首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Respiratory syncytial virus (RSV) is an important respiratory pathogen that preferentially infects epithelial cells in the airway and causes a local inflammatory response. Very little is known about the second messenger pathways involved in this response. To characterize some of the acute response pathways involved in RSV infection, we used cultured human epithelial cells (A549) and optimal tissue culture-infective doses (TCID(50)) of RSV. We have previously shown that RSV-induced IL-8 release is linked to activation of the extracellular signal-related kinase (ERK) mitogen-activated protein kinase pathway. In this study, we evaluated the upstream events involved in ERK activation by RSV. RSV activated ERK at two time points, an early time point consistent with viral binding and a later sustained activation consistent with viral replication. We next evaluated the role of protein kinase C (PKC) isoforms in RSV-induced ERK kinase activity. We found that A549 cells contain the Ca(2+)-dependent isoforms alpha and beta1, and the Ca(2+)-independent isoforms delta, epsilon, eta, mu, theta, and zeta. Western analysis showed that RSV caused no change in the amounts of these isoforms. However, kinase activity assays demonstrated activation of isoform zeta within 10 min of infection, followed by a sustained activation of isoforms beta1, delta, epsilon, and mu 24-48 h postinfection. A cell-permeable peptide inhibitor specific for the zeta isoform decreased early ERK kinase activation by RSV. Down-regulation of the other PKC isoforms with PMA blocked the late sustained activation of ERK by RSV. These studies suggest that RSV activates multiple PKC isoforms with subsequent downstream activation of ERK kinase.  相似文献   

2.
3.
We report that protein kinase C (PKC) plays a regulatory role in early cleavage in Chaetopterus eggs. Using Western blotting, we assayed the expression patterns of conventional PKCs (cPKC), novel PKCs (nPKC), and atypical PKCs (aPKC). During early development after fertilization, PKC protein levels varied independently by isoform. PKC protein expression during differentiation, without cleavage and after parthenogenetic activation, was very similar to that during normal development indicating that PKC gene expression does not require cellularization. Since PKC has been shown to regulate meiosis in this organism, we also assayed the membrane association of these isoforms as an indicator of their activation during meiosis and early cleavage. PKC-gamma transiently associated with membranes and therefore became activated before meiotic division and cleavage, whereas PKC-alpha and -beta transiently dissociated from membranes and therefore became inactivated at these times. Inhibition of these PKC isoforms by bisindolylmaleimide I had no effect on cleavage or early development to the trochophore larva, indicating that PKC-gamma activation is not essential for cleavage or early development. However, their persistent activation by thymeleatoxin blocked cleavage. The results indicate that the dissociation of PKC-alpha and/or -beta from the membrane fraction, and therefore their inactivation, is essential for normal cleavage. Elevated PKC activity is essential for nuclear envelope breakdown and spindle formation at meiosis I. By contrast, down-regulation of this activity is essential for cleavage after fertilization.  相似文献   

4.
Respiratory syncytial virus (RSV) activated the RelA (p65) subunit of nuclear factor kappa B (NF-κB) over many hours postinfection. The initial activation coincided with phosphorylation and degradation of IκBα, the cytoplasmic inhibitor of RelA. During persistent activation of NF-κB at later times in infection, syntheses of inhibitors IκBα as well as IκBβ were restored. However, the resynthesized IκBβ was in an underphosphorylated state, which apparently prevented inhibition of NF-κB. Use of specific inhibitors suggested that the pathway leading to the persistent—but not the initial—activation of NF-κB involved signaling through protein kinase C (PKC) and reactive oxygen intermediates of nonmitochondrial origin, whereas phospholipase C or D played little or no role. Thus, RSV infection led to the activation of NF-κB by a biphasic mechanism: a transient or early activation involving phosphorylation of the inhibitor IκB polypeptides, and a persistent or long-term activation requiring PKC and the generation of hypophosphorylated IκBβ. At least a part of the activation was through a novel mechanism in which the viral phosphoprotein P associated with but was not dephosphorylated by protein phosphatase 2A and thus sequestered and inhibited the latter. We postulate that this led to a net increase in the phosphorylation state of signaling proteins that are responsible for RelA activation.  相似文献   

5.
The Rho-GDP guanine nucleotide dissociation inhibitor (GDI) complexes with the GDP-bound form of Rho and inhibits its activation. We investigated the role of protein kinase C (PKC) isozymes in the mechanism of Rho activation and in signaling the loss of endothelial barrier function. Thrombin and phorbol 12-myristate 13-acetate induced rapid phosphorylation of GDI and the activation of Rho-A in human umbilical venular endothelial cells. Inhibition of PKC by chelerythrine chloride abrogated the thrombin-induced GDI phosphorylation and Rho activation. Depletion of PKC prevented the thrombin-induced GDI phosphorylation and Rho activation, thereby indicating that these events occurred downstream of phorbol ester-sensitive PKC isozyme activation. The depletion of PKC or inhibition of Rho by C3 toxin also prevented the thrombin-induced decrease in transendothelial electrical resistance (a measure of increased transendothelial permeability), thus indicating that PKC-induced barrier dysfunction was mediated through Rho-dependent pathway. Using inhibitors and dominant-negative mutants, we found that Rho activation was regulated by PKC-alpha. Moreover, the stimulation of human umbilical venular endothelial cells with thrombin induced rapid association of PKC-alpha with Rho. Activated PKC-alpha but not PKC-epsilon induced marked phosphorylation of GDI in vitro. Taken together, these results indicate that PKC-alpha is critical in regulating GDI phosphorylation, Rho activation, and in signaling Rho-dependent endothelial barrier dysfunction.  相似文献   

6.
Activation of the Raf/MEK/ERK cascade is required for efficient propagation of several RNA and DNA viruses, including human respiratory syncytial virus (RSV). In RSV infection, activation of the Raf/MEK/ERK cascade is biphasic. An early induction within minutes after infection is associated with viral attachment. Subsequently, a second activation occurs with, so far, unknown function in the viral life cycle. In this study, we aimed to characterise the role of Raf/MEK/ERK‐mediated signalling during ongoing RSV infection. Our data show that inhibition of the kinase MEK after the virus has been internalised results in a reduction of viral titers. Further functional investigations revealed that the late‐stage activation of ERK is required for a specific step in RSV replication, namely, the secretory transport of the RSV fusion protein F. Thus, MEK inhibition resulted in impaired surface accumulation of the F protein. F protein surface expression is essential for efficient replication as it is involved in viral filament formation, cell fusion, and viral transmission. In summary, we provide detailed insights of how host cell signalling interferes with RSV replication and identified the Raf/MEK/ERK kinase cascade as potential target for novel anti‐RSV strategies.  相似文献   

7.
Neurotensin (NT) plays an important role in gastrointestinal secretion, motility, and growth. The mechanisms regulating NT secretion are not entirely known. Our purpose was to define the role of the PKC signaling pathway in secretion of NT from BON cells, a human pancreatic carcinoid cell line that produces and secretes NT peptide. We demonstrated expression of all 11 PKC isoforms at varying levels in untreated BON cells. Expression of PKC-alpha, -beta2, -delta, and -mu isoforms was most pronounced. Immunofluorescent staining showed PKC-alpha and -mu expression throughout the cytoplasm and in the membrane. Also, significant fluorescence of PKC-delta was noted in the nucleus and cytoplasm. Treatment with PMA induced translocation of PKC-alpha, -delta, and -mu from cytosol to membrane. Activation of PKC-alpha, -delta, and -mu was further confirmed by kinase assays. Addition of PKC-alpha inhibitor G?-6976 at a nanomolar concentration, other PKC inhibitors G?-6983 and GF-109203X, or PKC-delta-specific inhibitor rottlerin significantly inhibited PMA-mediated NT release. Overexpression of either PKC-alpha or -delta increased PMA-mediated NT secretion compared with control cells. We demonstrated that PMA-mediated NT secretion in BON cells is associated with translocation and activation of PKC-alpha, -delta, and -mu. Furthermore, inhibition of PKC-alpha and -delta blocked PMA-stimulated NT secretion, suggesting a critical role for these isoforms in NT release.  相似文献   

8.
Escherichia coli is one of the most important pathogens involved in the development of neonatal meningitis in many parts of the world. Traversal of E. coli across the blood-brain barrier is a crucial event in the pathogenesis of E. coli meningitis. Our previous studies have shown that outer membrane protein A (OmpA) expression is necessary in E. coli for a mechanism involving actin filaments in its passage through the endothelial cells. Focal adhesion kinase (FAK) and phosphatidylinositol 3-kinase (PI3K) have also been activated in host cells during the process of invasion. In an attempt to elucidate the mechanisms leading to actin filament condensation, we have focused our attention on protein kinase C (PKC), an enzyme central to many signaling events, including actin rearrangement. In the current study, specific PKC inhibitors, bisindolmaleimide and a PKC-inhibitory peptide, inhibited E. coli invasion of human brain microvascular endothelial cells (HBMEC) by more than 75% in a dose-dependent manner, indicating a significant role played by this enzyme in the invasion process. Our results further showed that OmpA+ E. coli induces significant activation of PKC in HBMEC as measured by the PepTag nonradioactive assay. In addition, we identified that the PKC isoform activated in E. coli invasion is a member of the conventional family of PKC, PKC-alpha, which requires calcium for activation. Immunocytochemical studies have indicated that the activated PKC-alpha is associated with actin condensation beneath the bacterial entry site. Overexpression of a dominant negative mutant of PKC-alpha in HBMEC abolished the E. coli invasion without significant changes in FAK phosphorylation or PI3K activity patterns. In contrast, in HBMEC overexpressing the mutant forms of either FAK or PI3K, E. coli-induced PKC activation was significantly blocked. Furthermore, our studies showed that activation of PKC-alpha induces the translocation of myristoylated alanine-rich protein kinase C substrate, an actin cross-linking protein and a substrate for PKC-alpha, from the membrane to cytosol. This is the first report of FAK- and PI3K-dependent PKC-alpha activation in bacterial invasion related to cytoskeletal reorganization.  相似文献   

9.
Lang W  Wang H  Ding L  Xiao L 《Cellular signalling》2004,16(4):457-467
Phorbol esters can induce activation of two mitogen-activated protein kinase (MAPK) pathways, the extracellular signal-regulated kinase (ERK) pathway and the c-Jun N-terminal kinase (JNK) pathway. Unlike ERK activation, JNK activation by phorbol esters is somehow cell-specific. However, the mechanism(s) that contribute to the cell-specific JNK activation remain elusive. In this study, we found that phorbol 12-myristate 13-acetate (PMA) induced JNK activation only in non-small cell lung cancer (NSCLC) cells, but not in small cell lung cancer (SCLC) cells, whereas ERK activation was detected in both cell types. In NSCLC cells, PMA induced JNK activation in a time- and dose-dependent manner. JNK activation was attenuated by protein kinase C (PKC) down-regulation through prolonged pre-treatment with PMA and significantly inhibited by PKC inhibitors G?6976 and GF109203X. Subcellular localization studies demonstrated that PMA induced translocation of PKC-alpha, -betaII, and -epsilon isoforms, but not PKC-delta, from the cytosol to the membrane. Analysis of various PKC isoforms revealed that PKC-epsilon was exclusively absent in the SCLC cell lines tested. Ectopic expression of PKC-epsilon in SCLC cells restored PMA activation of JNK signaling only in the presence of PKC-alpha, suggesting that PKC-alpha and PKC-epsilon act cooperatively in regulating JNK activation in response to PMA. Furthermore, using dominant negative mutants and pharmacological inhibitors, we define that a putative Rac1/Cdc42/PKC-alpha pathway is convergent with the PKC-epsilon/MEK1/2 pathway in terms of the activation of JNK by PMA.  相似文献   

10.
Salmonella typhimurium elicits an intense proinflammatory response characterized by movement of polymorphonuclear neutrophils (PMN) across the epithelial barrier to the intestinal lumen. We previously showed that S. typhimurium, via the type III secretion system effector protein SipA, initiates an ADP-ribosylation factor-6- and phospholipase D-dependent lipid-signaling cascade that directs activation of protein kinase C (PKC) and subsequent transepithelial movement of PMN. Here we sought to determine the specific PKC isoforms that are induced by the S. typhimurium effector SipA in model intestinal epithelia and to link the functional consequences of these isoforms in the promotion of PMN transepithelial migration. In vitro kinase PKC activation assays performed on polarized monolayers of T84 cells revealed that S. typhimurium and recombinant SipA induced activation of PKC-alpha, -delta, and -epsilon. To elucidate which of these isoforms play a key role in mediating epithelial cell responses that lead to the observed PMN transepithelial migration, we used a variety of PKC inhibitors with different isoform selectivity profiles. Inhibitors selective for PKC-alpha (G?-6976 and 2,2',3,3',4,4'-hexahydroxyl-1,1'-biphenyl-6,6'-dimethanoldimethyl ether) markedly reduced S. typhimurium- and recombinant SipA-induced PMN transepithelial migration, whereas inhibitors to PKC-delta (rottlerin) or PKC-epsilon (V1-2) failed to exhibit a significant decrease in transepithelial movement of PMN. These results were confirmed biochemically and by immunofluorescence coupled to confocal microscopy. Our results are the first to show that the S. typhimurium effector protein SipA can activate multiple PKC isoforms, but only PKC-alpha is involved in the signal transduction cascade leading to PMN transepithelial migration.  相似文献   

11.
The role of protein kinase C (PKC) in sustained contraction was examined in intestinal circular and longitudinal muscle cells. Initial contraction induced by agonists (CCK-8 and neuromedin C) was abolished by 1) inhibitors of Ca(2+) mobilization (neomycin and dimethyleicosadienoic acid), 2) calmidazolium, and 3) myosin light chain (MLC) kinase (MLCK) inhibitor KT-5926. In contrast, sustained contraction was not affected by these inhibitors but was abolished by 1) the PKC inhibitors chelerythrine and calphostin C, 2) PKC-epsilon antibody, and 3) a pseudosubstrate PKC-epsilon inhibitor. GDPbetaS abolished both initial and sustained contraction, whereas a Galpha(q/11) antibody inhibited only initial contraction, implying that sustained contraction was dependent on activation of a distinct G protein. Sustained contraction induced by epidermal growth factor was inhibited by calphostin C, PKC-alpha,beta,gamma antibody, and a pseudosubstrate PKC-alpha inhibitor. Ca(2+) (0.4 microM) induced an initial contraction in permeabilized muscle cells that was blocked by calmodulin and MLCK inhibitors and a sustained contraction that was blocked by calphostin C and a PKC-alpha,beta,gamma antibody. Thus initial contraction induced by Ca(2+), agonists, and growth factors is mediated by MLCK, whereas sustained contraction is mediated by specific Ca(2+)-dependent and -independent PKC isozymes. G protein-coupled receptors are linked to PKC activation via distinct G proteins.  相似文献   

12.
13.
Protein kinase C (PKC) isoenzymes play a critical role in cardiomyocyte hypertrophy. At least three different phorbol ester-sensitive PKC isoenzymes are expressed in neonatal rat ventricular myocytes (NRVMs): PKC-alpha, -delta, and -epsilon. Using replication-defective adenoviruses (AdVs) that express wild-type (WT) and dominant-negative (DN) PKC-alpha together with phorbol myristate acetate (PMA), which is a hypertrophic agonist and activator of all three PKC isoenzymes, we studied the role of PKC-alpha in signaling-specific aspects of the hypertrophic phenotype. PMA induced nuclear translocation of endogenous and AdV-WT PKC-alpha in NRVMs. WT PKC-alpha overexpression increased protein synthesis and the protein-to-DNA (P/D) ratio but did not affect cell surface area (CSA) or cell shape compared with uninfected or control AdV beta-galactosidase (AdV betagal)-infected cells. PMA-treated uninfected cells displayed increased protein synthesis, P/D ratio, and CSA and elongated morphology. PMA did not further enhance protein synthesis or P/D ratio in AdV-WT PKC-alpha-infected cells. To assess the requirement of PKC-alpha for these PMA-induced changes, AdV-DN PKC-alpha or AdV betagal-infected NRVMs were stimulated with PMA. Without PMA, AdV-DN PKC-alpha had no effects on protein synthesis, P/D ratio, CSA, or shape vs. AdV betagal-infected NRVMs. PMA increased protein synthesis, P/D ratio, and CSA in AdV betagal-infected cells, but these parameters were significantly reduced in PMA-stimulated AdV-DN PKC-alpha-infected NRVMs. Overexpression of DN PKC-alpha enhanced PMA-induced cell elongation. Neither WT PKC-alpha nor DN PKC-alpha affected atrial natriuretic factor gene expression. Insulin-like growth factor-1 also induced nuclear translocation of endogenous PKC-alpha. PMA but not WT PKC-alpha overexpression induced ERK1/2 activation. However, AdV-DN PKC-alpha partially blocked PMA-induced ERK activation. Thus PKC-alpha is necessary for certain aspects of PMA-induced NRVM hypertrophy.  相似文献   

14.
Protein kinase C (PKC), the major cell target for tumor-promoting phorbol esters, plays a central role in signal transduction pathways. In many biological systems where Ca(2+) serves as a second messenger, regulatory control is mediated by PKC. The activation of PKC depends on its binding to RACK1 receptor, which is an intracellular protein anchor for activated PKC. We demonstrate that the conventional PKC (cPKC) isoforms, PKC-alpha, PKC-betaI, and PKC-betaII, as well as RACK1, are expressed in mouse oocytes (germinal vesicle [GV]) and mature eggs (metaphase II [MII]). In GV oocytes, PKC-alpha, PKC-betaII, and RACK1 were uniformly distributed in the cytoplasm, while PKC-betaI was localized in the cytoplasm and in the plasma membrane as well. Treatment of GV oocytes with the biologically active phorbol ester, 12-o-tetradecanoyl phorbol-13-acetate (TPA), resulted in a rapid translocation of the cytosolic PKC-alpha, but not PKC-betaI, PKC-betaII, or RACK1, to the plasma membrane. This was associated with inhibition of GV breakdown. In MII eggs (17 h post-hCG), PKC-alpha was uniformly distributed in the cytoplasm while PKC-betaI and -betaII were distributed in the cytoplasm and in the plasma membrane as well. Treatment with TPA resulted in a rapid translocation of PKC-alpha from the cytoplasm to the plasma membrane and a significant decrease of PKC-betaI throughout the cytoplasm, while it also remained in the cell periphery. No change in the distribution of PKC-betaII or RACK1 was observed. TPA also induced pronucleus formation. Physiological activation of MII eggs by sperm induced cortical granule exocytosis associated with significant translocation of PKC-alpha and -betaI, but not -betaII, to the plasma membrane. Overall, these results suggest a possible involvement of cPKC isoforms in the mechanism of mouse oocyte maturation and egg activation.  相似文献   

15.
Protein kinase C (PKC) has been considered for a potential target of anticancer chemotherapy. PKC-alpha has been associated with growth and metastasis of some cancer cells. However, the role of PKC-alpha in human breast cancer cell proliferation and anticancer chemotherapy remains unclear. In this study, we examined whether alterations of PKC-alpha by phorbol esters and PKC inhibitors could affect proliferation of human breast cancer MCF-7 cells and the cytotoxic effect of chemotherapeutic agents. Exposure for 24 h to doxorubicin (DOX) and vinblastine (VIN) caused a concentration-dependent reduction in proliferation of MCF-7 cells. However, these two anticancer drugs altered cellular morphology and growth pattern in distinct manners. Phorbol 12,13-dibutyrate (PDBu, 100 nM), which enhanced activities of PKC-alpha, increased cancer cell proliferation and attenuated VIN (1 microM)-induced cytotoxicity. These effects were not affected in the presence of 10 nM staurosporine. Phorbol myristate acetate (PMA, 100 nM) that completely depleted PKC-alpha also enhanced cancer cell proliferation and attenuated VIN-induced cytotoxicity. Three potent PKC inhibitors, staurosporine (10 nM), chelerythrine (5 microM) and bisindolylmaleimide-I (100 nM), had no significant effect on MCF-7 cell proliferation; staurosporine and chelerythrine, but not bisindolylmaleimide-I, attenuated VIN-induced cytotoxicity. Moreover, neither phorbol esters nor PKC inhibitors had an effect on cytotoxic effects of DOX (1 microM) on MCF-7 cell proliferation. Thus, these data suggest that MCF-7 cell proliferation or the anti-cancer action of DOX and VIN on breast cancer cells is independent of PKC-alpha.  相似文献   

16.
Studies have demonstrated that receptor-mediated signaling, receptor/antigen complex trafficking, and major histocompatibility complex class II compartments (MIIC) are critically related to antigen presentation to CD4+ T cells. In this study, we investigated the role of protein kinase C (PKC) in FcalphaR/gammagamma (CD89, human IgA receptor)-mediated internalization of immune complexes and subsequent antigen presentation. The classical and novel PKC inhibitor, Calphostin C, inhibits FcalphaR-mediated antigen presentation and interaction of MIIC and cargo vesicle (receptor and antigen). PKC-alpha, PKC-delta, and PKC-epsilon were recruited to lipid rafts following FcalphaR crosslinking, the extent of which was determined by the phenotype of the gamma chain. Mutant gamma chain with an FcgammaRIIA ITAM (immunoreceptor tyrosine-based activation motif) insert was less able to recruit PKC and trigger antigen presentation. Both PKC isoform-specific peptide inhibitors and short interfering RNA (siRNA) showed that PKC-alpha and PKC-delta, but not PKC-epsilon, were required for association of cargo vesicle and MIIC and for FcalphaR-mediated and soluble antigen presentation. Inhibition of PKC (classical and novel) did not alter major histocompatibility class II biosynthesis, assembly, transport, or plasma membrane stability. PKC's role in facilitating interaction of cargo vesicle and MIIC is likely due to regulation of vesicle biology required for fusion of cargo vesicles to MIIC.  相似文献   

17.
The introduction of acidic and basic functionality into the side chains of respiratory syncytial virus (RSV) fusion inhibitors was examined in an effort to identify compounds suitable for evaluation in vivo in the cotton rat model of RSV infection following administration as a small particle aerosol. The acidic compounds 2r, 2u, 2v, 2w, 2z, and 2aj demonstrated potent antiviral activity in cell culture and exhibited efficacy in the cotton rat comparable to ribavirin. In a BALB/c mouse model, the oxadiazolone 2aj reduced virus titers following subcutaneous dosing, whilst the ester 2az and amide 2aab exhibited efficacy following oral administration. These results established the potential of this class of RSV fusion inhibitors to interfere with infection in vivo following topical or systemic administration.  相似文献   

18.
Addition of heparin to the virus culture inhibited syncytial plaque formation due to respiratory syncytial virus (RSV). Moreover, pretreatment of the virus with heparinase or an inhibitor of heparin, protamine, greatly reduced virus infectivity. Two anti-heparan sulfate antibodies stained RSV-infected cells, but not noninfected cells, by immunofluorescence. One of the antibodies was capable of neutralizing RSV infection in vitro. These results prove that heparin-like structures identified on RSV play a major role in early stages of infection. The RSV G protein is the attachment protein. Both anti-heparan sulfate antibodies specifically bound to this protein. Enzymatic digestion of polysaccharides in the G protein reduced the binding, which indicates that heparin-like structures are on the G protein. Such oligosaccharides may therefore participate in the attachment of the virus.  相似文献   

19.
Respiratory syncytial virus (RSV) is an important human pathogen that can cause severe and life-threatening respiratory infections in infants, the elderly, and immunocompromised adults. RSV infection of HEp-2 cells induces the activation of RhoA, a small GTPase. We therefore asked whether RhoA signaling is important for RSV replication or syncytium formation. The treatment of HEp-2 cells with Clostridium botulinum C3, an enzyme that ADP-ribosylates and specifically inactivates RhoA, inhibited RSV-induced syncytium formation and cell-to-cell fusion, although similar levels of PFU were released into the medium and viral protein expression levels were equivalent. Treatment with another inhibitor of RhoA signaling, the Rho kinase inhibitor Y-27632, yielded similar results. Scanning electron microscopy of C3-treated infected cells showed reduced numbers of single blunted filaments, in contrast to the large clumps of long filaments in untreated infected cells. These data suggest that RhoA signaling is associated with filamentous virus morphology, cell-to-cell fusion, and syncytium formation but is dispensable for the efficient infection and production of infectious virus in vitro. Next, we developed a semiquantitative method to measure spherical and filamentous virus particles by using sucrose gradient velocity sedimentation. Fluorescence and transmission electron microscopy confirmed the separation of spherical and filamentous forms of infectious virus into two identifiable peaks. The C3 treatment of RSV-infected cells resulted in a shift to relatively more spherical virions than those from untreated cells. These data suggest that viral filamentous protuberances characteristic of RSV infection are associated with RhoA signaling, are important for filamentous virion morphology, and may play a role in initiating cell-to-cell fusion.  相似文献   

20.
Human respiratory syncytial virus (RSV) is a major cause of respiratory tract infections worldwide. Several novel small-molecule inhibitors of RSV have been identified, but they are still in preclinical or early clinical evaluation. One such inhibitor is a recently discovered triphenol-based molecule, VP-14637 (ViroPharma). Initial experiments suggested that VP-14637 acted early and might be an RSV fusion inhibitor. Here we present studies demonstrating that VP-14637 does not block RSV adsorption but inhibits RSV-induced cell-cell fusion and binds specifically to RSV-infected cells with an affinity corresponding to its inhibitory potency. VP-14637 is capable of specifically interacting with the RSV fusion protein expressed by a T7 vaccinia virus system. RSV variants resistant to VP-14637 were selected; they had mutations localized to two distinct regions of the RSV F protein, heptad repeat 2 (HR2) and the intervening domain between heptad repeat 1 (HR1) and HR2. No mutations arose in HR1, suggesting a mechanism other than direct disruption of the heptad repeat interaction. The F proteins containing the resistance mutations exhibited greatly reduced binding of VP-14637. Despite segregating with the membrane fraction following incubation with intact RSV-infected cells, the compound did not bind to membranes isolated from RSV-infected cells. In addition, binding of VP-14637 was substantially compromised at temperatures of < or =22 degrees C. Therefore, we propose that VP-14637 inhibits RSV through a novel mechanism involving an interaction between the compound and a transient conformation of the RSV F protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号