首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Covalent modification of proteins with ubiquitin (Ub) is widely implicated in the control of protein function and fate. Over 100 deubiquitylating enzymes rapidly reverse this modification, posing challenges to the biochemical and biophysical characterization of ubiquitylated proteins. We circumvented this limitation with a synthetic biology approach of reconstructing the entire eukaryotic Ub cascade in bacteria. Co‐expression of affinity‐tagged substrates and Ub with E1, E2 and E3 enzymes allows efficient purification of ubiquitylated proteins in milligram quantity. Contrary to in‐vitro assays that lead to spurious modification of several lysine residues of Rpn10 (regulatory proteasomal non‐ATPase subunit), the reconstituted system faithfully recapitulates its monoubiquitylation on lysine 84 that is observed in vivo. Mass spectrometry revealed the ubiquitylation sites on the Mind bomb E3 ligase and the Ub receptors Rpn10 and Vps9. Förster resonance energy transfer (FRET) analyses of ubiquitylated Vps9 purified from bacteria revealed that although ubiquitylation occurs on the Vps9‐GEF domain, it does not affect the guanine nucleotide exchanging factor (GEF) activity in vitro. Finally, we demonstrated that ubiquitylated Vps9 assumes a closed structure, which blocks additional Ub binding. Characterization of several ubiquitylated proteins demonstrated the integrity, specificity and fidelity of the system, and revealed new biological findings.  相似文献   

2.
Protein ubiquitylation profoundly expands proteome functionality and diversifies cellular signaling processes, with recent studies providing ample evidence for its importance to plant immunity. To gain a proteome-wide appreciation of ubiquitylome dynamics during immune recognition, we employed a two-step affinity enrichment protocol based on a 6His-tagged ubiquitin (Ub) variant coupled with high sensitivity mass spectrometry to identify Arabidopsis proteins rapidly ubiquitylated upon plant perception of the microbe-associated molecular pattern (MAMP) peptide flg22. The catalog from 2-week-old seedlings treated for 30 min with flg22 contained 690 conjugates, 64 Ub footprints, and all seven types of Ub linkages, and included previously uncharacterized conjugates of immune components. In vivo ubiquitylation assays confirmed modification of several candidates upon immune elicitation, and revealed distinct modification patterns and dynamics for key immune components, including poly- and monoubiquitylation, as well as induced or reduced levels of ubiquitylation. Gene ontology and network analyses of the collection also uncovered rapid modification of the Ub-proteasome system itself, suggesting a critical auto-regulatory loop necessary for an effective MAMP-triggered immune response and subsequent disease resistance. Included targets were UBIQUITIN-CONJUGATING ENZYME 13 (UBC13) and proteasome component REGULATORY PARTICLE NON-ATPASE SUBUNIT 8b (RPN8b), whose subsequent biochemical and genetic analyses implied negative roles in immune elicitation. Collectively, our proteomic analyses further strengthened the connection between ubiquitylation and flg22-based immune signaling, identified components and pathways regulating plant immunity, and increased the database of ubiquitylated substrates in plants.

Proteome-wide catalogs of ubiquitylated proteins reveal a rapid engagement of the ubiquitin–proteasome system in Arabidopsis innate immunity.  相似文献   

3.
The surface of Trypanosoma brucei is dominated by glycosyl-phosphatidylinositol (GPI)-anchored proteins, and endocytosis is clathrin dependent. The vast majority of internalized GPI-anchored protein is efficiently recycled, while the processes by which transmembrane domain (TMD) proteins are internalized and sorted are unknown. We demonstrate that internalization of invariant surface glycoprotein (ISG)65, a trypanosome TMD protein, involves ubiquitylation and also requires clathrin. We find a hierarchical requirement for cytoplasmic lysine residues in internalization and turnover, and a single position-specific lysine is sufficient for degradation, surface removal and attachment of oligoubiquitin chains. Ubiquitylation is context dependent as provision of additional lysine residues by C-terminal fusion of neuronal precursor cell-expressed developmentally downregulated protein (NEDD)8 fails to support ubiquitylation. Attachment of NEDD8 leads to degradation by a second ubiquitin-independent pathway. Moreover, degradation of ubiquitylated or NEDDylated substrate takes place in an acidic compartment and is proteosome independent. Significantly, in non-opisthokont lineages, Rsp5p or c-Cbl, the E3 ubiquitin ligases acting on endocytic cargo, are absent but Uba1 class genes are present and are required for cell viability and ISG65 ubiquitylation. Hence, ubiquitylation is an evolutionarily conserved mechanism for internalization of surface proteins, but aspects of the machinery differ substantially between the major eukaryotic lineages.  相似文献   

4.
Ubiquitylation and cell signaling   总被引:19,自引:0,他引:19  
Haglund K  Dikic I 《The EMBO journal》2005,24(19):3353-3359
  相似文献   

5.
Ubiquitin (Ub) regulates important cellular processes through covalent attachment to its substrates. The fate of a substrate depends on the number of ubiquitin moieties conjugated, as well as the lysine linkage of Ub-Ub conjugation. The major function of Ub is to regulate the in vivo half-life of its substrates. Once a multi-Ub chain is attached to a substrate, it must be shielded from deubiquitylating enzymes for the 26 S proteasome to recognize it. Molecular mechanisms of the postubiquitylation processes are poorly understood. Here, we have characterized a family of proteins that preferentially binds ubiquitylated substrates and multi-Ub chains through a motif termed the ubiquitin-associated domain (UBA). Our in vivo genetic analysis demonstrates that such interactions require specific lysine residues of Ub that are important for Ub chain formation. We show that Saccharomyces cerevisiae cells lacking two of these UBA proteins, Dsk2 and Rad23, are deficient in protein degradation mediated by the UFD pathway and that the intact UBA motif of Dsk2 is essential for its function in proteolysis. Dsk2 and Rad23 can form a complex(es), suggesting that they cooperate to recognize a subset of multi-Ub chains and deliver the Ub-tagged substrates to the proteasome. Our results suggest a molecular mechanism for differentiation of substrate fates, depending on the precise nature of the mono-Ub or multi-Ub lysine linkage, and provide a foundation to further investigate postubiquitylation events.  相似文献   

6.
Conjugation of ubiquitin (Ub) to numerous substrate proteins regulates virtually all cellular processes. Eight distinct ubiquitin polymer linkages specifying different functional outcomes are generated in cells. However, the roles of some atypical poly‐ubiquitin topologies, in particular linkages via lysine 27 (K27), remain poorly understood due to a lack of tools for their specific detection and manipulation. Here, we adapted a cell‐based ubiquitin replacement strategy to enable selective and conditional abrogation of K27‐linked ubiquitylation, revealing that this ubiquitin linkage type is essential for proliferation of human cells. We demonstrate that K27‐linked ubiquitylation is predominantly a nuclear modification whose ablation deregulates nuclear ubiquitylation dynamics and impairs cell cycle progression in an epistatic manner with inactivation of the ATPase p97/VCP. Moreover, we show that a p97‐proteasome pathway model substrate (Ub(G76V)‐GFP) is directly modified by K27‐linked ubiquitylation, and that disabling the formation of K27‐linked ubiquitin signals or blocking their decoding via overexpression of the K27 linkage‐specific binder UCHL3 impedes Ub(G76V)‐GFP turnover at the level of p97 function. Our findings suggest a critical role of K27‐linked ubiquitylation in supporting cell fitness by facilitating p97‐dependent processing of ubiquitylated nuclear proteins.  相似文献   

7.
8.
The covalent attachment of ubiquitin (Ub) to short-lived or damaged proteins is believed to be the signal that initiates their selective degradation. In several cases, it has been shown that the proteolytic signal takes the form of a multi-Ub chain in which successive Ub molecules are linked tandemly at lysine 48 (K-48). Here we show that Ub molecules can be linked together in vivo at two other lysine positions, lysine 29 (K-29) and lysine 63 (K-63). The formation of these alternative linkages is strongly dependent on the presence of the stress-related Ub conjugating enzymes UBC4 and UBC5. Furthermore, expression of Ub carrying a K-63 to arginine 63 substitution in a strain of Saccharomyces cerevisiae that is missing the poly-Ub gene, UBI4, fails to compensate for the stress defects associated with these cells. Taken together, these results suggest that the formation of multi-Ub chains involving K-63 linkages plays an important role in the yeast stress response. In broader terms, these results also suggest that Ub is a versatile signal in which different Ub chain configurations are used for different functions.  相似文献   

9.
Chernorudskiy  A. L.  Shorina  A. S.  Garcia  A.  Gainullin  M. R. 《Biophysics》2008,51(1):39-43

Ubiquitylation is an important regulatory mechanism in the eukaryotic cell. A large volume of experimental data on protein ubiquitylation has been acquired in recent years. Particular ubiquitylated lysine residues were also identified. This allows us to analyze co-localization of ubiquitylation sites and functionally important protein domains, following the idea that ubiquitylation can directly affect protein functional activity. Computational analysis suggests that ubiquitylation can affect the functional activity of some proteins through direct steric effects. (1) Ubiquitylation can block protein functional domains/active site or cause accessibility limitations. It also (2) causes steric disturbances for homo-oligomerization and (3) influences heterologous protein interactions, impeding the binding of target protein with its partners. (4) Interaction with partner proteins can be disturbed by restricted conformational flexibility. Any of these effects will result in a decrease of target protein activity. Thus, we suggest a new “loss-of-function” mechanism of protein regulation by ubiquitylation.

  相似文献   

10.
In yeast, the sorting of transmembrane proteins into the multivesicular body (MVB) internal vesicles requires their ubiquitylation by the ubiquitin ligase Rsp5. This allows their recognition by the ubiquitin-binding domains (UBDs) of several endosomal sorting complex required for transport (ESCRT) subunits. K63-linked ubiquitin (K63Ub) chains decorate several MVB cargoes, and accordingly we show that they localize prominently to the class E compartment, which accumulates ubiquitylated cargoes in cells lacking ESCRT components. Conversely, yeast cells unable to generate K63Ub chains displayed MVB sorting defects. These properties are conserved among eukaryotes, as the mammalian melanosomal MVB cargo MART-1 is modified by K63Ub chains and partly missorted when the genesis of these chains is inhibited. We show that all yeast UBD-containing ESCRT proteins undergo ubiquitylation and deubiquitylation, some being modified through the opposing activities of Rsp5 and the ubiquitin isopeptidase Ubp2, which are known to assemble and disassemble preferentially K63Ub chains, respectively. A failure to generate K63Ub chains in yeast leads to an MVB ultrastructure alteration. Our work thus unravels a double function of K63Ub chains in cargo sorting and MVB biogenesis.  相似文献   

11.
Ubiquitylation is an important regulatory mechanism in the eukaryotic cell. A large volume of experimental data on protein ubiquitylation has been acquired in recent years. Particular ubiquitylated lysine residues were also identified. This allows us to analyze co-localization of ubiquitylation sites and functionally important protein domains, following the idea that ubiquitylation can directly affect protein functional activity. Computational analysis suggests that ubiquitylation can affect the functional activity of some proteins through direct steric effects. (1) Ubiquitylation can block protein functional domains/active site or cause accessibility limitations. It also (2) causes steric disturbances for homo-oligomerization and (3) influences heterologous protein interactions, impeding the binding of target protein with its partners. (4) Interaction with partner proteins can be disturbed by restricted conformational flexibility. Any of these effects will result in a decrease of target protein activity. Thus, we suggest a new “loss-of-function” mechanism of protein regulation by ubiquitylation.  相似文献   

12.
The covalent attachment of ubiquitin to proteins regulates numerous processes in eukaryotic cells. Here we report the identification of 753 unique lysine ubiquitylation sites on 471 proteins using higher-energy collisional dissociation on the LTQ Orbitrap Velos. In total 5756 putative ubiquitin substrates were identified. Lysine residues targeted by the ubiquitin-ligase system show no unique sequence feature. Surface accessible lysine residues located in ordered secondary regions, surrounded by smaller and positively charged amino acids are preferred sites of ubiquitylation. Lysine ubiquitylation shows promiscuity at the site level, as evidenced by low evolutionary conservation of ubiquitylation sites across eukaryotic species. Among lysine modifications a significant overlap (20%) between ubiquitylation and acetylation at site level highlights extensive competitive crosstalk among these modifications. This site-specific crosstalk is not prevalent among cell cycle ubiquitylations. Between SUMOylation and ubiquitylation the preferred interaction is through mixed-chain conjugation. Overall these data provide novel insights into the site-specific selection and regulatory function of lysine ubiquitylation.  相似文献   

13.
The attachment of ubiquitin (Ub) to lysines on substrates or itself by ubiquitin-conjugating (E2) and ubiquitin ligase (E3) enzymes results in protein ubiquitination. Lysine selection is important for generating diverse substrate-Ub structures and targeting proteins to different fates; however, the mechanisms of lysine selection are not clearly understood. The positioning of lysine(s) toward the E2/E3 active site and residues proximal to lysines are critical in their selection. We investigated determinants of lysine specificity of the ubiquitin-conjugating enzyme Cdc34, toward substrate and Ub lysines. Evaluation of the relative importance of different residues positioned −2, −1, +1 and +2 toward ubiquitination of its substrate, Sic1, on lysine 50 showed that charged residues in the −1 and −2 positions negatively impact on ubiquitination. Modeling suggests that charged residues at these positions alter the native salt-bridge interactions in Ub and Cdc34, resulting in misplacement of Sic1 lysine 50 in the Cdc34 catalytic cleft. During polyubiquitination, Cdc34 showed a strong preference for Ub lysine 48 (K48), with lower activity towards lysine 11 (K11) and lysine 63 (K63). Mutating the −2, −1, +1 and +2 sites surrounding K11 and K63 to mimic those surrounding K48 did not improve their ubiquitination, indicating that further determinants are important for Ub K48 specificity. Modeling the ternary structure of acceptor Ub with the Cdc34~Ub complex as well as in vitro ubiquitination assays unveiled the importance of K6 and Q62 of acceptor Ub for Ub K48 polyubiquitination. These findings provide molecular and structural insight into substrate lysine and Ub K48 specificity by Cdc34.  相似文献   

14.
Post-translational modification of proteins by ubiquitin is a fundamentally important regulatory mechanism. However, proteome-wide analysis of endogenous ubiquitylation remains a challenging task, and almost always has relied on cells expressing affinity tagged ubiquitin. Here we combine single-step immunoenrichment of ubiquitylated peptides with peptide fractionation and high-resolution mass spectrometry to investigate endogenous ubiquitylation sites. We precisely map 11,054 endogenous putative ubiquitylation sites (diglycine-modified lysines) on 4,273 human proteins. The presented data set covers 67% of the known ubiquitylation sites and contains 10,254 novel sites on proteins with diverse cellular functions including cell signaling, receptor endocytosis, DNA replication, DNA damage repair, and cell cycle progression. Our method enables site-specific quantification of ubiquitylation in response to cellular perturbations and is applicable to any cell type or tissue. Global quantification of ubiquitylation in cells treated with the proteasome inhibitor MG-132 discovers sites that are involved in proteasomal degradation, and suggests a nonproteasomal function for almost half of all sites. Surprisingly, ubiquitylation of about 15% of sites decreased more than twofold within four hours of MG-132 treatment, showing that inhibition of proteasomal function can dramatically reduce ubiquitylation on many sites with non-proteasomal functions. Comparison of ubiquitylation sites with acetylation sites reveals an extensive overlap between the lysine residues targeted by these two modifications. However, the crosstalk between these two post-translational modifications is significantly less frequent on sites that show increased ubiquitylation upon proteasome inhibition. Taken together, we report the largest site-specific ubiquitylation dataset in human cells, and for the first time demonstrate proteome-wide, site-specific quantification of endogenous putative ubiquitylation sites.  相似文献   

15.
Ubiquitylation of an ERAD substrate occurs on multiple types of amino acids   总被引:1,自引:0,他引:1  
Any protein synthesized in the secretory pathway has the potential to misfold and would need to be recognized and ubiquitylated for degradation. This is astounding, since only a few ERAD-specific E3 ligases have been identified. To begin to understand substrate recognition, we wished to map the ubiquitylation sites on the NS-1 nonsecreted immunoglobulin light chain, which is an ERAD substrate. Ubiquitin is usually attached to lysine residues and less frequently to the N terminus of proteins. In addition, several viral E3s have been identified that attach ubiquitin to cysteine or serine/threonine residues. Mutation of lysines, serines, and threonines in the NS-1 variable region was necessary to significantly reduce ubiquitylation and stabilize the protein. The Hrd1 E3 ligase was required to modify all three amino acids. Our studies argue that ubiquitylation of ER proteins relies on very different mechanisms of recognition and modification than those used to regulate biological processes.  相似文献   

16.
Large-scale analysis of the human ubiquitin-related proteome   总被引:1,自引:0,他引:1  
Protein ubiquitylation contributes to the regulation of many cellular processes including protein degradation, receptor internalization, and repair of DNA damage. We now present a comprehensive characterization of ubiquitin-conjugated and ubiquitin-associated proteins in human cells. The proteins were purified by immunoaffinity chromatography under denaturing or native conditions. They were then digested with trypsin, and the resulting peptides were analyzed by 2-D LC and MS/MS. A total of 670 distinct proteins were identified; 345 proteins (51%) were classified as Urp-D (ubiquitin-related proteome under the denaturing condition) and comprised ubiquitin-conjugated molecules, whereas 325 proteins (49%) were classified as Urp-N (ubiquitin-related proteome only under the native condition) and included molecules that associated with ubiquitylated proteins. The proportions of proteins in various functional categories differed substantially between Urp-D and Urp-N. Many ribosomal subunits were detected in the Urp-D group of proteins and several of these subunits were directly shown to be ubiquitylated by mass spectrometric analysis, suggesting that ubiquitylation might play an important role in the regulation and/or quality control of ribosomal proteins. Our results demonstrate the potential of proteomics analysis of protein ubiquitylation to provide important insight into the regulation of protein stability and other ubiquitin-related cellular functions.  相似文献   

17.
Inclusion bodies (IBs) containing aggregated disease-associated proteins and polyubiquitin (poly-Ub) conjugates are universal histopathological features of neurodegenerative diseases. Ub has been proposed to target proteins to IBs for degradation via autophagy, but the mechanisms that govern recruitment of ubiquitylated proteins to IBs are not well understood. In this paper, we use conditionally destabilized reporters that undergo misfolding and ubiquitylation upon removal of a stabilizing ligand to examine the role of Ub conjugation in targeting proteins to IBs that are composed of an N-terminal fragment of mutant huntingtin, the causative protein of Huntington’s disease. We show that reporters are excluded from IBs in the presence of the stabilizing ligand but are recruited to IBs after ligand washout. However, we find that Ub conjugation is not necessary to target reporters to IBs. We also report that forced Ub conjugation by the Ub fusion degradation pathway is not sufficient for recruitment to IBs. Finally, we find that reporters and Ub conjugates are stable at IBs. These data indicate that compromised folding states, rather than conjugation to Ub, can specify recruitment to IBs.  相似文献   

18.
Ubiquitination involves the attachment of ubiquitin (Ub) to lysine residues on substrate proteins or itself, which can result in protein monoubiquitination or polyubiquitination. Polyubiquitination through different lysines (seven) or the N-terminus of Ub can generate different protein-Ub structures. These include monoubiquitinated proteins, polyubiqutinated proteins with homotypic chains through a particular lysine on Ub or mixed polyubiquitin chains generated by polymerization through different Ub lysines. The ability of the ubiquitination pathway to generate different protein-Ub structures provides versatility of this pathway to target proteins to different fates. Protein ubiquitination is catalyzed by Ub-conjugating and Ub-ligase enzymes, with different combinations of these enzymes specifying the type of Ub modification on protein substrates. How Ub-conjugating and Ub-ligase enzymes generate this structural diversity is not clearly understood. In the current review, we discuss mechanisms utilized by the Ub-conjugating and Ub-ligase enzymes to generate structural diversity during protein ubiquitination, with a focus on recent mechanistic insights into protein monoubiquitination and polyubiquitination.  相似文献   

19.
A conserved catalytic residue in the ubiquitin-conjugating enzyme family   总被引:8,自引:0,他引:8  
Ubiquitin (Ub) regulates diverse functions in eukaryotes through its attachment to other proteins. The defining step in this protein modification pathway is the attack of a substrate lysine residue on Ub bound through its C-terminus to the active site cysteine residue of a Ub-conjugating enzyme (E2) or certain Ub ligases (E3s). So far, these E2 and E3 cysteine residues are the only enzyme groups known to participate in the catalysis of conjugation. Here we show that a strictly conserved E2 asparagine residue is critical for catalysis of E2- and E2/RING E3-dependent isopeptide bond formation, but dispensable for upstream and downstream reactions of Ub thiol ester formation. In contrast, the strictly conserved histidine and proline residues immediately upstream of the asparagine are dispensable for catalysis of isopeptide bond formation. We propose that the conserved asparagine side chain stabilizes the oxyanion intermediate formed during lysine attack. The E2 asparagine is the first non-covalent catalytic group to be proposed in any Ub conjugation factor.  相似文献   

20.
GGAs (Golgi-localizing, gamma-adaptin ear domain homology, ADP-ribosylation factor (ARF)-binding proteins), constitute a family of monomeric adaptor proteins and are associated with protein trafficking from the trans-Golgi network to endosomes. Here, we show that GGA3 is monoubiquitylated by a RING-H2 type-ubiquitin ligase hVPS18 (human homologue of vacuolar protein sorting 18). By in vitro ubiquitylation assays, we have identified lysine 258 in the GAT domain as a major ubiquitylation site that resides adjacent to the ubiquitin-binding site. The ubiquitylation is abolished by a mutation in either the GAT domain or ubiquitin that disrupts the GAT-ubiquitin interaction, indicating that the ubiquitin binding is a prerequisite for the ubiquitylation. Furthermore, the GAT domain ubiquitylated by hVPS18 no longer binds to ubiquitin, indicating that ubiquitylation negatively regulates the ubiquitin-binding ability of the GAT domain. These results suggest that the ubiquitin binding and ubiquitylation of GGA3-GAT domain are mutually inseparable through a ubiquitin ligase activity of hVPS18.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号