首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inactivation of Rho GTPases inhibited the neurite outgrowth of PC12 cells. The role of Cdc42 in neurite outgrowth was then studied by selective inhibition of Cdc42 signals. Overexpression of ACK42, Cdc42 binding domain of ACK-1, inhibited NGF-induced neurite outgrowth in PC12 cells. ACK42 also inhibited the neurite outgrowth of PC12 cells induced by constitutively activated mutant of Cdc42, but not Rac. These results suggest that Cdc42 plays an important role in mediating NGF-induced neurite outgrowth of PC12 cells. Inhibition of neurite outgrowth was also demonstrated using a cell permeable chimeric protein, penetratin-ACK42. A dominant negative mutant of Rac, RacN17 inhibited Cdc42-induced neurite outgrowth of PC12 cells suggesting that Rac acts downstream of Cdc42. Further studies, using primary-cultures of rat cerebellar granule neurons, showed that Cdc42 is also involved in the neurite outgrowth of cerebellar granule neurons. Both penetratin-ACK42 and Clostridium difficile toxin B, which inactivates all members of Rho GTPases strongly inhibited the neurite outgrowth of cerebellar granule neurons. These results show that Cdc42 plays a similar and essential role in the development of neurite outgrowth of PC12 cells and cerebellar granule neurons. These results provide evidence that Cdc42 produces signals that are essential for the neurite outgrowth of PC12 cells and cerebellar granule neurons. These authors contributed equally  相似文献   

2.
Sequence homology predicts that the extracellular domain of the sodium channel beta1 subunit forms an immunoglobulin (Ig) fold and functions as a cell adhesion molecule. We show here that beta1 subunits associate with neurofascin, a neuronal cell adhesion molecule that plays a key role in the assembly of nodes of Ranvier. The first Ig-like domain and second fibronectin type III-like domain of neurofascin mediate the interaction with the extracellular Ig-like domain of beta1, confirming the proposed function of this domain as a cell adhesion molecule. beta1 subunits localize to nodes of Ranvier with neurofascin in sciatic nerve axons, and beta1 and neurofascin are associated as early as postnatal day 5, during the period that nodes of Ranvier are forming. This association of beta1 subunit extracellular domains with neurofascin in developing axons may facilitate recruitment and concentration of sodium channel complexes at nodes of Ranvier.  相似文献   

3.
Sodium channels isolated from mammalian brain are composed of alpha, beta1, and beta2 subunits. The auxiliary beta subunits do not form the ion conducting pore, yet play important roles in channel modulation and plasma membrane expression. beta1 and beta2 are transmembrane proteins with one extracellular V-set immunoglobulin (Ig) protein domain. It has been shown recently that beta1 and beta2 interact with the extracellular matrix proteins tenascin-C and tenascin-R. In the present study we show that rat brain beta1 and beta2, but not alphaIIA, subunits interact in a trans-homophilic fashion, resulting in recruitment of the cytoskeletal protein ankyrin to sites of cell-cell contact in transfected Drosophila S2 cells. Whereas alphaIIA subunits expressed alone do not cause cellular aggregation, beta subunits co-expressed with alphaIIA retain the ability to adhere and recruit ankyrin. Truncated beta subunits lacking cytoplasmic domains interact homophilically to produce cell aggregation but do not recruit ankyrin. Thus, the cytoplasmic domains of beta1 and beta2 are required for cytoskeletal interactions. It is hypothesized that sodium channel beta subunits serve as a critical communication link between the extracellular and intracellular environments of the neuron and may play a role in sodium channel placement at nodes of Ranvier.  相似文献   

4.
Rat mature cerebellar granule, unlike hippocampal neurons, die by apoptosis when cultured in a medium containing a physiological concentration of K+ but survive under high external K+ concentrations. Cell death in physiological K+ parallels the developmental expression of the TASK-1 and TASK-3 subunits that encode the pH-sensitive standing outward K+ current IKso. Genetic transfer of the TASK subunits in hippocampal neurons, lacking IKso, induces cell death, while their genetic inactivation protects cerebellar granule neurons. Neuronal death of cultured rat granule neurons is also prevented by conditions that specifically reduce K+ efflux through the TASK-3 channels such as extracellular acidosis and ruthenium red. TASK leak K+ channels thus play an important role in K+-dependent apoptosis of cerebellar granule neurons in culture.  相似文献   

5.
GABA(A) receptors in the CNS are pentameric molecules composed of alpha, beta, gamma, delta, epsilon and theta subunits. Studies on transfected cells have shown that GABA(A) receptor beta subunit isoforms can direct alpha1 subunit localization within the cell. To examine the role of selected subunits in governing GABA(A) receptor expression in neurons, cultures of rat cerebellar granule cells were grown with antisense or sense oligodeoxynucleotides (ODNs) specific for the alpha 1, beta 2 or gamma 2 subunits. These subunits are all expressed in granule neurons where they are thought to contribute to an abundant receptor type. Following ODN treatment, subunit expression and distribution were examined by western blotting, immunocytochemistry and RT-PCR. Treatment of the cultures with the antisense, but not the corresponding sense, ODNs reduced the levels of the targeted subunit polypeptides. In addition, the beta 2 antisense ODN reduced the level of the alpha1 subunit polypeptide without altering the level of its mRNA. In contrast, treatment with the beta 2 subunit antisense ODN did not alter gamma 2 subunit polypeptide expression, distribution or mRNA level. These findings suggest that the alpha1 subunit requires a beta subunit for assembly into GABA(A) receptors in cerebellar granule neurons.  相似文献   

6.
7.
The cell adhesion molecule Tag-1 is highly expressed in immature cerebellar granule neurons (CGNs) during axonogenesis and is down-regulated prior to onset of radial migration. However, its precise role(s) during development of mammalian CGNs has been unclear. Here we studied the effects of anti-Tag-1 function blocking antibodies on the development of mouse CGNs in primary cell culture and in situ. Interfering antibodies inhibited axon formation by mouse CGNs in both cell cultures and in cerebellar slices. Effects on axon extension in cell cultures were observed under conditions of homotypic cell–cell contact, consistent with inhibition of cell adhesion activity. Further, when used as a substratum Tag-1 protein strongly stimulated neurite outgrowth by CGNs. Antagonism of Tag-1 also enhanced CGN migration in modified Boyden chamber assays. Radial migration was inhibited by Tag-1 antibodies in cerebellar slices, possibly reflecting a block in early CGN maturation in situ. These findings are consistent with a regulatory role for Tag-1 in axon emergence as well as migratory behavior by developing mouse CGNs.  相似文献   

8.
Neurons integrate and encode complex synaptic inputs into action potential outputs through a process termed "intrinsic excitability." Here, we report the essential contribution of fibroblast growth factor homologous factors (FHFs), a family of voltage-gated sodium channel binding proteins, to this process. Fhf1-/-Fhf4-/- mice suffer from severe ataxia and other neurological deficits. In mouse cerebellar slice recordings, WT granule neurons can be induced to fire action potentials repetitively (approximately 60 Hz), whereas Fhf1-/-Fhf4-/- neurons often fire only once and at an elevated voltage spike threshold. Sodium channels in Fhf1-/-Fhf4-/- granule neurons inactivate at more negative membrane potential, inactivate more rapidly, and are slower to recover from the inactivated state. Altered sodium channel physiology is sufficient to explain excitation deficits, as tested in a granule cell computer model. These findings offer a physiological mechanism underlying human spinocerebellar ataxia induced by Fhf4 mutation and suggest a broad role for FHFs in the control of excitability throughout the CNS.  相似文献   

9.
The weaver mutation impairs migration of the cerebellar granular neurons and induces neuronal death during the first two weeks of postnatal life. To elucidate the molecular mechanisms for the impaired neuronal migration, we investigated the rescue mechanisms of the weaver (wv/wv) granule neurons in vitro. We found that Fab2 fragments of antibodies against a neurite outgrowth domain of the B2 chain of laminin enhanced neurite outgrowth and neuronal migration of the weaver granule neurons on a laminin substratum and in the established cable culture system. The rescue of the weaver granule neurons by antibodies against the B2 chain of laminin may result from the neutralizing effect of these antibodies against the elevated B2 chain levels of the weaver brain. The L-type calcium channel blocker, verapamil (1-5 microM), also rescued the weaver granule neurons. High concentrations of MK-801 (10- 20 microM), a glutamate receptor antagonist and voltage-gated calcium channel blocker, rescued the weaver granule neurons similar to verapamil, but low concentrations of MK-801 (1 microM) had no rescue effect. Simultaneous patch-clamp studies indicated that the weaver granule neurons did not express functional N-methyl-D-aspartate receptors further indicating that the rescue of the weaver granule neurons by MK-801 resulted from its known inhibition of voltage-gated calcium channels. The present results indicate that antibodies against the B2 chain of laminin, verapamil, and high concentrations of MK-801 protect the weaver granule neurons from the otherwise destructive action of the weaver gene. Thus, both the laminin system and calcium channel function contribute to the migration deficiency of the weaver granule neurons.  相似文献   

10.
Voltage-gated sodium channels localize at high density in axon initial segments and nodes of Ranvier in myelinated axons. Sodium channels consist of a pore-forming alpha subunit and at least one beta subunit. beta1 is a member of the immunoglobulin superfamily of cell adhesion molecules and interacts homophilically and heterophilically with contactin and Nf186. In this study, we characterized beta1 interactions with contactin and Nf186 in greater detail and investigated interactions of beta1 with NrCAM, Nf155, and sodium channel beta2 and beta3 subunits. Using Fc fusion proteins and immunocytochemical techniques, we show that beta1 interacts with the fibronectin-like domains of contactin. beta1 also interacts with NrCAM, Nf155, sodium channel beta2, and Nf186 but not with sodium channel beta3. The interaction of the extracellular domains of beta1 and beta2 requires the region 169TEEEGKTDGEGNA181 located in the intracellular domain of beta2. Interaction of beta1 with Nf186 results in increased Nav).2 cell surface density over alpha alone, similar to that shown previously for contactin and beta2. We propose that beta1 is the critical communication link between sodium channels, nodal cell adhesion molecules, and ankyrinG.  相似文献   

11.
12.
Retinal ganglion neurons extend axons that grow along astroglial cell surfaces in the developing optic pathway. To identify the molecules that may mediate axon extension in vivo, antibodies to neuronal cell surface proteins were tested for their effects on neurite outgrowth by embryonic chick retinal neurons cultured on astrocyte monolayers. Neurite outgrowth by retinal neurons from embryonic day 7 (E7) and E11 chick embryos depended on the function of a calcium-dependent cell adhesion molecule (N-cadherin) and beta 1-class integrin extracellular matrix receptors. The inhibitory effects of either antibody on process extension could not be accounted for by a reduction in the attachment of neurons to astrocytes. The role of a third cell adhesion molecule, NCAM, changed during development. Anti-NCAM had no detectable inhibitory effects on neurite outgrowth by E7 retinal neurons. In contrast, E11 retinal neurite outgrowth was strongly dependent on NCAM function. Thus, N-cadherin, integrins, and NCAM are likely to regulate axon extension in the optic pathway, and their relative importance varies with developmental age.  相似文献   

13.
Neural cell adhesion molecule L1 is postulated to be involved in cell-cell interaction, neurite elongation, fasciculation of axons, cell migration, and myelination. To determine the function of L1 directly, we have transfected rat L1 cDNA into mouse fibroblast L cells. Stable transformants expressing L1 showed uniform surface expression of the molecule without phenotypic changes. Dispersed L1-expressing transfectants aggregated with faster kinetics than control cells in a homophilic manner. Divalent cations were not required for this cell aggregation. L1-transfected cells markedly enhanced neuronal cell adhesion and migration in co-culture with rat cerebellar neurons. These results indicate that L1 is involved in a determinant step of neural development through molecular interactions.  相似文献   

14.
Integrins are major receptors used by cells to interact with extracellular matrices. In this paper, we identify the first ligands for the beta 8 family of integrins, presenting evidence that integrin heterodimers containing the beta 8 subunit mediate interactions of chick sensory neurons with laminin-1, collagen IV, and fibronectin. A polyclonal antibody, anti-beta 8-Ex, was prepared to a bacterial fusion protein expressing an extracellular portion of the chicken beta 8 subunit. In nonreducing conditions, this antibody immunoprecipitated from surface-labeled embryonic dorsal root ganglia neurons a M(r) 100 k protein, the expected M(r) of the beta 8 subunit, and putative alpha subunit(s) of M(r) 120 k. Affinity-purified anti-beta 8-Ex strongly inhibited sensory neurite outgrowth on laminin-1, collagen IV, and fibronectin-coated substrata. Binding sites were identified in a heat-resistant domain in laminin-1 and in the carboxyl terminal, 40-kDa fibronectin fragment. On substrates coated with the carboxyl terminal fragment of fibronectin, antibodies to beta 1 and beta 8 were only partially effective alone, but were completely effective in combination, at inhibiting neurite outgrowth. Results thus indicate that the integrin beta 8 subunit in association with one or more alpha subunits forms an important set of extracellular matrix receptors on sensory neurons.  相似文献   

15.
When grown in the absence of astroglial cells, purified mouse cerebellar granule neurons survive less than 36 hr and do not extend neurites. Here we report that low concentrations of basic fibroblast growth factor (bFGF, 1-25 ng/ml) maintained the viability and promoted the differentiation of purified granule neurons. The effect of bFGF on granule cell neurite outgrowth was dose dependent. Neurite outgrowth was stimulated markedly in the presence of 1-25 ng/ml bFGF, but effects were not seen below 1 ng/ml or above 50 ng/ml. When affinity-purified antibodies against bFGF (1-5 micrograms/ml) were added either to purified granule cells or to co-cultures of neurons and astroglial cells, process extension by granule neurons was severely impaired. The inhibition of neurite outgrowth in the presence of anti-bFGF antibodies was reversed by the addition of 25 ng/ml of exogenous bFGF. In addition to neuronotrophic effects, bFGF influenced the rate of growth of the astroglial cells. This result depended on whether the astroglia were grown in isolation from neurons, where low doses of bFGF (10-25 ng) stimulated glial growth, or in coculture with neurons, where much higher doses of bFGF (100-250 ng/ml) were needed for glial mitogenesis. Immunoprecipitation of lysates from 35S-labeled cerebellar astroglial cells with anti-bFGF antibodies revealed a single band after SDS-PAGE at 18,000 Da, the molecular weight of bFGF. These results indicate that glial cells synthesize bFGF and are possibly an endogenous source of bFGF in cerebellar cultures. Thus, astroglial cells synthesize soluble factors needed for neuronal differentiation.  相似文献   

16.
The glycosyl phosphatidylinositol (GPI) lipid anchor, which directs GPI-anchored proteins to the apical cell surface in certain polarized epithelial cell types, has been proposed to act as an axonal protein targeting signal in neurons. However, as several GPI-anchored proteins have been found on both the axonal and somatodendritic cell-surface domains of a variety of neuronal cell types, the role of the GPI anchor in protein localization to the axon remains unclear. To begin to address the role of the GPI anchor in neuronal protein localization, we used a replication-incompetent retroviral vector to express a model GPI-anchored protein, human placental alkaline phosphatase (hPLAP), in early postnatal mouse cerebellar granule neurons developing in vitro. Purified granule neurons were cultured in large mitotically active cellular reaggregates to allow retroviral infection of undifferentiated, proliferating granule neuron precursors. To more easily visualize hPLAP localization during the sequence of differentiation of single postmitotic granule neurons, reaggregates were dissociated following infection, plated as high-density monolayers, and maintained for 1-9 days under serum-free culture conditions. As we previously demonstrated for uninfected granule neurons developing in monolayer culture, hPLAP-expressing granule neurons likewise developed in vitro through a series of discrete temporal stages highly similar to those observed in situ. hPLAP-expressing granule neurons first extended either a single neurite or two axonal processes, and subsequently attained a mature, well-polarized morphology consisting of multiple short dendrites and one or two axons that extended up to 3 mm across the culture substratum. hPLAP was expressed uniformly on the entire cell surface at each stage of granule neuron differentiation. Thus, it appears that the GPI anchor is not sufficient to confer axonal localization to an exogenous GPI-anchored protein expressed in a well-polarized primary neuronal cell type in vitro; other signals, such as those present in the extracellular domain of these proteins, may be necessary for the polarized targeting or retention of axon-specific GPI-anchored proteins.  相似文献   

17.
γ-Aminobutyric acid (GABA) release from inhibitory interneurons located within the cerebellar cortex limits the extent of neuronal excitation in part through activation of metabotropic GABA(B) receptors. Stimulation of these receptors triggers a number of downstream signaling events, including activation of GIRK channels by the Gβγ dimer resulting in membrane hyperpolarization and inhibition of neurotransmitter release from presynaptic sites. Here, we identify RGS6, a member of the R7 subfamily of RGS proteins, as a key regulator of GABA(B)R signaling in cerebellum. RGS6 is enriched in the granule cell layer of the cerebellum along with neuronal GIRK channel subunits 1 and 2 where RGS6 forms a complex with known binding partners Gβ(5) and R7BP. Mice lacking RGS6 exhibit abnormal gait and ataxia characterized by impaired rotarod performance improved by treatment with a GABA(B)R antagonist. RGS6(-/-) mice administered baclofen also showed exaggerated motor coordination deficits compared with their wild-type counterparts. Isolated cerebellar neurons natively expressed RGS6, GABA(B)R, and GIRK channel subunits, and cerebellar granule neurons from RGS6(-/-) mice showed a significant delay in the deactivation kinetics of baclofen-induced GIRK channel currents. These results establish RGS6 as a key component of GABA(B)R signaling and represent the first demonstration of an essential role for modulatory actions of RGS proteins in adult cerebellum. Dysregulation of RGS6 expression in human patients could potentially contribute to loss of motor coordination and, thus, pharmacological manipulation of RGS6 levels might represent a viable means to treat patients with ataxias of cerebellar origin.  相似文献   

18.
Fetal alcohol syndrome is a leading cause of mental retardation. The neuropathology found in patients with fetal alcohol syndrome overlaps with those with mutations in the gene for cell adhesion molecule (L1). We have previously shown that L1-mediated neurite outgrowth and L1 activation of extracellular receptor kinases 1/2 are inhibited at low concentrations of ethanol. One possible mechanism for this effect is through disruption of a tyrosine-based sorting signal, Y(1176)RSLE, on the cytoplasmic domain of L1. Our goal was to determine if ethanol inhibited the sorting signal or its phosphorylation state. Using cerebellar granule neurons and dorsal root ganglion neurons, we found that ethanol had no effect on L1 distribution to the growth cone or its ability to be expressed on the cell surface as determined by confocal microscopy. In cerebellar granule neurons, clustering of L1 resulted in increased dephosphorylation of Y(1176), increased L1 tyrosine phosphorylation, and an increase in the activation of pp60src as measured by immunoblot. All changes were inhibited by 25 mM ethanol. Using PP2 to inhibit pp60src activation resulted in inhibition of increases in L1 tyrosine and extracellular receptor kinases 1/2 phosphorylation, and Y(1176) dephosphorylation. We conclude that ethanol disrupts L1 trafficking/signaling following its expression on the surface of the growth cone, and prior to its activation of pp60src.  相似文献   

19.
During neuronal development, GABAA-mediated responses are depolarizing and induce an increase in the intracellular calcium concentration. Since calcium oscillations can modulate neurite outgrowth, we explored the capability of GABA to induce changes in cerebellar granule cell morphology. We find that treatment with GABA (1-1000 microm) induces an increase in the intracellular calcium concentration through the activation of GABA(A) receptors and voltage-gated calcium channels of the L-subtype. Perforated patch-clamp recordings reveal that this depolarizing response is due to a chloride reversal potential close to - 35 mV. When cells are grown in depolarizing potassium chloride concentrations, a shift in reversal potential (Erev) for GABA is observed, and only 20% of the cells are depolarized by the neurotransmitter at day 5 in vitro. On the contrary, cells grown under resting conditions are depolarized after GABA application even at day 8. GABA increases the complexity of the dendritic arbors of cerebellar granule neurons via a calcium-dependent mechanism triggered by voltage-gated calcium channel activation. Specific blockers of calcium-calmodulin kinase II and mitogen-activated protein kinase kinase (KN93 and PD098059) implicate these kinases in the intracellular pathways involved in the neuritogenic effect of GABA. These data demonstrate that GABA exerts a stimulatory role on cerebellar granule cell neuritogenesis through calcium influx and activation of calcium-dependent kinases.  相似文献   

20.
Orchestrated regulation of neuronal migration and morphogenesis is critical for neuronal development and establishment of functional circuits, but its regulatory mechanism is incompletely defined. We established and analyzed mice with neural-specific knock-out of Trio, a guanine nucleotide exchange factor with multiple guanine nucleotide exchange factor domains. Knock-out mice showed defective cerebella and severe signs of ataxia. Mutant cerebella had no granule cells in the internal granule cell layer due to aberrant granule cell migration as well as abnormal neurite growth. Trio-deficient granule cells showed reduced extension of neurites and highly branched and misguided processes with perturbed stabilization of actin and microtubules. Trio deletion caused down-regulation of the activation of Rac1, RhoA, and Cdc42, and mutant granule cells appeared to be unresponsive to neurite growth-promoting molecules such as Netrin-1 and Semaphorin 6A. These results suggest that Trio may be a key signal module for the orchestrated regulation of neuronal migration and morphogenesis during cerebellar development. Trio may serve as a signal integrator decoding extrinsic signals to Rho GTPases for cytoskeleton organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号