首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Transgenic Nicotiana benthamiana and N. clevelandii plants expressing the coat protein of Plum Pox Virus under the control of the 35S promoter from Cauliflower Mosaic Virus were engineered by Agrobacterium tumefaciens mediated transformation. The phenomenon of virus resistance was observed at different levels when transgenic plants, expressing the coat protein and control plants were compared after challenge infection with Plum Pox Virus. N. clevelandii coat protein transgenic plants circumvent virus accumulation. After an initial increase in virus titer similar to the control plants, some coat protein expressing plants showed a reduced accumulation of virus and inhibition of the systemic spread, characterized by decrease of the virus titer and formation of new symptomless leaves. In other N. clevelandii coat protein expressing plants virus accumulation was inhibited and disease symptoms never appeared. N. benthamiana coat protein expressing plants were also protected. After a temporary virus accumulation, virus titer decreased without the appearance of symptoms with the exception of a few plants, which showed a delay of thirty days in the development of symptoms post challenge infection.Abbreviations PPV Plum Pox Virus - CP coat protein - CaMV Cauliflower Mosaic Virus - CP+ coat protein expressing plant - CP– control plant = non coat protein expressing plant - TMV Tobacco Mosaic Virus - NPTII neomycin phosphotransferaseII - IBA indole-3-butyric acid - BAP 6-benzylaminopurine; - MS Murashige Skoog - ELISA enzyme linked immunosorbent assay  相似文献   

2.
Both Wheat Spindle Streak Mosaic Virus (WSSMV) and Soil-borne Wheat Mosaic Virus (SBWMV) were found on durum wheat plants (Triticum durum Desf.) grown in a field near Rome (Italy). The simultaneous occurrence of these pathogens was demonstrated by host-symptomatology, pattern of disease occurrence in the field, mechanical transmission tests, as well as by the morphology of viral particles and of ultrastructural modifications. Negatively stained preparates of diseased leaves collected in early, spring showed WSSMV particles and cytoplasmic cylindrical inclusions. SBWMV particles were found only in samples collected later in the season. Ultrathin sections of infected leaves collected in early spring showed characteristic WSSMV modifications such as pinwheels and membranous bodies, whereas samples collected later in the season contained also SBWMV-like crystalline aggregates. WSSMV infection appeared to develop and decline earlier than SBWMV in the leaves of durum wheat plants infected by both, viruses. WSSMV had not been reported in Italy before.  相似文献   

3.
Mechanical Transmission of Soil-borne Barley Yellow Mosaic Virus   总被引:2,自引:0,他引:2  
Leaves of winter barley (Hordeum vulgare L.) cv. Gerbel were mechanically sap-inoculated with Barley Yellow Mosaic Virus (BaYMV). Different additives to the inoculation fluid were tested. Whereas the dilution of plant sap by water alone resulted in an infection rate of 43%, the addition of sodium sulphite (80 %) and potassium phosphate-buffer (89%) increased the proportion of infected plants substantially. Infectivity was further increased by repeated inoculation, when sodium sulphite yielded 96 % and potassium phosphate 100% of infection. The usefulness of the technique in further research and application is discussed.  相似文献   

4.
Three-day-old cowpea seedlings were inoculated with the severestrain of Cowpea Mosaic Virus (CpMV) and 24 h later with Bradyrhizobiumsp. cowpea, strain I-125, when virus translocation to rootsstill had not taken place. Plants were harvested at 22, 30,45 and 59 d after germination. Active virus replication wasassociated with increased protein content, detected in the leavesof 22-d-old plants. CpMV infection reduced the total leaf area,dry weight of shoots and the chlorophyll content of the firsttrifoliolate leaf at all experimental times. Low sugar contentwas recorded in leaves of 22- and 30-d-old CpMV-infected plantsand in nodules and roots of 30- and 45-d-old CpMV-infected plants.Up to 45 d, the nodule mass of CpMV-infected plants was lowerthan in controls, but reached control values at the 4th harvest.In CpMV-infected nodules, massive agglomeration of virus particles,crystalline virus inclusions and the proliferation of the endoplasmicreticulum were observed only in those cells containing bacteroids.In 30- and 45-d-old plants, CpMV infection decreased the contentof ureides in nodules, roots, and petioles. Virus infectiondid not alter the -amino-N content of roots and nodules butinduced a transient 74% reduction in the level of -amino-N inpetioles of 45-d-old plants. At the 1st and 2nd harvests theactivity of uricase (EC 1.7.3.3 [EC] ) in the nodules and of pyruvatekinase (EC 2.7.1.40 [EC] ) in the nodules and leaves were decreasedseverely by virus infection. CpMV did not hinder the allantoinase(EC 3.5.2.5 [EC] ) activity in the leaves but caused a 9% transitorydecrease in the activity of this enzyme in nodules of 45-d-oldplants. Measurements of NAD-malic enzyme (EC 1.1.1.38 [EC] ) in nodulesalso showed the non-effect of CpMV on this enzyme, except fora temporary 16% reduction at the 2nd harvest. As compared tocontrols, the relative abundance of ureides in 30-d-old CpMV-infectedplants indicated a 15%, 10%, and 51% reduction in the nodules,roots, and petioles, respectively. Results indicate that atthe time of the 4th harvest the symbiotic process, measuredin terms of ureide content and enzymatic activities, was functioningat a near normal level despite nodule infection by CpMV. Key words: Cowpea Mosaic Virus, nitrogen fixation, cowpea, enzymes, ultrastructure  相似文献   

5.
Age-related Resistance in Bell Pepper to Cucumber mosaic virus   总被引:2,自引:0,他引:2  
We demonstrated the occurrence of mature plant resistance in Capsicum annuum‘Early Calwonder’ to Cucumber mosaic virus (CMV) under greenhouse conditions. When Early Calwonder plants were sown at 10 day intervals and transplanted to 10‐cm square pots, three distinct plant sizes were identified that were designated small, medium and large. Trials conducted during each season showed that CMV accumulated in inoculated leaves of all plants of each size category. All small plants (with the exception of the winter trial) developed a systemic infection that included accumulation of CMV in uninoculated leaves and severe systemic symptoms. Medium plants had a range of responses that included no systemic infection to detection of CMV in uninoculated leaves with the systemically infected plants being either symptomless or expressing only mild symptoms. None of the large plants contained detectable amounts of CMV in uninoculated leaves or developed symptoms. When plants were challenged by inoculation of leaves positioned at different locations along the stem or different numbers of leaves were inoculated, large plants continued to accumulate CMV in inoculated leaves but no systemic infection was observed. When systemic infection of large plants did occur, e.g. when CMV‐infected pepper was used as a source of inoculum, virus accumulation in uninoculated leaves was relatively low and plants remained symptomless. A time‐course study of CMV accumulation in inoculated leaves revealed no difference between small and large plants. Analyses to examine movement of CMV into the petiole of inoculated leaves and throughout the stem showed a range in the extent of infection. While all large plants contained CMV in inoculated leaves, some had no detectable amounts of virus beyond the leaf blade, whereas others contained virus throughout the length of the stem but with limited accumulation relative to controls.  相似文献   

6.
The effect of infection by the Cowpea Mosaic Virus (CpMV) onseveral parameters relevant to symbiotic nitrogen fixation wasdetermined in cowpea (Vigna unguiculata (L.) Walp. var. Tuy)plants nodulated with two strains of Rhizobium cowpea: IVIC–124and IVIC–38. Plants were virus-infected at the seedlingstage before Rhizobium inoculation. The effect of CpMV infectionon plant growth was analysed in nodulated and nitrogen-suppliedplants at 18, 25 and 35 d after germination. At all developmentalstages of nodulated plants CpMV infection caused a reductionof leaf chlorophyll content, leaf area, dry weight of shootsand roots, total nodule weight and nodule number. Most of thenodules from 18- and 25-d-old CpMV-infected plants did not exhibitleghaemoglobin pigmentation. CpMV infection delayed the onsetof nitrogenase activity in nodules of the rhizobial strain IVIC–124and the enzyme activity measured on a per plant basis was reducedin both strains at the first and second harvests. Significantnitrogenase activity was detected in 35-d-old infected plants.Some of the nodules of the rhizobial strain IVIC-124 and mostof the nodules from plants nodulated with the strain IVIC-38developed leghaemoglobin; however, the nodule-specific nitrogenaseactivity, estimated on a milligram nodule dry weight basis,was always higher in virus-infected plants, particularly in18-d-old CpMV-infected plants harbouring the IVIC–124strain. CpMV-infected nodules had a larger peribacteroidal space,a reduced number of peribacteroid units, a greater number ofbacteroids per unit, a lower number of vesicles and 88% lowertotal reducing sugar content. Starch accumulation was detectedin infected leaves of nodulated plants during the first harvest,while high levels of leaf reducing sugars and protein were presentat the second harvest. In healthy nodulated plants the rhizobialstrain IVIC–124 was shown to be more efficient than IVIC–38in promoting plant growth. However, the results indicate thatnodulation by rhizobial strain IVIC–124 and growth ofplants harbouring this strain were affected to a greater extentby virus infection. The effect of CpMV infection on leaf chlorophyllcontent, leaf area, carbohydrate level, leaf proteins and growthof nitrogen-supplied plants, as well as the symptoms inducedin the leaves, were less conspicuous than in nodulated plants. Key words: Cowpea, Rhizobium, virus infection, nodule untrastructure  相似文献   

7.
Root colonization with arbuscular mycorrhizal fungi (AMF) enhances plant resistance particularly against soil‐borne pathogenic fungi. In this study, mycorrhizal inoculation with Glomus mosseae (Gm) significantly alleviated tomato mould disease caused by the air‐borne fungal pathogen, Cladosporium fulvum (Cf). The disease index (DI) in local leaves (receiving pathogen inoculation) and systemic leaves (just above the local leaf without pathogen inoculation) was 36.4% and 11.7% in mycorrhizal plants, respectively, whereas DI was 59.6% and 36.4% in the corresponding leaves of AMF non‐inoculated plants, after 50 days of Gm inoculation, corresponding to 15 days after Cf inoculation by leaf infiltration. Foliar spray inoculation with Cf also revealed that AMF pre‐inoculated plants had a higher resistance against subsequent pathogen infection, where the DI was 41.3% in mycorrhizal plants vs. 64.4% in AMF non‐inoculated plants. AMF‐inoculated plants showed significantly higher fresh and dry weight than non‐inoculated plants under both control (without pathogen) and pathogen treatments. AMF‐inoculated plants exhibited significant increases in activities of superoxide dismutase and peroxidase, along with decreases in levels of H2O2 and malondialdehyde, compared with non‐inoculated plants after pathogen inoculation. AMF inoculation led to increases in total chlorophyll contents and net photosynthesis rate as compared with non‐inoculated plants under control and pathogen infection. Pathogen infection on AMF non‐inoculated plants led to decreases in chlorophyll fluorescence parameters. However, pathogen infection did not affect these parameters in mycorrhizal plants. Taken together, these results indicate that AMF colonization may play an important role in plant resistance against air‐borne pathogen infection by maintaining redox poise and photosynthetic activity.  相似文献   

8.
Maize streak virus (MSV) capsid antigens were detected over time in different parts of maize plants of a sensitive (INRA508) and a so-called tolerant (“tolerant”) cultivar (IRAT297) using a direct or an indirect double antibody sandwich ELISA. Based on three types of experiments, it was shown that the antigens were distributed in the plant according to the age of the tissues. When the virus was inoculated on a particular leaf of 18-day old plants with infective Cicadulina mbila, only the young leaves above the inoculated one were positive by ELISA but not the older ones below. The antigens could not be detected in the inoculated leaf. At day 3 after inoculation, the antigens were detected in the sheath and/or in the whorl of the third leaf above the inoculated one but not in the oldest part of the leaf, the unfolded lamina. Plants of the sensitive cultivar were inoculated at 9 days with C. mbila deposited in the whorl. At 23 h after inoculation, the antigens were detected in the sheath but not in the whorl which was found to be positive only at 32 h. On the basis of these results, a hypothesis of the mode of virus infection is proposed. Our results contribute to a better understanding of the relationship between the age of the plant at inoculation and yield loss as well as secondary infection. By transmission tests with C. mbila, it was shown that virus could only be acquired from leaves exhibiting symptoms. Virus concentrations were measured in plant samples by ELISA using a range of dilutions of purified virus. The virus concentrations were higher in the sensitive than in the “tolerant” cultivar, but no difference in antigen distribution was observed between the two cultivars. The “tolerant” cultivar appeared to be resistant to virus multiplication.  相似文献   

9.
MDMV CP基因的克隆及其转基因玉米的研究   总被引:18,自引:0,他引:18  
用RT-PCR方法分离了玉米矮花叶病毒外壳蛋白基因(MDMV CP),并且利用基因枪法将该基因导入玉米优良自交系18-599红、18-599白幼胚诱导的愈伤组织中。转化的愈伤组织在Bialaphos浓度(PPT)为8mg/L、10mg/L、5mg/L的筛选压下经过3次抗性筛选后,分别再生出可育植株12株和6株。PCR和Southem检测结果说明CP基因已整合到玉米自交系基因组中。对T1代转基因植株进行病毒人工接种试验,结果表明对照植株全部表现为感染玉米矮花叶病的典型症状,而转基因植株后代呈现不同程度的抗性。  相似文献   

10.
Abstract

The effect of Xanthomonas oryzae pv. oryzae infection on induction of phenylalanine ammonia-lyase (PAL), peroxidase (PO), phenolics and thaumatin-like proteins (TLPs) in rice was studied. PAL activity increased significantly one day after inoculation with X. o. pv. oryzae and the maximum enzyme activity was observed two days after inoculation. The phenolic content in rice leaves increased significantly one day after inoculation and the maximum accumulation of phenols was observed two days after inoculation. Significant increase in peroxidase activity was observed in rice leaves one day after inoculation with X. o. pv. oryzae. Isozyme analysis indicated that three peroxidase isozymes (PO-1, PO-2 and PO-3) were induced after inoculation with X. o. pv. oryzae. Immunoblot analysis of protein extracts from control and pathogen inoculated rice plants revealed the induced accumulation of 16 and 24 kDa TLPs in rice leaves in response to X. o. pv. oryzae infection. TLP mRNA accumulation was induced strongly in rice leaves in response to infection by X. o. pv. oryzae.  相似文献   

11.
Cymbidium Mosaic Virus (CymMV) and Erwinia carotovora have been reported to cause severe damage to orchid plants. To enhance the resistance of orchids to both viral and bacterial phytopathogens, gene stacking was applied on Phalaenopsis orchid by double transformation. PLBs originally transformed with CymMV coat protein cDNA (CP) were then re-transformed with sweet pepper ferredoxin-like protein cDNA (Pflp) by Agrobacterium tumefaciens, to enable expression of dual (viral and bacterial) disease resistant traits. A non-antibiotic selection procedure in the second transformation minimized the potential rate of ‘stacking’ antibiotic genes in the orchid gene pool. Transgene integration in transgenic Phalaenopsis lines was confirmed by Southern blot analysis for both CP and pflp genes. Expression of transgenes was detected by northern blot analysis, and disease resistant assays revealed that transgenic lines exhibited enhanced resistance to CymMV and E. carotovora. This is the first report describing a transgenic Phalaenopsis orchid with dual resistance to phytopathogens.  相似文献   

12.
African Cassava Mosaic Virus (ACMV) was purified by a method which allowed the separation of monomer from dimcr virus particles. Optimal conditions for storing purified virus to be used for immunization were determined by ELISA and inoculation on Nicotiana benthamiana. Purified virus could be stored without loss of infectivity and serological activity for more than 145 days at 4 °C or frozen at –20 °C, but not longer than 40 days in the presence of 50 % redistilled glycerol. Rabbit and chicken immunoglobulins were used to detect ACMV in cassava leaves by direct and indirect ELISA. To obtain the same absorbance values, it was necessary to use longer incubation times with the indirect method, but the virus detection end-point m sap from infected plants was the same for the two methods (1/512). Conditions for improving virus detection tn cassava samples were determined. The virus was better detected when leaves from diseased plants were ground in 100 mM Tris-HCl containing 1 % polyvinylpyrrolidone at pH 8.5 than in phosphate buffer. Plant inhibitors were the restricting factor in the detection of virus by ELISA, but this difficulty was avoided when leaves to be tested were harvested from the top of the cassava plants.  相似文献   

13.
The p24 protein, one of the three proteins implicated in local movement of potato virus X (PVX), was expressed in transgenic tobacco plants (Nicotiana tabacum Xanthi D8 NN). Plants with the highest level of p24 accumulation exhibited a stunted and slightly chlorotic phenotype. These transgenic plants facilitate the cell-to-cell movement of a mutant of PVX that contained a frameshift mutation in p24. Upon inoculation with tobacco mosaic virus (TMV), the size of necrotic local lesions was significantly smaller in p24+ plants than in nontransgenic, control plants. Systemic resistance to tobamoviruses was also evidenced after inoculation of p24+ plants with Ob, a virus that evades the hypersensitive response provided by the N gene. In the latter case, no systemic symptoms were observed, and virus accumulation remained low or undetectable by Western immunoblot analysis and back-inoculation assays. In contrast, no differences were observed in virus accumulation after inoculation with PVX, although more severe symptoms were evident on p24-expressing plants than on control plants. Similarly, infection assays conducted with potato virus Y showed no differences between control and transgenic plants. On the other hand, a considerable delay in virus accumulation and symptom development was observed when transgenic tobacco plants containing the movement protein (MP) of TMV were inoculated with PVX. Finally, a movement defective mutant of TMV was inoculated on p24+ plants or in mixed infections with PVX on nontransgenic plants. Both types of assays failed to produce TMV infections, implying that TMV MP is not interchangeable with the PVX MPs.  相似文献   

14.
Movement proteins (MPs) are non-cell autonomous viral-encoded proteins that assist viruses in their cell-to-cell movement. The MP encoded by Tobamoviruses is the best characterized example among MPs of non-tubule-inducing plant RNA viruses. The MP of Oilseed Rape Mosaic Tobamovirus (ORMV) was transgenically expressed in Arabidopsis thaliana, ecotype RLD, under the expression of the 35S promoter from Cauliflower Mosaic Virus. Transgenic lines were obtained in sense and antisense orientations. One of the sense transgenic lines was further characterized turning out to carry one copy of the transgene inserted in the terminal region of the right arm of chromosome 1. The constitutive expression of ORMV-MP induced mild physiological effects in Arabidopsis. Plants of the transgenic line allowed a faster systemic movement of the phloem tracer carboxyfluorescein. The tracer was unloaded differentially in different flower parts, revealing differential effects of ORMV-MP on phloem unloading in sink organs. On the other hand, transgenic Arabidopsis did not show any effect on biomass partitioning or sugar availability, effects reported for equivalent transgenic solanaceous plants expressing the MP of Tobacco Mosaic Virus, another Tobamovirus. Finally, the transgenic Arabidopsis plants were susceptible to ORMV infection, although showing milder overall symptoms than non-transgenic controls. The results highlight the relevance of the specific host-virus system, in the physiological outcome of the molecular interactions established by MPs.C. Mansilla and I. Aguilar contributed equally.  相似文献   

15.
Abstract

Bitter gourd Yellow Mosaic Virus (BGYMV) is a Whitefly transmitted geminivirus. BGYMV causes yellow mosaic disease in bitter gourd. This disease attains significance because the virus causing this disease is capable of attacking the crop at all stages. There was a severe yield loss in bitter gourd plants due to the infection of BGYMV. Bitter gourd plants treated with Bougainvillea spectabilis challenge inoculated with BGYMV reduced the disease incidence and increased the plant growth. In the above treatment the disease incidence was 33.33% at 75 Days After Sowing (DAS). But in the inoculated untreated control the disease incidence was 100% at 75 DAS. The mean maximum plant height was 92.24 cm in plants inoculated at 65 DAS. Bougainvillea spectabilis treated plants challenge inoculated with BGYMV showed an increased activity of peroxidase, polyphenoloxidase and phenol content from 4 Days After Inoculation (DAI) to 12 DAI. The activity of all the enzymes was reduced from 16 DAI in all the treatments.  相似文献   

16.
Aphis gossypii Glover is the vector of the Cotton Vein Mosaic Virus (CVMV), which causes serious damages to cotton. This work was carried out in a greenhouse at UNESP - Universidade Estadual Paulista, in Jaboticabal, S?o Paulo State, Brazil, to evaluate the effect of inoculation date of the CVMV on growth and yield of cotton plants. Cotton plants of cultivar CNPA ITA 90 at 20, 27, 34, 41, 48 and 55 days after the emergency (DAE) received one wingless viruliferous adult of A. gossypii, which remained confined in the plants for 48h. The percentage of plants with the symptoms of the disease and its influence in the phenological aspects of cotton plant were evaluated. The age of the plants did not influence the transmission efficiency of CVMV by A. gossypii. Percentages of plants showing disease symptoms varied from 40% to 65% when inoculated at 20 and 48 DAE, respectively. Plant height was reduced in 54.5% when they were infected 20 DAE and 1.3% when infection occurred at 55 DAE, as compared to the control. The number and diameter of the bolls were also influenced by the age the plants were infected. Plants inoculated 20 DAE did not produce cotton. Plants inoculated 55 DAE produced 20.7 g of cotton/plant, significantly less than control plants (35.9 g/plant). The severity of the symptoms was directly associated to the age the plants were infected with CVMV.  相似文献   

17.
Two cultivars of Cymbidium orchid were mechanically inoculated with Odontoglossum ringspot virus (ORSV) and Cymbidium mosaic virus (CyMV), individually and in combination. ORSV was found to have an infection rate of 70% (as determined by ELISA), but seldom induced easily discernable leaf symptoms. CyMV had an infection rate of only 20%, but infected plants invariably produced a pronounced leaf mosaic either with or without necrotic streaks. Both viruses were found to reduce plant growth, the effects of CyMV being more severe than those of ORSV.  相似文献   

18.
Local infections of either TMV or TNV in tobacco plants cv. Havana 425 (hypersensitive to TMV) proved effective in inducing systemic resistance to subsequent inoculation with the powdery mildew fungus Erysiphe cichoracearum DC. The proportion of leaf surface invaded by this pathogen and the amount of conidia it produced were both significantly lower in virus inoculated plants than in non-inoculated controls. However, the decrease in sporulation rate was less regularly observed than the reduction in leaf area infected. TMV was more effective than TNV in protecting tobacco plants from powdery mildew. E. cichoracearum is thus added to the list of challenge pathogens to which TMV or TNV are known to induce resistance in the host plants. Necrotic lesions caused to the leaves by local treatment with Ethephon (an ethylene-releasing compound) also conferred to tobacco some degree of systemic resistance to the same fungal pathogen, more frequently visible as a reduction of leaf area invaded. The protection due to the Ethephon lesions was in present experiments less marked than that of TMV. No effects against subsequent powdery mildew infection were obtained when point freeze necrotic lesions were provoked on the plants.  相似文献   

19.
M. Niemi  M. Vestberg 《Plant and Soil》1992,144(1):133-142
The effect of inoculation with VA mycorrhizal fungi on the productivity of commercially grown strawberry, cv. Senga Sengana, was studied in a field experiment in southern Finland. Micropropagated certified strawberry plants were inoculated at planting with different strains of Glomus spp. Although none of the inoculants raised the level of root infection above the natural infection level, all inoculated plants produced more runners in the first year than the control plants. Glomus intraradix Schenck & Smith (GI), G. etunicatum Becker & Gerdemann (GE) and Glomus sp. E3 (GF) significantly increased the number of runners by 57%, 69% and 76%, respectively. However, there was no significant increase in runner production in the second year, nor in fruit production in the third year. Of the strains tested, E3 was the most effective, increasing runner production by 30% over the first two years. Plants inoculated with G. mosseae (Nicol. & Gerd.) Gerdemann & Trappe (GM) produced fewer but larger runners than the control plants, and had a higher capacity for runner production relative to the plant size.The possibility of establishing mycorrhizal infection in micropropagated strawberries directly after the in-vitro phase under standard nursery conditions was studied in two glasshouse experiments. Three (GE, GF and GM) of five Glomus spp. caused mycorrhizal infection in plants of all four strawberry cultivars studied. In practical strawberry farming greater benefit of the mycorrhizal symbiosis may be achieved by using pretransplant-inoculated plants and adjusting the fertilizer regimes.  相似文献   

20.
Subterranean clover mottle sobemovirus (SCMV) was transmitted by manual inoculation of sap to 27 cultivars belonging to three sub-species of subterranean clover. The virus readily infected systemically all inoculated plants of five susceptible cultivars of ssp. subterraneum. Ten others showed partial resistance as not all infected plants developed systemic infection; cold winter conditions further delayed or prevented systemic movement in four of them. Two cultivars of spp. brachycalycinum and four of spp. yanninicum failed to develop systemic infection following inoculation and were considered highly resistant. Resistance to SCMV in three of the spp. yanninicum was further confirmed by the failure to establish detectable primary infections in most of the inoculated leaves. Moreover, when the four ssp. yanninicum cultivars were graft-inoculated with SCMV, systemic infection eventually developed in them but the virus concentration was low. SCMV was also transmitted by manual inoculation of sap to a further 23 species of Trifolium, Medicago or Pisum. Three species were non-hosts, five were infected only in inoculated leaves and 18 others developed systemic infection in some or all plants. SCMV reached very high concentrations and was stable in subterranean clover sap. It was transmitted experimentally between subterranean clover plants by brushing infected leaves against healthy ones and in swards was readily transmitted by the trampling and grazing of sheep, but only poorly by mowing. Seed transmission of SCMV to seedlings of five cultivars of subterranean clover was low (0–0.12%). SCMV was not transmitted by Myzus persicae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号