tumor cell lines, showing good sensitivity on the MDA-MB-231 breast tumor cell.  相似文献   

20.
Although polyamines are important in regulating proliferation of mammalian cells, their role in hormone induction of cell growth has not been delineated. In the estradiol-responsive human breast cancer cell line, T-47D clone 11, estradiol (10(-10) M) was able to stimulate cell proliferation and the activity of ornithine decarboxylase (ODC), the first and rate-limiting enzyme in the biosynthesis of polyamines. alpha-Difluoromethylornithine (DFMO), a specific inhibitor of ODC, blocked the estradiol-induced cell proliferation and ODC activity. Exogenous addition of putrescine, the natural product of ODC, rescued the inhibitory effect of DFMO. In addition, DFMO abolished the estradiol-induced growth of several other estrogen-responsive human breast cancer cell lines but did not affect the growth of hormone-independent cell lines. Further, a serum factor was found to be required for estradiol to exert its effect. To gain insight into the nature of this and possibly other extrinsic factors involved, the effect of estradiol on the proliferation of T-47D cells transplanted into athymic nude mouse was evaluated. In this in vivo system, estradiol alone produced only moderate growth of the human breast tumor. The simultaneous transplantation of a prolactin (PRL)- and growth hormone (GH)-secreting rat pituitary tumor or normal rat pituitary glands at a different site dramatically potentiated the effect of estradiol on the growth of the breast tumor xenograft. Purified PRL or GH were without effect, indicating that the active pituitary factor is neither PRL nor GH. Further, conditioned medium from rat pituitary tumor cells potentiated the mitogenic effect of estradiol on T-47D and several other estrogen receptor-positive human breast cancer cell lines in vitro under serum-free condition. In conclusion, we have identified both intrinsic (polyamines) and extrinsic (pituitary/serum) factors that are importance for estrogen to exert its mitogenic action. The next goal will be to elucidate the mechanisms of action of these molecules in the modulation of estrogen action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号