首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The involvement of mitochondrial protein synthesis in the assembly of the mitochondrial ribosomes was investigated by studying the extent to which the assembly process can proceed in petite mutants of Saccharomyces cerevisiae which lack mitochondrial protein synthetic activity due to the deletion of some tRNA genes and/or one of the rRNA genes on the mtDNA. Petite strains which retain the 15-S rRNA gene can synthesize this rRNA species, but do not contain any detectable amounts of the small mitochondrial ribosomal subunit. Instead, a ribonucleoparticle with a sedimentation coefficient of 30 S (instead of 37 S) was observed. This ribonucleoparticle contained all the small ribosomal subunit proteins with the exception of the var1 and three to five other proteins, which indicates that the 30-S ribonucleoparticle is related to the small mitochondrial ribosomal subunit (37 S). Reconstitution experiments using the 30-S particle and the large mitochondrial ribosomal subunit from a wild-type yeast strain indicate that the 30-S particle is not active in translating the artificial message poly(U). The large mitochondrial ribosomal subunit was present in petite strains retaining the 21-S rRNA gene. The petite 54-S subunit is biologically active in the translation of poly(U) when reconstituted with the small subunit (37 S) from a wild-type strain. The above results indicate that mitochondrial protein synthetic activity is essential for the assembly of the mature small ribosomal subunit, but not for the large subunit. Since the var1 protein is the only mitochondrial translation product known to date to be associated with the mitochondrial ribosomes, the results suggest that this protein is essential for the assembly of the mature small subunit.  相似文献   

2.
An investigation of the role of the var1 protein in the assembly of the yeast mitochondrial ribosomes was carried out in a temperature conditional mutant, strain h56, which contains a mutation (tsv1) just upstream of the structural gene for the var1 protein. The mutation results in a marked decrease in the synthesis of the var1 protein at the permissive temperature of 28 degrees C and an apparently complete absence of var1 synthesis at the restrictive temperature of 36 degrees C. Long-term growth of strain h56 at the non-permissive temperature was found to result in the loss of the small (37 S) ribosomal subunit and the appearance of a novel 30 S ribonucleoparticle. Both the small (37 S) and the large (54 S) mitochondrial ribosomal subunits were found to be assembled in strain h56 for at least 3 h after transfer to the non-permissive temperature.  相似文献   

3.
Recent results with Neurospora crassa show that one protein (S-5, mol wt 52,000) associated with the mitochondrial (mit) small ribosomal subunit is translated within the mitochondria (Lambowitz et al. 1976. J. Mol. Biol. 107:223-253). In the present work, Neurospora mit ribosomal proteins were analyzed by two-dimensional gel electrophoresis using a modification of the gel system of Mets and Bogorad. The results show that S-5 is present in near stoichiometric concentrations in high salt (0.5 MKCl)-washed mit small subunits from wild-type strains. S-5 is among the most basic mit ribosomal proteins (pI greater than 10) and has a high affinity for RNA under the conditions of the urea-containing gel buffers. The role of S-5 in mit ribosome assembly was investigated by an indirect method, making use of chloramphenicol to specifically inhibit mit protein synthesis. Chloramphenicol was found to rapidly inhibit the assembly of mit small subunits leading to the formation of CAP-30S particles which sediment slightly behind mature small subunits (LaPolla and Lambowitz. 1977. J. Mol. 116: 189-205). Two-dimensional gel analysis shows that the more slowly sedimentaing CAP-30S particles are deficient in S-5 and in several other proteins, whereas these proteins are present in normal concentrations in mature small subunits from the same cells. Because S-5 is the only mit ribosomal protein whose synthesis is directly inhibited by chloramphenicol, the results tentatively suggest that S-5 plays a role in the assembly of mit small subunits. In addition, the results are consistent with the idea that S-5 stabilizes the binding of several other mit small subunit proteins. Two-dimensional gel electrophoresis was used to examine mit ribosomal proteins from [poky] and six additional extra-nuclear mutants with defects in the assembly of mit small subunits. The electrophoretic mobility of S-5 is not detectably altered in any of the mutants. However, [poky] mit small subunits are deficient in S-5 and also contain several other proteins in abnormally low or high concentrations. These and other results are consistent with a defect in a mit ribosomal constituent in [poky].  相似文献   

4.
In Neurospora, one protein associated with the mitochondrial small ribosomal subunit (S-5, Mr 52,000) is synthesized intramitochondrially and is assumed to be encoded by mtDNA. When mitochondrial protein synthesis is inhibited, either by chloramphenicol or by mutation, cells accumulate incomplete mitochondrial small subunits (CAP-30S and INC-30S particles) that are deficient in S-5 and several other proteins. To gain additional insight into the role of S-5 in mitochondrial ribosome assembly, the structures of Neurospora mitochondrial ribosomal subunits, CAP-30S particles, and INC-30S particles were analyzed by equilibrium centrifugation in CsCl gradients containing different concentrations of Mg+2. The results show (a) that S-5 is tightly associated with small ribosomal subunits, as judged by the fact that it is among the last proteins to be dissociated in CsCl gradients as the Mg+2 concentration is decreased, and (b) that CAP-30S and INC-30S particles, which are deficient in S-5, contain at most 12 proteins that are bound as tightly as in mature small subunits. The CAP-30S particles isolated from sucrose gradients contain a number of proteins that appear to be loosely bound, as judged by dissociation of these proteins in CsCl gradients under conditions in which they remain associated with mature small subunits. The results suggest that S-5 is required for the stable binding of a subset of small subunit ribosomal proteins.  相似文献   

5.
Recent results suggest that, in Neurospora crassa, one small subunit mitochondrial ribosomal protein (S-4a, Mr 52,000) is synthesized intramitochondrially (Lambowitz et al., 1976). We now find that, when wild-type cells are treated with chloramphenicol to block mitochondrial protein synthesis, the maturation of 30 S mitochondrial ribosomal subunits is rapidly inhibited and there is an accumulation of CAP-30 S particles which sediment slightly behind mature small subunits. Electrophoretic analysis suggests that the CAP-30 S particles are deficient in several proteins including S-4a and that they are enriched in a precursor RNA species that is slightly longer than 19 S RNA. Chloramphenicol also appears to inhibit the maturation of 50 S ribosomal subunits, but this effect is much less pronounced. Continued incubation in chloramphenicol leads to a decrease in the proportion of total mitochondrial ribonucleoprotein present as monomers, possibly reflecting the depletion of competent subunits. After long-term (17 h) growth in chloramphenicol, mitochondrial ribosome profiles from wild-type cells show decreased ratios of small to large subunits, a feature which is also characteristic of the poky (mi-1) mutant. Pulse-labeling experiments combined with electrophoretic analysis show that the synthesis of mitochondrial ribosomal RNAs is relatively unaffected by chloramphenicol and that, despite the deficiency of small subunits, 19 S and 25 S RNA are present in normal ratios in whole mitochondria. By contrast, 19 S RNA in poky mitochondria is rapidly degraded leading to a decreased ratio of 19 S to 25 S RNA. The significance of these results with respect to the etiology of the poky mutation is discussed and a model of mitochondrial ribosome assembly that incorporates all available data is presented.  相似文献   

6.
Antiserum against a major cytochrome b peptide isolated from yeast mitochondria as described previously (Lin, L.-F.H., and Beattie, D.S., J. Biol. Chem. 1978, 253, 2412--2418) was raised in rabbits and shown to be monospecific against the pure antigen. Mitochondria were isolated from yeast cells grown in [3H]leucine, extracted with Lubrol and treated with antiserum to cytochrome b. Analysis of the immunoprecipitates by sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed the presence of a single major band of molecular weight 31 000 corresponding to cytochrome b. In order to determine the intracellular site of translation of cytochrome b, yeast cells were labeled in vivo under non-growing conditions with [3H]leucine in the absence or presence of inhibitors of cytoplasmic and mitochondrial protein synthesis. The incorporation of radioactive leucine into the apoprotein of cytochrome b isolated by immunoprecipitation followed by gel electrophoresis was insensitive to cycloheximide (an inhibitor of cytoplasmic protein synthesis) and sensitive to acriflavin, erythromycin, and chloramphenicol (inhibitors of mitochondrial protein synthesis). Furthermore, no cytochrome b apoprotein was present in a cytoplasmic petite mutant which lacked mitochondrial protein synthesis. Cytochrome b is thus a product of protein synthesis on mitochondrial ribosomes.  相似文献   

7.
The inhibitors of protein synthesis, chloramphenicol and cycloheximide, were added to cultures of yeast undergoing glucose derepression at different times during the growth cycle. Both inhibitors blocked the increase in activity of coenzyme QH2-cytochrome c reductase, suggesting that the formation of complex III of the respiratory chain requires products of both mitochondrial and cytoplasmic protein synthesis.The possibility that precursor proteins synthesized by either cytoplasmic or mitochondrial ribosomes may accumulate was investigated by the sequential addition of cycloheximide and chloramphenicol (or the reverse order) to cultures of yeast undergoing glucose derepression. When yeast cells were grown for 3 hr in medium containing cycloheximide and then transferred to medium containing chloramphenicol, the activity of cytochrome oxidase increased at the same rate as the control during the first hour in chloramphenicol. These results suggest that some accumulation of precursor proteins synthesized in the mitochondria had occurred when cytoplasmic protein synthesis was blocked during the growth phase in cycloheximide. In contrast, essentially no products of mitochondrial protein synthesis accumulated as precursors for either oligomycin-sensitive ATPase or complex III of the respiratory chain during growth of the cells in cycloheximide.When yeast were grown for 3 hr in medium containing chloramphenicol followed by 1 hr in cycloheximide, the activities of cytochrome oxidase and succinate-cytochrome c reductase increased at the same rate as the control, while the activities of oligomycin-sensitive ATPase and NADH or coenzyme QH2-cytochrome c reductase were nearly double that of the control. These data suggest that a significant accumulation of mitochondrial proteins synthesized in the cytoplasm had occurred when the yeast cells were grown in medium containing sufficient chloramphenicol to block mitochondrial protein synthesis. The possibility that proteins synthesized in the cytoplasm may act to control the synthesis of mitochondrial proteins for both oligomycin-sensitive ATPase and complex III of the respiratory chain is discussed.  相似文献   

8.
Thermally shocked cells of Staphylococcus aureus rapidly synthesized ribonucleic acid (RNA) during the early stages of recovery. During this period, protein synthesis was not observed and occurred only after RNA had reached a maximum level. Even in the absence of coordinated protein synthesis, a large portion of the RNA appeared in newly synthesized ribosomes. Although the 30S subunit was specifically destroyed by the heating process, both ribosomal particles were reassembled during recovery. The addition of chloramphenicol did not inhibit the formation of the ribosomal subunits, nor was the presence of immature chloramphenicol particles detected. Extended recovery with highly prelabeled cells showed that the original ribosomal proteins present before heating are conserved and recycled. Furthermore, the data indicate that the 50S subunit is turned over and used as a source of protein for new ribosome assembly. Kinetic studies of the assembly process by pulse labeling have not revealed the presence of the normally reported precursor particles. Rather, the data suggest that assembly may occur, in this system, in a manner similar to that reported for in vitro assembly of Escherichia coli subunits.  相似文献   

9.
Mitochondrial ribosomal proteins were studied best in yeast, where the small subunit was shown to contain about 35 proteins. Yet, genetic and biochemical studies identified only 14 proteins, half of which were predictable by sequence homology with prokaryotic ribosomal components of the small subunit. Using a recently described affinity purification technique and tagged versions of yeast Ykl155c and Mrp1, we isolated this mitochondrial ribosomal subunit and identified a total of 20 proteins, of which 12 are new. For a subset of the newly described ribosomal proteins, we showed that they are localized in mitochondria and are required for the respiratory competency of the yeast cells. This brings to 26 the total number of proteins described as components of the mitochondrial small ribosomal subunit. Remarkably, almost half of the previously and newly identified mitochondrial ribosomal components showed no similarity to any known ribosomal protein. Homologues could be found, however, in predicted protein sequences from Schizosaccharomyces pombe. In more distant species, putative homologues were detected for Ykl155c, which shares conserved motifs with uncharacterized proteins of higher eukaryotes including humans. Another newly identified ribosomal protein, Ygl129c, was previously shown to be a member of the DAP-3 family of mitochondrial apoptosis mediators.  相似文献   

10.
Summary [C93] is a novel, extranuclear mutant of Neurospora crassa which has a normal mitochondrial phenotype when grown at 25°, but which is deficient in cytochromes b and aa 3 when grown at 37° (Pittenger and West 1979). In the present work, the phenotype of [C93] was characterized in greater detail. When [C93] is grown at 37°, the rate of mitochondrial protein synthesis is decreased to approximately 25% that of wild type; the ratio of mitochondrial small to large ribosomal subunits is decreased to 1:4 and mitochondrial small subunits are deficient in the mitochondrially-synthesized protein, S-5. The mitochondrial ribosome assembly defects in 37°-grown [C93] resemble those in chloramphenicol-treated wild-type cells and could merely be a consequence of the decreased rates of mitochondrial protein synthesis. Analysis of mitochondrial translation products by SDS gel electrophoresis suggests that 37°-grown [C93] is grossly deficient in the 19,000 Mr subunit of the oligomycin-sensitive ATPase relative to other mitochondrially-synthesized proteins. The ATPase defect was not found in other extranuclear or nuclear mutants deficient in mitochondrial protein synthesis. These data and additional evidence suggest that the primary defect in [C93] may be in the assembly of the ATPase complex. The possible connection between the ATPase defect and the deficiency of mitochondrial protein synthesis is discussed.  相似文献   

11.
J Dodd  J M Kolb  M Nomura 《Biochimie》1991,73(6):757-767
Earlier studies have shown that the reconstitution of Escherichia coli 50S as well as 30S ribosomal subunits from component rRNA and ribosomal protein (r-protein) molecules in vitro is not completely cooperative and binding of more than one r-protein to a single 16S rRNA (or 23S rRNA) molecule is required to initiate a successful 30S (or 50S) ribosome assembly reaction. We first confirmed this conclusion by carrying out 30S subunit reconstitution in the presence of a constant amount of 16S rRNA together with various amounts of total 30S r-proteins (TP30) and by analyzing the physical state of reconstituted particles rather than by assaying protein synthesizing activity of the particles as was done in the earlier studies. As expected, under conditions of excess rRNA, the efficiency of 30S subunit reconstitution per unit amount of TP30 decreased greatly with the decrease in the ratio of TP30 to rRNA, indicating the lack of complete cooperativity in the assembly reaction. We then asked the question whether the cooperativity of ribosome assembly is complete in vivo. We treated exponentially growing E coli cells with low concentrations of chloramphenicol which is known to inhibit protein synthesis without inhibiting rRNA synthesis, creating conditions of excess synthesis of rRNA relative to r-proteins. Several concentrations of chloramphenicol (ranging from 0.4 to 4.0 micrograms/ml) were used so that inhibition of protein synthesis ranged from 40 to 95%. Under these conditions, we examined the synthesis of RNA, ribosomal proteins and 50S ribosomal subunits as well as the synthesis of total protein. We found that the synthesis of 50S subunits was not inhibited as much as the synthesis of total protein at lower concentrations of chloramphenicol, but the degree of inhibition of 50S subunit synthesis increased sharply with increasing concentrations of chloramphenicol and was in fact greater than the degree of inhibition of total protein synthesis at chloramphenicol concentrations of 2 micrograms/ml or higher. The inhibition of 50S subunit synthesis was significantly greater than the inhibition of r-protein synthesis at all chloramphenicol concentrations examined. These data are consistent with the hypothesis that the cooperativity of ribosome assembly in vivo is also not complete as is the case for in vitro ribosome reconstitution, but are difficult, if not impossible, to explain on the basis of the complete cooperativity model.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The bacterial homologue of C4orf14, YqeH, has been linked to assembly of the small ribosomal subunit. Here, recombinant C4orf14 isolated from human cells, co-purified with the small, 28S subunit of the mitochondrial ribosome and the endogenous protein co-fractionated with the 28S subunit in sucrose gradients. Gene silencing of C4orf14 specifically affected components of the small subunit, leading to decreased protein synthesis in the organelle. The GTPase of C4orf14 was critical to its interaction with the 28S subunit, as was GTP. Therefore, we propose that C4orf14, with bound GTP, binds to components of the 28S subunit facilitating its assembly, and GTP hydrolysis acts as the release mechanism. C4orf14 was also found to be associated with human mitochondrial nucleoids, and C4orf14 gene silencing caused mitochondrial DNA depletion. In vitro C4orf14 is capable of binding to DNA. The association of C4orf14 with mitochondrial translation factors and the mitochondrial nucleoid suggests that the 28S subunit is assembled at the mitochondrial nucleoid, enabling the direct transfer of messenger RNA from the nucleoid to the ribosome in the organelle.  相似文献   

13.
The course of the assembly of ribosomal subunits in yeast   总被引:17,自引:0,他引:17  
The course of the assembly of the various ribosomal proteins of yeast into ribosomal particles has been studied by following the incorporation of radioactive individual protein species in cytoplasmic ribosomal particles after pulse-labelling of yeast protoplasts with tritiated amino acids. The pool of ribosomal proteins is small relative to the rate of ribosomal protein synthesis, and, therefore, does not affect essentially the appearance of labelled ribosomal proteins on the ribosomal particles. From the labelling kinetics of individual protein species it can be concluded that a number of ribosomal proteins of the 60 S subunit (L6, L7, L8, L9, L11, L15, L16, L23, L24, L30, L32, L36, L40, L41, L42, L44 and L45) associate with the ribonucleoprotein particles at a relatively late stage of the ribosomal maturation process. The same was found to be true for a number of proteins of the 40 S ribosomal subunit (S10, S27, S31, S32, S33 and S34). Several members (L7, L9, L24 and L30) of the late associating group of 60-S subunit proteins were found to be absent from a nuclear 66 S precursor ribosomal fraction. These results indicate that incorporation of these proteins into the ribosomal particles takes place in the cytoplasm at a late stage of the ribosomal maturation process.  相似文献   

14.
A number of different antibiotics that prevent translation by binding to the 50S ribosomal subunit of bacterial cells have recently been shown to also prevent assembly of this subunit. Antibacterial agents affecting 30S particle activities have not been examined extensively for effects on small subunit formation. The aminoglycoside antibiotics paromomycin and neomycin bind specifically to the 30S ribosomal subunit and inhibit translation. These drugs were examined in Staphylococcus aureus cells to see whether they had a second inhibitory effect on 30S particle assembly. A 3H-uridine pulse and chase assay was used to examine the kinetics of subunit synthesis in the presence and absence of each antibiotic. 30S subunit formation was inhibited by both compounds. At 3 microg/mL each antibiotic reduced the rate of 30S formation by 80% compared with control cells. Both antibiotics showed a concentration-dependent inhibition of particle formation, with a lesser effect on 50S particle formation. For neomycin, the IC50 for 30S particle formation was equal to the IC50 for inhibition of translation. Both antibiotics reduced the viable cell number with an IC50 of 2 microg/mL. They also inhibited protein synthesis in the cells with different IC50 values (2.5 and 1.25 microg/mL). This is the second demonstration of 30S ribosomal subunit-specific antibiotics that prevent assembly of the small subunit.  相似文献   

15.
Very little is known about biogenesis of mitochondrial ribosomes. The GTPases encoded by the nuclear MTG1 and MTG2 genes of Saccharomyces cerevisiae have been reported to play a role in assembly of the ribosomal 54 S subunit. In the present study biochemical screens of a collection of respiratory deficient yeast mutants have enabled us to identify a third gene essential for expression of mitochondrial ribosomes. This gene codes for a member of the YqeH family of GTPases, which we have named MTG3 in keeping with the earlier convention. Mutations in MTG3 cause the accumulation of the 15 S rRNA precursor, previously shown to have an 80-nucleotide 5' extension. Sucrose gradient sedimentation of mitochondrial ribosomes from temperature-sensitive mtg3 mutants grown at the permissive and restrictive temperatures, combined with immunobloting with subunit-specific antibodies, indicate that Mtg3p is required for assembly of the 30 S but not 54 S ribosomal subunit. The respiratory deficient growth phenotype of an mtg3 null mutant is partially rescued by overexpression of the Mrpl4p constituent located at the peptide exit site of the 54 S subunit. The rescue is accompanied by an increase in processed 15 S rRNA. This suggests that Mtg3p and Mrpl4p jointly regulate assembly of the small subunit by modulating processing of the 15 S rRNA precursor.  相似文献   

16.
An ethionine-containing submethylated particle related to the 50 S ribosomal subunit has been isolated from Escherichia coli grown in the presence of ethionine. This particle (E-50S) lacks L16, contains reduced amounts of L6, L27, L28 and L30 and possesses a more labile and flexible structure than the normal 50 S subunit. The E-50S particle has defective association properties and is incapable of peptide bond formation. It can be converted to an active 50 S ribosomal subunit when ethionine-treated bacteria are incubated under conditions which permit methylation of submethylated cellular components (presence of methionine) in the absence of de novo protein and RNA synthesis (presence of rifampicin).Total reconstitution of 50 S ribosomal subunits in vitro using normal 23 S and 5 S ribosomal RNA and proteins prepared from E-50S particles yields active subunits only if L16 is also added. The hypothesis that E-50S particles accumulate in ethionine-treated bacteria because the absence of methylation of one or more of their components blocks a late stage (L16 integration) in the normal 50 S assembly process is discussed.  相似文献   

17.
Virginiamycin S is an inhibitor of protein synthesis in vivo. In this paper we show by equilibrium dialysis that it binds specifically to the 50-S subunit of Escherichia coli ribosomes, with one binding site per subunit. This binding is not altered by the presence of chloramphenicol, tetracycline or puromycin but is competed for by erythromycin. Using the splitting-reconstitution method, it could be demonstrated that protein L16 is absolutely required for the binding of virginiamycin S to the 50-S subunit.  相似文献   

18.
19.
Summary Among the mitochondrial conditional mutations localized in the gene coding for the 21S ribosomal RNA, one — ts 902 — produces severely reduced amounts of 21S RNA and 50S subunit. We investigated its physiological properties and found that this thermosensitive mutation was associated with highly pleiotropic effects. The mutant phenotype is associated with cell death in certain conditions, and with a massive accumulation of rho- mutants at non-permissive temperature. Furthermore, interactions with the sites of action of erythromycin and chloramphenicol, both localized within the 21S rRNA, were detected. The mutant is hypersensitive to erythromycin and has a cis-incompatibility with the chloramphenicol-resistant mutation C 321 R .Ts 902 thus appears to have a dual effect, not only at the ribosomal level but also at a cellular level.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号